一元二次方程教案
作为一名专为他人授业解惑的人民教师,通常需要用到教案来辅助教学,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?以下是小编整理的一元二次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
一元二次方程教案1
学习目标
1.进一步理解方程是刻画客观世界的有效模型,
2.通过对实际问题的决实际问题的过程,知道解的一般步骤和关键所在
学习重点:认识不等式
学习难点:字语言转化为数学不等式
教学过程
一、情境引入:
围绕长方形公园的栅栏长280m.已知该公园的面积为4800m2. 求这个公园的长与宽.
二、探究学习:
1.尝试:
通常用一元一次方程解决实际问题要经历怎样的过程?
2.概括总结.
用方程解决实际问题的一般步骤为:找相等关系;设未知数,列方程,解方程,检验,答题。
3.典型例题:
例1、我社组团去龙湾风景区旅游,收费标准为:如果人数不超过30人,人均旅游费用为800元,如果人数多于30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于今为500元。
甲公司分批组织员工到龙湾风景区旅游,现计划用28000元组织第一批员工去旅游,问这次旅游可以安排多少人参加?
例2、建造一个池底为正方形、深度为2米的长方体无盖水池,池壁的造价为100元/平方米
池底的造价为200元/平方米,总造价为6400元,求正方形池底的长。
例3、两个连续奇数的积是323,求这两个数。
4.巩固练习:
(1)在三位数345中,3,4,5是这个三位数的什么?
(2)如果a ,b ,c 分别表示百位数字、十位数字、个位数字,这个三位数能不能写成abc形式?为什么?
(3)有一个两位数,它的两个数字之和是8,把这个两位数的数字交换位置后所得的数乘以原的数就得到1855,求原的两位数。
(4)已知两个数的和等于12,积等于32,则这两个是
(5)求 x:(x-1)=(x+2):3 中的x.
(6)三个连续整数两两相乘后,再求和,得362,求这三个数。
三、归纳总结:
1、列一元二次方程解决实际问题的一般步骤.
2、解的取舍情况.
4.3用一元二次方程解决问题( 1)
【课后作业】
班级 姓名 学号
1、某电视机厂计划用两年的`时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,则这个百分数为 ( )
A、10% B、20% C、120% D、180%
2、若两个连续整数的积是56,则它们的和是 ( )
A、±15 B、15 C、-15 D、11
3、一种药品经过两次降价后,每盒的价格由原的60元降至48.6元,那么平均每次降价的百分率是 。
4、某地区开展“科技下乡”活动三年,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。设每年接受科技培训的人次的平均增长率都为x,根据题意列出的方程是___________。
5、西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0、1元/kg,每天可多售出40kg,另外,每天的房租等固定成本共24元,该经营户要想每天盈利润200元,应将每千克小型西瓜的售价降低多少元?
6、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃。
(1)如果要围成面积为45平方米的花圃,AB的长是多少米?
(2)能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由。
一元二次方程教案2
教学目标
(1)会用公式法解一元二次方程;
(2)经历求根公式的发现和探究过程,提高学生观察能力、分析能力以及逻辑思维能力;
(3)渗透化归思想,领悟配方法,感受数学的内在美.
教学重点
知识层面:公式的推导和用公式法解一元二次方程;
能力层面:以求根公式的发现和探究为载体,渗透化归的数学思想方法.
教学难点:求根公式的推导.
总体设计思路:
以旧知识为起点,问题为主线,以教师指导下学生自主探究为基本方式,突出数学知识的内在联系与探究知识的方法,发展学生的理性思维.
教学过程
整体教学流程:形成表象,提出问题
分析问题,探究本质
得出结论,解决问题
拓展应用,升华提高
归纳小结,布置作业.
形成表象,提出问题
在上一节已学的用配方法解一元二次方程的基础上创设情景.
解下列一元二次方程:(学生选两题做)
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
(3)4x2-16x+17=0 ; (4)3x2+4x+7=0.
然后让学生仔细观察四题的解答过程,由此发现有什么相同之处,有什么不同之处?
