七年级数学教案
作为一名无私奉献的老师,通常会被要求编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。教案应该怎么写呢?下面是小编精心整理的七年级数学教案,希望能够帮助到大家。
七年级数学教案1
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1..不等式组的解集的'概念。
2.根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)
七年级数学教案2
教学目标:
1.理解有理数的意义.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
教学重点:
会把所给的各数填入它所在的数集图里.
教学难点:
掌握有理数的两种分类.
教与学互动设计:
(一)创设情境,导入新课
讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
(二)合作交流,解读探究
3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…
议一议你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.
说明我们把所有的这些数统称为有理数.
试一试你能对以上各种类型的数作出一张分类表吗?
有理数
做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数
数的集合
把所有正数组成的集合,叫做正数集合.
试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.
(三)应用迁移,巩固提高
【例1】把下列各数填入相应的集合内:
,3.1416,0,20xx,- ,-0.23456,10%,10.1,0.67,-89
【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?
有理数有理数
(四)总结反思,拓展升华
提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的`方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?
(五)课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内:
-7,0.125, ,-3 ,3,0,50%,-0.3
(1)整数集合{};
(2)分数集合{};
(3)负分数集合{ };
(4)非负数集合{ };
(5)有理数集合{ }.
2.下列说法中正确的是( )
A.整数就是自然数
B. 0不是自然数
C.正数和负数统称为有理数
D. 0是整数,而不是正数
提升能力
3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
2
七年级数学教案3
第3教案
教学目标
能够根据具体问题中数量关系,列出一元一次不等式组,解决简单问题。
渗透“数学建模”思想。化理论。
提高分析问题解决问题能力。
教学重点
分析实际问题列不等式组。
教学难点
找实际问题中的不等关系列不等式组。
有条理的.表达思考过程。
教学过程
一、创设问题情境。
本节课我们一起学习用一元一次不等式组解决一些简单的实际问题。
出示问题:
某公园售出一次性使用门票,每张10元。为吸引更多游客,新近推出购买“个人年票”的售票方法。年票分a、b两类。a类年票每张100元,持票者每次进入公园无需再购买门票。b类年票每张50元,持票者进入公园时需再购买每次2元的门票。你能知道某游客一年中进入该公园至少超过多少次,购买a类年票最合算吗?
二、建立模形。
分析题意回答:
①游客购买门票,有几种选取择方式?
②设某游客选取择了某种门票,一年进入该公园x次,门票支出是多少?
③买a类年票最合算,应满足什么关系?
讨论交流,列出不等式组。
解不等式组,说出问题的答案。
三、应用。
学生讨论、交流。
什么情况下,购买每次10元的门票最合算。
什么情况下,购买b类年票最合算?
学生清晰、有条理地表达自己的思考过程,且考虑问题要全面。
四、练习。
某校安排寄宿时,如果每项间宿舍住7人,那么有1间虽有人住,但没住满。如果每间宿舍住4人,那么有100名学生住不下。问该校有多少寄宿生?有多少间宿舍?
