一元二次方程教案

时间:2025-09-14 09:40:23 教案 我要投稿

一元二次方程教案优秀[15篇]

  作为一位兢兢业业的人民教师,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编收集整理的一元二次方程教案,仅供参考,希望能够帮助到大家。

一元二次方程教案优秀[15篇]

一元二次方程教案1

  教材分析

  一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。

  学情分析

  1、 经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。

  2、 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的阶梯。一元二次方程又是二次函数的特例。

  教学目标

  一、知识目标

  1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识.

  2、理解一元二次方程的概念.

  3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.

  二、能力目标

  1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的'能力.

  2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.

  四、情感目标

  1、培养学生主动探究知识、自主学习和合作交流的意识.

  2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识

  教学重点和难点

  教学重点: 一元二次方程的概念和它的一般形式

  难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”

一元二次方程教案2

  教学目的

  使学生掌握有关面积和体积方面以及“药液问题”的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.

  教学重点、难点

  重点:用图示法分析题意列方程.

  难点:将实际问题转化为对方程的求解问题.教学过程 复习提问

  本小节第一课我们介绍了什么问题?

  引入新课

  今天我们进一步研究有关面积和体积方面以及“药液问题”的一元二次方程的应用题及其解法.

  新课

  例1 如图1,有一块长25c,宽15c的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231c2的无盖长方体盒子,求截去的小正方形的边长应是多少?

  分析:如图1,考虑设截去的小正方形边长为xc,则底面的长为(25-2x)c,宽为(15-2x)c,由此,知由长×宽=矩形面积,可列出方程.

  解:设小正方形的边长为xc,依题意,得(25-2x)(15-2x)=231,

  即x2-20x+36=0,

  解得x1=2,x2=18(舍去).

  答:截去的小正方形的边长为2c.

  例2 一个容器盛满药液20升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液5升,问每次倒出药液多少升?

  ∴x=10.

  答:第一、二次倒出药液分别为10升,5升.

  练习 P41 3、4

  归纳总结

  1.注意充分利用图示列方程解有关面积和体积的应用题.

  2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.

  布置作业:习题22.3 8、9题

  课后反思

  第三课时

  教学目的

  使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力.

  教学重点、难点

  重点:弄清有关增长率的数量关系.

  难点:利用数量关系列方程的'方法.

  教学过程

  复习提问

  1.问题:(1)某厂生产某种产品,产品总数为1600个,合格品数为1563个,合格率是多少?

  (2)某种田农户用800千克稻谷碾出600千克大米,问出米率是多少?

  (3)某商店二月份的营业额为3.5万元,三月份的营业额为5万元,三月份与二月份相比,营业额的增长率是多少?

  新课

  例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增产的百分率是多少?

  分析:用译式法讨论列式

  一月份产量为5000吨,若月增长率为x,则二月份比一月份增产5000x吨.

  二月份产量为(5000+5000x)=5000(1+x)吨;

  三月份比二月份增产5000(1+x)x吨,

  三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.

  解:设平均每月增长的百分率为x,根据题意,

  得5000(1+x)2=7200,即(1+x)2=1.44,

  ∴1+x=±1.2,x1=0.2,x2=-2.2(不合题意,舍去).

  答:平均每月增长率为20%.

  例2 某印刷厂一月份印刷了科技书籍50万册,第一季度共印182万册,问二、三月份平均每月的增长率是多少?

  解:设每月增长率为x,依题意得

  50+50(1+x)+50(1+x)2=182,

  答:二、三月份平均月增长率为20%.

  归纳总结

  依题意,依增长情况列方程是此类题目解题的关键.

  布置作业:习题22.3 7题

一元二次方程教案3

  教学内容

  一元二次方程概念及一元二次方程一般式及有关概念.

  教学目标

  了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.

  1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.

  2.一元二次方程的一般形式及其有关概念.

  3.解决一些概念性的题目.

  4.态度、情感、价值观

  4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

  重难点关键

  1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.

  2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.

  教学过程

  一、复习引入

  学生活动:列方程.

  问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”

  大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?

  如果假设门的.高为x尺,那么,这个门的宽为_______尺,根据题意,得________.

  整理、化简,得:__________.

  问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.

  如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.