接着再改变上面每题的其中的一个系数,得到新的四个方程:(学生不做,思考其解题过程)
(1)3x2+4x+2=0; (2)3x2-2x+1=0;
(3)4x2-16x-3=0 ; (4)3x2+x+7=0.
思考:新的四题与原题的解题过程会发生什么变化?
设计意图:1.复习巩固旧知识,为本节课的学习打下更好的基础;
2.让学生充分感受到用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望.
分析问题,探究本质
由学生的观察讨论得到:用配方法解不同一元二次方程的过程中,相同之处是配方的过程----程序化的操作,不同之处是方程的根的情况及其方程的根.
进而提出下面的问题:
既然过程是相同的,为什么会出现根的不同?方程的根与什么有关?有怎样的关系?如何进一步探究?
让学生讨论得出:从一元二次方程的一般形式去探究根与系数的关系.
ax2+bx+c=0(a≠0) 注:根据学生学习程度的不同,可
ax2+bx=-c 以采用学生独立尝试配方, 合x2+
x=-
作尝试配方或教师引导下进行
x2+
x+
=-
+
配方等各种教学形式.
(x+
)2=
然后再议开方过程(让学生结合前面四题方程来加以讨论),使学生充分认识到“b2-4ac”的重要性.
当b2-4ac≥0时,
(x+
)2=
注:这样变形可以避免对a正、负的讨论,
x+
=
便于学生的理解.
x=-
即x=
x1=
, x2=
当b2-4ac<0时,
方程无实数根.
设计意图:让学生通过经历知识形成的全过程,从而提高自身的观察能力、分析问题和解决问题的能力,发展了理性思维.
得出结论,解决问题
由上面的探究过程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c确定. 当b2-4ac≥0时,
x=
;
当b2-4ac<0时,方程无实数根.
这个式子对解题有什么帮助?通过讨论加深对式子的理解,同时让学生进一步感受到数学的.简洁美、和谐美.
进而阐述这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
运用公式法解一元二次方程.(设计两个环节:共同练习和独立完成)
[共同练习]
(1)2x2-x-1=0; (2)4x2-3x+2=0 ;
(3)x2+15x=-3x; (4)x2-
x+
=0.
此环节的设计意图:进一步阐述求根公式,归纳总结用公式法解一元二次方程的一般步骤.
[独立完成]
用公式法解一元二次方程:
(1)x2+x-6=0; (2)x2-
x-
=0; (3)3x2-6x-2=0;
(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.
此环节的设计意图:能够熟练运用公式法解一元二次方程,让每位学生都有所收获.
拓展运用,升华提高
分两个环节:用一用和想一想(此环节基于学生课堂掌握的情况而定,可作为课后思考题).
[用一用]
解决本章引言中的问题:
要设计一座2m高的人体雕像,使雕像的上部(腰以上)与下部(腰以小)的高度比,等于下部与全部的高度比,雕像的下部应设计为多高?
雕像上部的高度AC,下部的高度BC应有如下关系:
即BC2=2AC.
设雕像下部高xm,于是得方程
x2=2(2-x)
整理得:x2+2x-4=0.
解这个方程,得
x=
,
x1=-1+
,x2=-1-
.
精确到0.001,x1≈1.236,x2≈-3.236.
考虑实际意义, x≈1.236.所以雕像下部高度应设计约为1.236m.
在前面的基础上进一步提问: (结合学生的实际情况,可以放在课后思考.)
(1)如果雕像的高度设计为3m,那雕像的下部应是多少?4m呢?
(2)进而把问题一般化,这个高度比是多少?
之后简单介绍黄金分割数,使学生感受到数学的奥妙.
此环节的设计意图:①运用所学的知识解决实际问题;②能力层面上的拓展----化归思想.
[想一想]
清清和楚楚刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清说:“此方程有两个不相等的实数根”,而楚楚反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由.
此环节的设计意图:基于学生基础较好,因此对求根公式作进一步深化,并综合运用了配方法,使不同层次的学生都有不同提高.
归纳小结,布置作业
结合上面用一用,让学生尝试对本节课的知识进行梳理,对方法进行提炼,从而使学生的知识和方法更具系统化和网络化,同时也是情感的升华过程.