(提示学生找到本题中的两个不等关系。学生人数,宿舍间数都为整数。解本题时,先独立思考,再小组交流)
五、小结
列一元一次不等式组,解决实际问题的基本步骤是什么?(讨论、交流,指名回答)
七年级数学教案4
一、内容和内容解析
1、内容
无限不循环小数;求算术平方根的更一般的方法——用有理数估算、用计算器求值。
2、内容解析
无限不循环小数的引入,教科书是通过用有理数估计的大小,得到的越来越精确的近似值,进而发现是一个无限不循环小数的结论。发现无限不循环小数的过程就是反复运用有理数估计无理数的大小的过程。
用有理数估计(一个带算术平方根符号的)无理数的大致范围,通常利用与被开方数比较接近的完全平方数的算术平方根来估计这个被开方数的算术平方根的大小,这种估算在生活中经常遇到,是学生生活中需要的一种能力。
使用计算器可以求任何正数的平方根,但不同品牌的计算器,按键顺序可能不同,教学中,可以让学生根据计算器品牌,参考使用说明书,学习使用计算器求算术平方根的方法。这完全可以让学生自己完成。
基于以上分析,确定本节课的教学重点为:用有理数估计一个(带算术平方根符号的)无理数的大致范围。
二、目标和目标解析
1、教学目标
(1)通过估算,体验“无限不循环小数”的含义,能用估算求一个数的算术平方根的近似值。
(2)会利用计算器求一个正数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律。
2、目标解析
(1)学生了解“无限不循环小数”是指小数位数无限,且小数部分不循环的小数,感受这是不同于有理数的一类新数;对于估算,学生要会利用估算比较大小;了解夹逼法,采用不足近似值和过剩近似值来估计一个数的范围。
(2)学生会概述利用计算器求一个正数的算术平方根的程序(按键的顺序);明白利用计算器求一个正数的算术平方根,计算器显示的结果可能是近似值;会利用作为工具的计算器探究算术平方根的规律,理解被开方数小数点向右或向左移动2位,它的算术平方根就相应地向右或向左移动1位,即被开方数每扩大(或缩小)100倍,它的算术平方根就扩大(或缩小)10倍。
三、教学问题诊断分析
用有理数估计一个(带算术平方根符号的)无理数的大致范围,需要学生理解“算术平方根的被开方数越大,对应的算术平方根也越大”的性质,还要判断被开方数在哪两个相邻的整数平方数之间。为了让学生体验“无限不循环小数”的含义,还要多次采用“夹逼法”进行估计,即利用其一系列不足近似值和过剩近似值来估计它的大小,这些对学生综合运用知识的能力有较高的要求。
基于以上分析,本课的教学难点是:用有理数估计一个(带算术平方根符号的)无理数的大致范围的过程,体验“无限不循环小数”的含义。
四、教学过程设计
1、梳理旧知,引出新课
问题1
(1)什么是算术平方根?怎样表示?
(2)负数有算术平方根吗?
师生活动学生回答,教师说明:我们上节课已经能求出一些平方数的算术平方根了,例如,=4;但实际生活中,我们还会遇到被开方数不是一个数的平方数的情况,这时,它的算术平方根又该怎祥求呢?
设计意图:复习与本节课相关的知识,通过设问,引出本节课学习内容。
2、问题探究,学习新知
问题2能否用两个面积为1dm的小正方形拼成一个面积为2dm的大正方形?
师生活动:学生动手操作,在小组内讨论交流,教师展示剪拼方法。
追问(1)拼成的这个面积为2dm
的大正方形的边长应该是多少呢?
师生活动:学生自行解答,教师对解答有困难的学生进行指导。
追问(2)小正方形的对角线的长是多少呢?
师生活动:学生根据图形,不难回答,小正方形的对角线的长就是大正方形的边长dm。
设计意图:通过实际问题的操作探究,说明实际生活中确实存在被开方数不是一个数的平方数的情况,激发学生学习积极性,追问(2)主要为后面介绍用数轴上的点表示作准备。
问题3
有多大呢?为了弄清这个问题,请同学们探究“
在哪两个整数之间呢?”
师生活动:先让学生思考讨论并估计大概有多大,由直观可知大于1而小于2,教师引导学生利用“被开方数越大,对应的算术平方根也越大”说明理由,教师板书推理过程。
追问(1)那么
是1点几呢?你能不能得到
的更精确的`范围?
师生活动:学生用试验的方法可得到平方数小于2且最接近的1位小数是1.4,而平方数大于2且最接近的1位小数是1.5,所以大于1.4而小于1.5……在此基础上教师按教科书上的推理进行讲解并板书。说明是一个无限不循环小数,以及什么是无限不循环小数。并要求学生回忆以前学过的数,进行比较。
追问(2)实际上,许多正有理数的算术平方根,如等都是无限不循环小数。根据估计的大小的方法,请你估计的整数部分是多少?