  整理,得:________.

  老师点评并分析如何建立一元二次方程的数学模型,并整理.

  二、探索新知

  学生活动:请口答下面问题.

  (1)上面三个方程整理后含有几个未知数?

  (2)按照整式中的多项式的规定,它们最高次数是几次?

  (3)有等号吗?或与以前多项式一样只有式子?

  老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.

  因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

  一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

  一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

  例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.

  分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.

  解:去括号,得:

  40-16x-10x+4x2=18

  移项,得:4x2-26x+22=0

  其中二次项系数为4,一次项系数为-26,常数项为22.

  例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.

  分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.

  解:去括号,得:

  x2+2x+1+x2-4=1

  移项,合并得:2x2+2x-4=0

  其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.

  三、巩固练习

  教材P32 练习1、2

  四、应用拓展

  例3.求证:关于x的方程(2-8+17)x2+2x+1=0,不论取何值,该方程都是一元二次方程.

  分析:要证明不论取何值,该方程都是一元二次方程,只要证明2-8+17≠0即可.

  证明:2-8+17=(-4)2+1

  ∵(-4)2≥0

  ∴(-4)2+1>0,即(-4)2+1≠0

  ∴不论取何值,该方程都是一元二次方程.

  五、归纳小结(学生总结,老师点评)

  本节课要掌握:

  (1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.

  六、布置作业

一元二次方程教案4

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的`综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

一元二次方程教案5

  教学目标

  1.使学生掌握移项的概念,并能利用移项解简单的一元一次方程;

  2.培养学生观察、分析、概括和转化的能力,提高他们的`运算能力。

  教学重点:

  移项解一元一次方程。

  教学难点:

  移项的概念

  教学方法:

  启发式教学

  教学过程:

  (一)情境创设

  (二):探索新知

  解方程:(1)3x—5=4。(2)7x=5x—4

  在分析本题时,教师应向学生提出如下问题:

  1.怎样才能将此方程化为ax=b的形式?

  2.上述变形的根据是什么?

  解:3x—5=4,

  方程两边都加上,得

  3x—5+5=4+5,

  (本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)

  解方程7x=5x—4。

  针对(1),(2)题的分析与解答,教师可提出以下几个问题:

  (1)将方程3x—5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?

  (2)将方程7x=5x—4,变形为7x—5x=—4这一过程中,什么变化了?怎样变化的?

  我们将方程中某一项改变后,从方程的一边移到另一边,这种变形叫做移项。利用移项,我们可以将(2)题按以下步骤来书写。

  解:

  移项,得,

  合并同类项,得

  未知数x的系数化1,得

  (至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号)。

  (三)自学例题:

  解方程:x—3=4—x

  解:移项,得

  和并同类项,得

  系数化为1

  练习:1(A)组

  (1)方程3x+6=2x-8移项后,得

  (2)方程2x—0。3=1.2+3x移项,得

  (3)下列方程变形正确的是()

  A若3X+2=1,则3X=3

  B若—X+1=0,则—X=1

  C若X—1=3X,则—1=3X—X

  D若—=O,则X=4

  (4)用移项法解下列方程:

  (A)10y+7=12y—5—3y(B)0。5x+=x+2

  (C)=+x(D)9+x=2x+12—4x

  (四):教学小结:

一元二次方程教案6

  【学习过程】

  一:复习旧知:

  问题1:你能写出一个一元一次方程吗?

  问题2:形如()叫一元一次方程.

  二:情境引入:

  问题1:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?

  若设老牛驮了个包裹,小马驮了个包裹。则:

  ①根据“已知老牛比小马多驮2个包裹”你能得到怎样的方程?

  ②“如果将马背上的包裹拿掉一个放到牛背上,那么牛驮的包裹数是马的2倍。”这时牛驮了个包裹,马驮了个包裹。由此你又能得到怎样的方程?

  问题2:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?

  三:知识新授:

  (一)二元一次方程的概念概括:含有,并且所含未知数的的次数都是的方程叫做二元一次方程。

  注意:①含有两个未知数;②所含未知数的项的最高次数是一次.。

  巩固练习1:

  1.下列方程有哪些是二元一次方程,是的打√,不是的打×:

  (1),()(2),()

  (3),()(4),()

  (5),()(6).()

  2.如果方程是二元一次方程,那么m=,n=.