作业: (结合学生的实际情况,可以分层布置.)
㈠作业本;
㈡拓广探索:P46第12题
㈢阅读思考P46-----黄金分割数,有兴趣的同学可以上网查阅相关资料,或进一步探究根与系数的其他关系.
一元二次方程教案3
复习目标:
1、能说出一元二次方程及其相关概念。
2、能熟练应用配方法、公式法、分解因式法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想。
复习重难点:一元二次方程的解法
教学过程
一、情景导入
前面我们复习了一元一次方程与二元一次方程组的解法,大家掌握得很不错,请同学解方程x(x-1)=1,(学生略作思考后,示意不会做)忘了吧?看来好多学生都已经忘了如何解一元二次方程呢?那么这节课我们就一起来复习一元二次方程的解法(板书课题)
二、复习指导(学生按照复习提纲解决问题,师做简单的板书准备后,巡视指导,特别要注意帮助有困难的同学,了解学生的情况,为展示归纳做准备。)
复习提纲
1.-元二次方程的定义:只含有_______叫做一元二次方程。
2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项。
3.一元二次方程的解法:
(1)用直接开平方法解方程(2x+1)2=9
形如x2=p(p≥0)的方程的根为________。
(2)用配方法解方程x2+2x=3
用配方法解方程步骤: , , , 。
(3)用求根公式法解方程x2-3x-5=0 ,x2-3x+5=0。
一元二次方程ax2+bx+c=0(a≠0)的根的`判别式△=________,根x= 。
(1)当△>0时,方程有两个_______的实数根。
(2)当△=0时,方程有两个_______的实数根。
(3)当△<0时,_______。
三、展示归纳
1、教师抽有困难的学生逐题汇报复习结果,学生说教师板书。
2、教师发动全班学生进行评价,补充,完善。
3、教师画龙点睛的强调。
四、变式练习(1、2、4题让学生说出理由,3题让学生观察方程的特点可发现:(1)可用直接开平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x-3),故可用因式分解法。)
1、判断下列哪些方程是一元二次方程?
(1)4x2-16x+15=0 (2) 2x2-3=0 (3)ax2+bx+c=0
2、请将方程(x+1)(2-x)=1化为一般形式_______。
3、解下列方程:
(1) (x-3)2-9=0; (2) x2-2x=5;
(3) x2-4x+2=0; (4) 2(x-3)=3x(x-3)。
4、不解方程,判断下列方程根的情况。
(1)2x2-5x-3=0 (2)x2+6x+9=0 (3)x2-4x+5=0
五、课堂总结
请谈谈本节课的收获与困惑。(学生自主小结归纳,将本章知识内化为自己的东西,并提高归纳小结的能力。)
六、布置作业
一元二次方程教案4
学习目标
1、一元二次方程的求根公式的推导
2、会用求根公式解一元二次方程.
3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯
学习重、难点
重点:一元二次方程的求根公式.
难点:求根公式的条件:b2 -4ac≥0
学习过程:
一、自学质疑:
1、用配方法解方程:2x2-7x+3=0.
2、用配方解一元二次方程的步骤是什么?
3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?
二、交流展示:
刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?
三、互动探究:
一般地,对于一元二次方程ax2+bx+c=0
(a≠0),当b2-4ac≥0时,它的根是
用求根公式解一元二次方程的方法称为公式法
由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的`前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.
注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.
(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.
四、精讲点拨:
例1、课本例题
总结:其一般步骤是:
(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)
(2)求出b2-4ac的值.(先判别方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后写出方程的根.
例2、解方程:
(1)2x2-7x+3=0 (2) x2-7x-1=0
(3) 2x2-9x+8=0 (4) 9x2+6x+1=0
五、纠正反馈:
做书上第P90练习。
六、迁移应用:
例3、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.
例4、求方程 的两根之和以及两根之积
拓展应用:关于 的一元二次方程 的一个根是 ,则 ;
方程的另一根是
一元二次方程教案5
一、教学目标
【知识与技能】
理解并掌握一元二次方程求根公式的推导过程,能正确、熟练地运用公式法解一元二次方程。
【过程与方法】
经历探究求根公式的过程,发展合情推理能力,提高运算能力并养成良好的运算习惯。
【情感、态度与价值观】
通过公式法解一元二次方程,感受解法的`多样性,在学习活动中获取成功的体验。
二、教学重难点
【教学重点】
用公式法解一元二次方程。
【教学难点】
一元二次方程求根公式的推导。
三、教学过程
(一)引入新课
复习回顾:用配方法解一元二次方程。
配方,得
(四)小结作业
小结:引导学生做知识总结:本节课学习了什么叫公式法,怎样运用公式法解一元二次方程。如何判断一个方程是否有实数根?
作业:课后练习题,试着用多种方法解答。
四、板书设计
略
一元二次方程教案6
【课前准备】:
箱子里有许多的红球和蓝球,现摸到1个红球,3个绿球,共得11分,你知道摸到1个红球得多少分?1个绿球得多少分?
再摸一次,又摸到了3个红球,2个绿球,共得12分。你知道摸到1个红球、1个绿球各得多少分?
【探索新知】
问题一:问题中的量满足怎样的相等关系?
问题中的量应同时满足以上两个相等关系.如果设摸到1个红球得x分,摸到1个绿球得y分.那么可以得到方程:
______________.
_______________
因而将这两个方程组成二元一次方程组:
___________
____________
问题二:根据上面的方程组,请你猜一猜,“摸到红、绿球得分”问题的答案。你用了什么方法?
方程(1)的解是
……
方程(2)的.解是
……
可以看出___________是这两个方程的公共解,我们把_______________________叫做二元一次方程组的解。
因此,我们知道,摸到1个红球得2分,1个绿球得3分.
【知识运用】
例1:二元一次方程组的解是()
A.B.C.D.
例2:你能求出“鸡兔同笼”问题中二元一次方程组的解吗?
练习应用
(1)如果是方程组的解,则m=,n=.
【当堂反馈】
1.有3对数:①②③在这3对数中,是方程的解;是方程的解;是二元一次方程组的解.
2.下列各对数值中,哪一组是二元一次方程组的解?
3.如果是二元一次方程组的解.求m、n的值.
4.已知关于x、y的二元一次方程组的解满足,求a的值.
5.甲种饮料每瓶2.5元,乙种饮料每瓶1.5元,某人买了x瓶甲种饮料,y瓶乙种饮料,共花了34元。
(1)列出关于x、y的二元一次方程;
(2)如果甲种饮料和乙种饮料共买16瓶,列出关于x、y的二元一次方程组,并找出它的解。
6、写出解是的二元一次方程组?你能写出几个?
7、1)方程y=2x-3的解有个;
2)方程3x+2y=1的解有个;
3)方程组y=2x-3的解有个
3x+2y=1
一元二次方程教案7
一、教材分析
1、教材的地位和作用
一元二次方程是中学教学的主要内容,在初中代数中占有重要的地位,在一元二次方程的前面,学生学了实数与代数式的运算,一元一次方程(包括可化为一元一次方程的分式方程)和一次方程组,上述内容都是学习一元二次方程的基础,通过一元二次方程的学习,就可以对上述内容加以巩固,一元二次方程也是以后学习(指数方式,对数方程,三角方程以及不等式,函数,二次曲线等内容)的基础,此外,学习一元二次方程对其他学科也有重要的意义。
2、教学目标及确立目标的依据
九年义务教育大纲对这部分的`要求是:使学生了解一元二次方程的概念,依据教学大纲的要求及教材的内容,针对学生的理解和接受知识的实际情况,以提高学生的素质为主要目的而制定如下教学目标。
知识目标:使学生进一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。
能力目标:通过一元二次方程概念的教学,培养学生善于观察,发现,探索,归纳问题的能力,培养学生创造性思维和逻辑推理的能力。
德育目标:培养学生把感性认识上升到理性认识的辩证唯物主义的观点。
3、重点,难点及确定重难点的依据
一元二次方程有着承上启下的作用,在今后的学习中有广泛的应用,因此本节课做为起始课的重点是一元二次方程的概念,一元二次方程(特别是含有字母系数的)化成一般形式是本节课的难点。
二、教材处理
在教学中,我发现有的学生对概念背得很熟,但在准确和熟练应用方面较差,缺乏应变能力,针对学生中存在的这些问题,本节课突出对教学概念形成过程的教学,采用探索发现的方法研究概念,并引导学生进行创造性学习。
三、教学方法和学法
教学中,我运用启发引导的方法让学生从一元一次方程入手,类比发现并归纳出一元二次方程的概念,启发学生发现规律,并总结规律,最后达到问题解决。
四、教学手段
采用投影仪
五、教学程序
1、新课导入:
(1)什么叫一元一次方程?(并引入一元二次方程的概念做铺垫)
(2)列方程解应用题的方法,步骤?(并引例打基础)
课本引例(如图)由教师提出并分析其中的数量关系。(用实际问题引出一元二次方程,可以帮助学生认识到一元二次方程是来源于客观需要的)
设出求知数,列出代数式,并根据等量关系列出方程
一元二次方程教案8
教学目标:
知识与技能目标:
经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。
过程与方法目标:
经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。
情感态度与价值观目标:
培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。
教学重点:
理解一元二次方程的概念及其形式。
教学难点:
一元二次方程概念的探索
教学过程
一、情境引入
今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)
二、探索新知
列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)
请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)
观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。
请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。
2、以上方程与一元一次方程有什么相同与不同之处?
3、你能说说什么样的方程是一元二次方程吗?