  (二)二元一次方程组概念的概括:

  1.前面第二题中的两个方程中含义相同吗?表示

  呢?一样吗?表示,是否同时满足两个方程?

  2.二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程.如:

  注意:在方程组中的各方程中的同一个字母必须表示同一个对象.

  巩固练习2:

  (1)同学们各自写出一个二元一次方程组。.

  判断下列方程组是否是二元一次方程组:

  (1)(2)(3)

  (4)(5)(6)

  (三)方程的解的概念

  1.适合方程吗?呢?呢?你还能找到其他x,y值适合方程吗?

  2.适合方程吗?呢?

  3.你能找到一组值x,y同时适合方程和吗?

  ☆适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.

  例如,x=6,y=2是方程x+y=8的一个解,记作

  通过前面我们知道是方程的一个解,同时又是方程的一个解.

  ☆二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.

  例如,就是二元一次方程组的`解。

  巩固练习3:

  1.下列四组数值中,哪些是二元一次方程的解?()

  (A)(B)(C)(D)

  2.二元一次方程的解有:

  ……

  3.二元一次方程组的解是()

  (A)(B)(C)(D)

  4.以为解的二元一次方程组是()

  (A)(B)

  (C)(D)

  5.二元一次方程的正整数解为.

  6.如果是的解,那么m=,n=.

  7.写出一个以为解的二元一次方程组为.(答案不唯一)

  8.方程在自然数范围的解的个数为,整数范围呢?

  四:小结:这堂课你掌握的知识;

  你还有那些不明白的地方?

一元二次方程教案7

  3.3.1一元一次方程的讨论(2)(一)

  一、背景与意义分析

  本课安排在第二章第三小节,属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域。

  本课在前面列、解一元一次方程的基础上,进一步探讨列方程解方程的问题,如何根据实际列方程,如何解方程是本课的重点,正确利用“去括号”变形来解方程是本课的难点,本课是在建立和运用方程这种数学模型的大背景下进行的。

  二、学习与导学目标

  1.知识积累与疏导:结合一些实际问题讨论一元一次方程,掌握“去括号”法则。

  2.技能掌握与指导:能根据实际问题中的等量关系列出方程,感悟到方程是刻画现实世界的一个有效模型。

  3.智能的提高与训导:通过同学间,学生和老师的合作探讨让学生逐步学生思维。

  4.情感修炼与开导:俄罗斯古题创设情境,激发学生学习数学的热情,增强数学教科书的人文色彩。

  5.观念确认与引导:会通过列方程解决实际问题,并会将含有括号的方程化归成已经熟悉的.方程,逐步培养学生的化归思想。

  三、障碍与生成关系

  关注方程与实际问题的联系,感受数学建模思想。

  四、学程与导程活动

  (一)创设问题情境

  活动1:

  展示问题(幻灯片)俄罗斯小说家契诃夫的小说《家庭教师》中,写了一位教师为一道算术题大伤脑筋。我们来看看这道题。

  问题(买布问题)顾客用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买了多少?

  (二)探索解决方法

  活动2:

  先让学生读题,然后老师提出,你会用方程解这道题吗?以同桌同学或前后两桌为一组,讨论交流一下,此题怎样解,老师巡视之后,若发现学生中有会解的,请同学板演并指出每个式子的意义,若没有,则作如下提示:

  设买了蓝布x俄尺,那么买了黑布料_________俄尺,买蓝布料花了3x卢布,买黑布料花了________卢布,根据买两种布共用540卢布,列得方程为______________

  活动3

  列出方程后,教师再次提出问题:怎样解这个方程,求出x值?