4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?
5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?
6、你认为一元二次方程的概念中重点要强调的是什么?为什么?
请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?
请你抢答问题7。
7、判断下列方程是不是一元二次方程,若不是请说明理由。
同桌两人能举出几个一元二次方程的例子吗?
探索二
先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。
找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的同学找组长和我。
1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。
三、巩固练习
请看问题2,
2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?
四、课堂:
先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。
五、自我检测:
看看我们的收获是不是真的
硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改
1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?
根据题意,列出方程为------------------------------------。
2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:
方程
一般形式
二次项系数
常数项
3x2=5x-1
(x+2)(x-1)=6
3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0
(1)k为何值时,是一元二次方程?k--------------是一元二次方程。
(2)k为何值时,是一元一次方程?k-------------是一元一次方程。
六、小组
请小组长本小组今天大家的表现。
七、作业
课本42页1(2),2(1)(2)(3)
能力挑战:
已知关于x的方程(k2-1)x2+(k+1)x-2=0
(1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?
板书设计:一元二次方程
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
2x2-13x+11=0(1)含一个未知数(2)2次
x2-8x-20=0(3)整式方程
x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)
二次项一次项常数项
二次项系数一次项系数常数项系数
参加区优质课评比反思:
这次有幸参加我区优质课评比,感受颇多。
一、对三分之一课堂模式有了更深的理解。数学课的.三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。
二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。
三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。
一元二次方程教案9
教学目标
1. 了解整式方程和一元二次方程的概念;
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式,一元二次方程。
3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:
1. 教材分析:
1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析
理解一元二次方程的定义:
是一元二次方程 的重要组成部分。方程 ,只有当 时,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解题时遇到字母系数的方程可能出现以下情况:
(1)一元二次方程的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合一元二次方程的定义。
(2)条件是用“关于 的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的一元二次方程 ”,这时题中隐含了 的条件,这在解题中是不能忽略的.。
(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是一元二次方程,解题时就会有不同的结果。
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点: 重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点: 一元二次方程的含义.
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程 ( x(x十5)=150 )
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来,初中数学教案《一元二次方程》。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:
(2)x2=4
(3)(x十3)(3x·4)=(x十2)2;
(4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
4. 一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0 (a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本P6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O (2)x2—3x十4=0; (3)3x2-5=0
(4)4x2十3x—2=0; (5)3x2—5=0; (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.
课外作业:略
一元二次方程教案10
教材分析
一元二次方程是一种数学建模的方法,它有着广泛的实际背景,可以作为许多实际问题的数学模型。它体现了数学的转化思想,学好一元二次方程是学好二次函数不可或缺的,一元二次方程是高中数学的奠基工程。是本书的重点内容,为后续学习打下良好的基础。
学情分析
1、 经过两年的合作,我们班的学生已比较配合我上课,同时初三学生观察、类比、概括、归纳能力也都比较强,不过对应用题的分析他们还是觉得很头疼,在今后应用题的教学中需进一步加强。
2、 一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,一元二次方程是一次方程向二次方程的转化,是低次方程转向高次方程求解方法的.阶梯。一元二次方程又是二次函数的特例。
教学目标
一、知识目标
1、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,,增加对一元二次方程的感性认识.
2、理解一元二次方程的概念.
3、掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二、能力目标
1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力.
2、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,进一步提高学生分析问题、解决问题的能力.
四、情感目标
1、培养学生主动探究知识、自主学习和合作交流的意识.
2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识
教学重点和难点
教学重点: 一元二次方程的概念和它的一般形式
难点:1、从实际问题中抽象出一元二次方程。2、正确识别一般式中的“项”及“系数”
一元二次方程教案11
【知识与技能】
1.理解一元二次方程求根公式的推导过程,了解公式法的概念.
2.会熟练应用公式法解一元二次方程.
【过程与方法】
通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.
【情感态度】
经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.
【教学重点】
求根公式的推导和公式法的应用.
【教学难点】
一元二次方程求根公式的推导.
一、情境导入,初步认识
用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0
解:(1)x1=-1,x2=-2 (2)无解
二、思考探究,获取新知
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的`步骤求出它们的两根?
问题 已知ax2+bx+c=0(a≠0),试推导它的两个根
【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.
探究 一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子 就得到方程的根,当b2-4ac<0时,方程没有实数根.
(2) 叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.
例1 用公式法解下列方程:
①2x2-4x-1=0 ②5x+2=3x2
③(x-2)(3x-5)=0 ④4x2-3x+1=0
解:①x1=1+ ,x2=1-
②x1=2,x2=-
③x1=2,x2=
④无解
【教学说明】(1)对②、③要先化成一般形式;(2)强调确定a,b,c的值,注意它们的符号;(3)先计算b2-4ac的值,再代入公式.
三、运用新知,深化理解
1.用公式法解下列方程:
(1)x2+x-12=0
(2)x2- x- =0
(3)x2+4x+8=2x+11
(4)x(x-4)=2-8x
(5)x2+2x=0
(6)x2+2 x+10=0
解:(1)x1=3,x2=-4;
(2)x1= ,x2= ;
(3)x1=1,x2=-3;
(4)x1=-2+ ,x2=-2- ;
(5)x1=0,x2=-2;
(6)无解.
【教学说明】用公式法解方程关键是要先将方程化为一般形式.
四、师生互动,课堂小结
1.求根公式的概念及其推导过程.
2.公式法的概念.
3.应用公式法解一元二次方程.
1.布置作业:从教材相应练习和“习题22.2”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.
一元二次方程教案12
3、方程(2a—4)x
—2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程
※4、已知关于x的一元二次方程(m-1)x
+3x-5m+4=0有一根为2,求m。
设计意图:分层次布置作业,尊重学生的个体差异,激发学生学习积极性。
【课程资源】
一元二次方程(quadratic equation of one variable)是指含有一个未知数且未知数的最高次项是二次的整式方程。
在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:求出一个数使它与它的倒数之和等于一个已给数.可见巴比伦人已知道一元二次方程并知道了求根公式。但他们当时并不接受负数,所以负根是略而不提的。
埃及的纸草文书中也涉及到最简单的二次方程,在公元前4、5世纪时,古中国也已掌握了一元二次方程的`求根公式。
希腊的丢番图(246-330)却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。
公元628年,从印度的婆罗摩笈多写成的《婆罗摩修正体系》中,得到二次方程二次项系数为一的一个求根公式。
在阿拉伯阿尔.花拉子米的《代数学》中讨论到方程的解法,解出了一次、二次方程,其中涉及到六种不同的形式,令a、b、c为正数。把二次方程分成不同形式作讨论,是依照丢番图的做法。阿尔.花拉子米除了给出二次方程的几种特殊解法外,还第一次给出二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。十六世纪意大利的数学家们为了解三次方程而开始应用复数根。
韦达(1540-1603)除已知一元方程在复数范围内恒有解外,还给出根与系数的关系。
我国《九章算术.勾股》章中的第二十题是通过求相当于的正根而解决的。我国数学家还在方程的研究中应用了内插法。
一元二次方程教案13
【学习过程】
一:复习旧知:
问题1:你能写出一个一元一次方程吗?