  学生思考,交流,得出共识,先去括号,然后按已学方程变,化简成x=a的形式。

  活动4

  尝试练习:去括号是解方程时常用的变形,分别将式子2(x+2y-2),-3(3x-y+1),-(4a+3b-5c)去括号,你能从中发现去括号时符号变化析规律吗?注意其中-(4a+3b-5c)=(-1)(4a+3b-5c)(幻灯片)

  学生学会合作完成作业,归纳总结去括号法则(幻灯片)

  所列方程的具体过程:

  3x+5(138-x)=540

  ↓去括号

  3x+690-5x=540

  ↓移项

  3x-5x=540-690

  ↓合并

  -2x=-150

  ↓系数化为1

  x=75

  ↓代入

  138-x=63

  由上可知,买了75俄尺蓝布料和63俄尺黑布料

  活动5

  巩固去括号法则,解下列方程

  (1)4x+3(2x-3)=12-(x+4)

  (2)6(12x-4)+2x=7-(13x-1)

  活动6

  师生小结归纳(幻灯片)

  六练习与拓展选题

  1、P91/1,2

  2、P92/11(选做题).

  课后反思:_________________________________________________

  ______________________________________________________________________________________________________________________

  —————————————————————————————————————————————————

一元二次方程教案8

  一、教学目标

  1.使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.

  2.通过本节课的教学,向学生渗透转化的数学思想方法;

  3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.

  二、重点难点疑点及解决办法

  1.教学重点:可化为一元二次方程的分式方程的解法.

  2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.

  3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.

  4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.

  三、教学步骤

  (一)教学过程

  1.复习提问

  (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?

  (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?

  (3)解方程,并由此方程说明解方程过程中产生增根的原因.

  通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.

  在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对类比法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.

  在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.

  2.例题讲解

  例1 解方程.

  分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.

  解:两边都乘以,得

  去括号,得

  整理,得

  解这个方程,得

  检验:把代入,所以是原方程的根.

  原方程的根是.

  虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学

  生容易犯的类型错误应加以强调,如在第一步中.需强调方程两边同时乘以最简公分母.另

  外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解

  分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调.

  例2 解方程

  分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是

  正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所

  以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母.

  解:方程两边都乘以,约去分母,得

  整理后,得

  解这个方程,得

  检验:把代入,它不等于0,所以是原方程的根,把

  代入它等于0,所以是增根.

  原方程的根是

  师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较.

  例3 解方程.

  分析:此题也可像前面例l、例2一样通过去分母解决,学生可以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部分 和互为倒数,由此可设 ,则可通过换元法来解题,通过求出

  y后,再求原方程的未知数的值.

  解:设,那么,于是原方程变形为

  两边都乘以y,得

  解得

  当时,,去分母,得

  解得;

  当时,,去分母整理,得

  检验:把分别代入原方程的分母,各分母均不等于0.

  原方程的根是

  此题在解题过程中,经过两次转化,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验.

  巩固练习:教材P49中1、2引导学笔答.

  (二)总结、扩展

  对于小结,教师应引导学生做出.

  本节内容的'小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行.

  本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了转化与换元的基本数学思想与基本数学方法.

  此小结的目的,使学生能利用类比的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握.

  四、布置作业

  1.教材P50中A1、2、3.

  2.教材P51中B1、2

  五、板书设计

  探究活动1

  解方程:

  分析:若去分母,则会变为高次方程,这样解起来,比较繁,注意到分母中都有,可用换元法降次

  设,则原方程变为

  或无解

  经检验:是原方程的解

  探究活动2

  有农药一桶,倒出8升后,用水补满,然后又倒出4升,再用水补满,此时农药与水的比为18:7,求桶的容积.

  解:设桶的容积为 升,第一次用水补满后,浓度为 ,第二次倒出的农药数为4. 升,两次共倒出的农药总量(8+4 )占原来农药 ,故

  整理,

  (舍去)

  答:桶的容积为40升.

一元二次方程教案9

一、教学目标

  知识与技能

  (1)理解一元二次方程的意义。

  (2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。

  过程与方法

  在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

  情感、态度与价值观

  通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。

  二、教材分析:教学重点难点

  重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。

  难点:准确理解一元二次方程的意义。

  三、教学方法

  创设情境——主体探究——合作交流——应用提高

  四、学案

  (1)预学检测

  3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?

  五、教学过程

  (一)创设情境、导入新

  (1)自学本P2—P3并完成书本

  (2)请学生分别回答书本内容再

  (二)主体探究、合作交流

  (1)观察下列方程:

  (35-2x)2=900 4x2-9=0 3y2-5y=7

  它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?

  (2)一元二次方程的概念与一般形式?