问题2:形如()叫一元一次方程.
二:情境引入:
问题1:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
若设老牛驮了个包裹,小马驮了个包裹。则:
①根据“已知老牛比小马多驮2个包裹”你能得到怎样的方程?
②“如果将马背上的包裹拿掉一个放到牛背上,那么牛驮的包裹数是马的2倍。”这时牛驮了个包裹,马驮了个包裹。由此你又能得到怎样的方程?
问题2:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?
三:知识新授:
(一)二元一次方程的概念概括:含有,并且所含未知数的的次数都是的方程叫做二元一次方程。
注意:①含有两个未知数;②所含未知数的项的最高次数是一次.。
巩固练习1:
1.下列方程有哪些是二元一次方程,是的打√,不是的打×:
(1),()(2),()
(3),()(4),()
(5),()(6).()
2.如果方程是二元一次方程,那么m=,n=.
(二)二元一次方程组概念的概括:
1.前面第二题中的两个方程中含义相同吗?表示
呢?一样吗?表示,是否同时满足两个方程?
2.二元一次方程组的概念:含有两个未知数的两个一次方程所组成的一组方程.如:
注意:在方程组中的各方程中的同一个字母必须表示同一个对象.
巩固练习2:
(1)同学们各自写出一个二元一次方程组。.
判断下列方程组是否是二元一次方程组:
(1)(2)(3)
(4)(5)(6)
(三)方程的解的概念
1.适合方程吗?呢?呢?你还能找到其他x,y值适合方程吗?
2.适合方程吗?呢?
3.你能找到一组值x,y同时适合方程和吗?
☆适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.
例如,x=6,y=2是方程x+y=8的一个解,记作
通过前面我们知道是方程的一个解,同时又是方程的一个解.
☆二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.
例如,就是二元一次方程组的.解。
巩固练习3:
1.下列四组数值中,哪些是二元一次方程的解?()
(A)(B)(C)(D)
2.二元一次方程的解有:
……
3.二元一次方程组的解是()
(A)(B)(C)(D)
4.以为解的二元一次方程组是()
(A)(B)
(C)(D)
5.二元一次方程的正整数解为.
6.如果是的解,那么m=,n=.
7.写出一个以为解的二元一次方程组为.(答案不唯一)
8.方程在自然数范围的解的个数为,整数范围呢?
四:小结:这堂课你掌握的知识;
你还有那些不明白的地方?
一元二次方程教案14
1、复习一元二次方程,一元二次方程的解的概念;
2、复习4种方法解简单的一元二次方程;
3、会建立一元二次方程的模型解决简单的实际问题。
[学习过程]
一、回顾知识点
1、一元二次方程具有三个显著特点,它们是①_________________;②_________________;③_________________。
2、一元二次方程的一般形式是_______________________________。
3、一元二次方程的解法有____________、____________、____________、____________。
4、一元二次方程ax2+bx+c=0(a≠0)的根的判别式为△=b2-4ac。
①当△0时,方程有__________;
②当△=0时,方程有__________;
③当△0时,方程有__________。
5. 一元二次方程 的两根为 , 则两根与方程系数之间有如下关系:
二巩固练习
二、填空题:
1、在下列方程①2x+1=0;②y2+x=1;③x2+1=0;④ +x2=1中,是一元一次方程的是_____。
2、已知x=1是一元二次方程x2-2mx+1=0的.一个解,则m=______。
3、若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的常项为0,则m=________。
4、关于x的一元二次方程x2-mx+m-2=0的根的情况是__________。
5、写出两个一元二次方程,使每个方程都有一根为0,并且二次项系数都为1:________;______________。
6、三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是___________。
7、解方程5(x- )2=2(x- )最适当的方法是_____________。二、填空题:(每题3分,共24分)
8.一元二次方程 的二次项系数为 ,一次项系数为 ,常数项为 ;
9. 方程 的解为
10.已知关于x一元二次方程 有一个根为1,则
11.当代数式 的值等于7时,代数式 的值是 ;
12.关于 实数根(注:填“有”或“没有”)。
13.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数为 ;
14.已知一元二次方程 的一个根为 ,则 .
15. 阅读材料:设一元二次方程 的两根为 , ,则两根与方程系数之间有如下
关系:根据该材料填空:已知 , 是方程 的两实数根,则 的值为______ .
三、选择题:(每题3分,共30分)
1、关于x的方程 是一元二次方程,则
A、a0 B、a≠0 C、a=0 D、a≥0
2.用配方法解下列方程,其中应在左右两边同时加上4的是
A、 B、 C、 D、
3.方程 的根是
A、 B、 C、 D、
4.下列方程中,关于x的一元二次方程的是
A、 B、 C、 D、
5.关于x的一元二次方程x2+kx-1=0的根的情况是
A、有两个不相等实数根 B、没有实数根
C、有两个相等的实数根D、不能确定
6.已知x=1是一元二次方程x2-2mx+1=0的一个解,则m的值是
A、1 B、0 C、0或1 D、0或-1
7.为执行“两免一补”政策,某地区2008年投入教育经费2500万元,预计2010年投入3600万元.设这两年投入教育经费的年平均增长百分率为 ,则下列方程正确的是
A、 B、
C、 D、
8. 已知 、 是方程 的两个根,则代数式 的值
A、37 B、26 C、13 D、10
9.等腰三角形的底和腰是方程 的两个根,则这个三角形的周长是
A、8 B、10 C、8或10 D、不能确定
10.一元二次方程 化为一般形式为
A、 B、 C、 D、
四、解答题:(共46分)
19、解方程(每题4分,共16分)
(1) (2)
22、已知a、b、c均为实数,且 ,求方程
的根。(8分)
23.在北京2008年第29届奥运会前夕,某超市在销售中发现:奥运会吉祥物“福娃”平均每天可售出20套,
每件盈利40元。为了迎接奥运会,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。
经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套。要想平均每天在销售吉祥物上盈利
1200元,那么每套应降价多少?(10分)
24.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几来,通过拆迁旧房,植草。
栽树,修公园等措施,使城区绿地面积不断增加(如图)(12分)
(1)根据图中所提供的信息,回答下列的问题:2003年的绿地面积为______公顷,比2002年增加了________
公顷。在2001年,2002年,2003年这三年中,绿地面积增加最多的是___________年。
(2)为了满足城市发展的需要,计划到2005年使城区绿地总面积达到72.6公顷,试求这两年(2003~2005年)
绿地面积的年平均增长率.
一元二次方程教案15
教学目标
掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:
二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:
一、情境创设
一次函数y=x+2的图象与x轴的交点坐标
问题1.任意一次函数的图象与x轴有几个交点?
问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?
二、探索活动
活动一观察
在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的.图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索
如图1,观察二次函数y=x2-x-6的图象,回答问题:
(1)图象与x轴的交点的坐标为A(,),B(,)
(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?
活动三猜想和归纳
(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?
这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析
例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25
(2)y=3x2-4x+2
(3)y=-2x2+3x-1
例2.已知二次函数y=mx2+x-1
(1)当m为何值时,图象与x轴有两个交点
(2)当m为何值时,图象与x轴有一个交点?
(3)当m为何值时,图象与x轴无交点?
四、拓展练习
1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
(1)请写出方程ax2+bx+c=0的根
(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。
2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)
五、小结
这节课我们有哪些收获?
六、作业
求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。
【一元二次方程教案】相关文章:
一元二次方程教案03-22
一元二次方程高中教案12-01
一元二次方程高中教案[热门]01-10
一元二次方程高中教案【热门】01-29
一元二次方程数学教案12-29
《一元二次方程》优秀教案(精选5篇)12-28
初三数学一元二次方程教案06-12
《一元二次方程》教学反思12-24
一元二次方程教学反思04-14
一元二次方程教学设计07-31