  如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数 a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56

  (三)应用迁移、巩固提高

  例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?

  x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2

  例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。

  解:去括号得

  3x2-3x=5x+10

  移项,合并同类项,得一元二次方程的一般形式

  3x2-8x-10=0

  其中二次项系数为3,一次项系数为-8,常数项为-10.

  学生练习:书本P4练习

  (四)总结反思 拓展升华

  总结

  1.一元二次方程的`定义是怎样的?

  2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。

  3.在实际问题转化为一元二次方程数学模型的过程中,体会学习一元二次方程的必要性和重要性。

  反思

  方程ax3+bx2+cx+d=0是关于x的一元二次方程的条是a=0且b≠0,是一元一次方程的条是a=b=0 且c≠0.

  (五)布置作业

  (1)必做题P4 习题1.1A组 1.2

  (2)选做题: 若xm-2=9是关于x的一元二次方程,试求代数式(m2-5m+6)÷(m2-2m)的值。

一元二次方程教案10

  学习目标:

  1、使学生初步理解二元一次方程与一次函数的关系

  2、能根据一次函数的图像求二元一次方程组的近似值

  3、能解二元一次方程组的方法求两条直线的交点坐标

  学习重点:

  1、用作图像法求二元一次方程组的'近似值

  2、用解二元一次方程组的方法求两条直线的交点坐标

  学习难点:

  1、做图像时要标准、精确,近似值才接近

  2、解二元一次方程组时计算准确,方法适宜

  学习方法:

  先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

  自主学习部分:

  问题1。(1)方程x+y=的解有多少组?写出其中的几组解。

  (2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=—x的图像上吗?

  (3)在一次函数y=—x的图像上任取一点,它们的坐标适合方程x+y=吗?

  (4)以方程x+y=的解为坐标的所有点组成的图像与一次函数y=—x的图像相同吗?

  ()由以上的探究过程,你发现了什么?

  问题2。(1)在同一个直角坐标系内分别作出一次函数y=—x和y=2x—1的图像,这两个图像有交点吗?如果有,写出交点坐标?

  (2)一次函数y=—x和y=2x—1的交点坐标与方程组的解有什么关系?你能说明理由吗?

  (3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

  合作探究:

  1、用做图像的方法解方程组

  2、用解方程的方法求直线y=4—2x与直线y=2x—12交点

一元二次方程教案11

  教学目标

  1.能够利用配方的方法,得到实系数一元二次方程的求根公式,会在复数集中解实系数一元二次方程。

  2.能够模仿初中学过的分解因式的方法,在复数范围内对二次三项式进行因式分解。

  3.能够类比初中学过的根与系数的关系,推导出实系数一元二次方程根与数的关系。

  教学重点与难点

  1.在复数集中解实系数一元二次方程;

  2.在复数范围内对二次三项式进行因式分解.

  教学流程

  配方—-求根公式——练习分解因式——韦达定理

  教学过程

  1.复习实数的平方根

  实数a的.平方根=

  2.最简单的一元二次方程

  3.推广

  4.请同学们自己编一道解为共轭虚根的一元二次方程,并求解。

  5.研究实系数一元二次方程的解

  以上方程中的系数都是实数,今天我们研究实系数一元二次方程的解。

  6.回头再解前面的方程

  7.分解因式

  8.韦达定理

  对于实系数一元二次方程,当其有实数根时,我们在初中已经学习过了根与系数的关系:,(即韦达定理).

  实系数一元二次方程的韦达定理:

  特别地,当时,为一对共轭虚根,即,∴,.

  9.课后练习:

  (1)在复数集中分解因式:.

  (2)方程在复数集中解的个数为()

  (A)2(B)4(C)6(D)8

  (3)在复数范围内解方程(i为虚数单位).

  (4)已知1-i是实系数一元二次方程的一个根,则=.

  (5)若两个数之和为2,两个数之积为3,则这两个数分别为.

  (6)在复数集中分解因式:=.

  (7)若方程有虚数根z,则|z|=.

一元二次方程教案12

  学习目标:

  1、使学生会用列一元二次方程的方法解决有关增长率的应用题;

  2、进一步培养学生分析问题、解决问题的能力。

  学习重点:

  会列一元二次方程解关于增长率问题的应用题。

  学习难点:

  如何分析题意,找出等量关系,列方程。

  学习过程:

  一、 复习提问:

  列一元二次方程解应用题的一般步骤是什么?

  二、探索新知

  1.情境导入

  问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.20xx年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20xx年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少?②该村有50户人家,每户均地村长20xx年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤?

  2.合作探究、师生互动

  教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20xx年实际完成的亩数是30(1+x),第二次增长后,即20xx年实际完成的`亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.

  教师引导学生运用方程解决问题:

  ①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.

  ②全村坡耕地还林还草为50×36.3=1 815(亩),国家将补助粮食1 815×500=907 500(斤)=90.75(万斤).

  三、例题学习

  说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

  例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几?

  (小组合作交流教师点拨)

  时间 基数 降价 降价后价钱

  第一次 600 600x 600(1-x)

  第二次 600(1-x) 600(1-x)x 600(1-x)2

  (由学生写出解答过程)

  四、巩固练习

  一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?

  五、课堂总结:

  1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

  2、注意解方程中的巧算和方程两个根的取舍问题。

  六、反馈练习:

  1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()

  A.x+(1+x)x=20% B.(1+x)2=20%

  C.(1+x)2=1.2 D.(1+x%)2=1+20%

  2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()

  3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几?

一元二次方程教案13

  一、教学内容分析

  “一元二次方程的根的判别式”一节,在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的'数学思想,渗透数学的简洁美。

  教学重点:根的判别式定理及逆定理的正确理解和运用

  教学难点:根的判别式定理及逆定理的运用。

  教学关键:对根的判别式定理及其逆定理使用条件的透彻理解。

  二、学情分析

  学生已经学过一元二次方程的四种解法,并对 的作用已经有所了解,在此基础上来进一步研究 作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。

  三、教学目标

  依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是:

  知识和技能:

  1、感悟一元二次方程的根的判别式的产生的过程;

  2、能运用根的判别式,判别方程根的情况和进行有关的推理论证;

  3、会运用根的判别式求一元二次方程中字母系数的取值范围;

  过程和方法:

  1、培养学生的探索、创新精神;

  2、培养学生的逻辑思维能力以及推理论证能力。

  情感态度价值观:

  1、向学生渗透分类的数学思想和数学的简洁美;

  2、加深师生间的交流,增进师生的情感;

  3、培养学生的协作精神。

一元二次方程教案14

  知识目标

  了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

  能力目标

  通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

  情感目标

  通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

  教学重点

  二元一次方程组的`含义

  教学难点

  判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

  教学过程

  一、引入、实物投影

  1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:累死我了,小马说:你还累,这么大的个,才比我多驮2个老牛气不过地说:哼,我从你背上拿来一个,我的包裹就是你的2倍!,小马天真而不信地说:真的?!同学们,你们能否用数学知识帮助小马解决问题呢?

  2、请每个学习小组讨论(讨论2分钟,然后发言)

  这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)

  师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的。项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)

  师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程

  注意:这个定义有两个地方要注意①、含有两个未知数,②、含的次数是一次

  练习

  下列方程有哪些是+2y=1xy+x=13x-=5x2-2=3x

  xy=12x(y+1)=c2x-y=1x+y=0

  二、议一议、

  师:上面的方程中x-y=2的x含义相同吗?

一元二次方程教案15

  3、方程(2a—4)x

  —2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程

  ※4、已知关于x的一元二次方程(m-1)x

  +3x-5m+4=0有一根为2,求m。

  设计意图:分层次布置作业,尊重学生的个体差异,激发学生学习积极性。

  【课程资源】

  一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。

  在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。

  埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的求根公式。

  希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。

  公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。

  在阿拉伯阿尔.花拉子米的'《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。

  韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。

  我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。我国数学家还在方程的研究中应用了内插法。

【一元二次方程教案】相关文章:

一元二次方程教案03-22

一元二次方程教案09-14

一元二次方程高中教案12-01

一元二次方程高中教案[热门]01-10

一元二次方程高中教案【热门】01-29

一元二次方程数学教案12-29

《一元二次方程》优秀教案(精选5篇)12-28

初三数学一元二次方程教案06-12

《一元二次方程》教学反思12-24

一元二次方程教学反思04-14