设计意图:通过对大小的估计,初步掌握利用的一系列不足近似值和过剩近似值来估计它的大小的方法,并从中体会是一个无限不循环小数。让学生回忆以前学过的数,通过比较,了解无限不循环小数的特征,为后面学习无理数打下基础。追问(2)主要为及时巩固估算方法
3、用计算器,求算术根
例1用计算器求下列各式的值:
师生活动:教师指导学生操作,获得问题答案。解答完(2)后,让学生与上面所估计的大小进行比较,体会夹逼法的可行性。说明用计算器可以求出任意一个正数的算术平方根,但不同品牌的计算器,按键顺序可能有所不同。用计算器求出的算术平方根,有的是准确值,如题(1),有的是近似值,如题(2)。
设计意图:使学生会使用计算器求算术平方根。
练习教科书第44页练习1。
师生活动:学生独立完成后交流。
设计意图:巩固计算器求算术平方根。
4、综合应用,巩固所学
现在我们来解决本章引言中的问题。
问题4(1)你会表示
(2)用计算器求(用科学记数法把结果写成的形式,其中保留小数点后一位)
师生活动:学生理解题意,根据公式,可得,代入,利用计算器求出
设计意图:让学生体会计算器在解决实际问题中的应用。
问题5利用计算器计算下表中的算术平方根,并将计算结果填在表中。
师生活动:学生计算填表。
追问(1)你发现了什么规律?
师生活动:学生思考、讨论,教师归纳:被开方数的小数点向右或向左移动2位,它的算术平方根的小数点就相应地向右或向左移动1位。
追问(2)你能说出其中的道理吗?
师生活动:学生讨论,交流,教师引导学生从被开方数扩大的倍数与其算术平方根扩大的倍数思考回答。即当被开方数扩大(或缩小)100倍,10000倍…时,其算术平方根相应地扩大(或缩小)10倍,100倍……
追问(3)用计算器计算
(精确到0.001),并利用刚才的得到规律说出的近似值。
师生活动:学生计算,并根据所获规律回答。
追问(4)你能根据的值说出是多少吗?
师生活动:学生回答,因为被开方数30与3不符合上述规律,所以无法由的值说出是多少。
设计意图:巩固用计算器求算术平方根以及其在探究规律中的应用。
例2小丽想用一块面积为400cm的长方形纸片,沿着边的方向剪出一块面积为300cm的长方形纸片,使它的长宽之比为3:2。她不知能否裁得出来,正在发愁。小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
师生活动:教师出示问题,学生理解题意,学生可能会和小明有同样的想法,此时教师进行如下引导:
(1)你能将这个问题转化为数学问题吗?
(2)如何求出长方形的长和宽?
(3)长方形的长和宽与正方形的边长之间的大小关系是什么?
最后给出完整的解答过程。
设计意图:让学生体验估算的实际应用。
5、归纳小结:
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)利用夹逼法来求算术平方根的近似值的依据是什么?
(2)利用计算器可以求出任意正数的算术平方根或近似值吗?
(3)被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
(4)怎样的数是无限不循环小数?
设计意图:让学生对本节课知识进行梳理,同时也帮助学生养成良好的习惯。
6、布置作业:
教科书习题6.1第6.9.10题。
五、目标检测设计
1、求整数部分。
【设计意图】主要考查学生的估算能力。
2、比较下列各组数的大小。
【设计意图】主要考查学生的估算和比较大小的能力。
【设计意图】主要考查学生对算术平方根概念以及有关规律的理解。
3、国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间,现有一个长方形的足球场其长是宽的1.5倍,面积为7560m,问:这个足球场能用作国际比赛吗?
【设计意图】主要考查学生运用算术平方根解决实际问题的能力。
七年级数学教案5
教学:
1、使学生经历画垂线的过程,正确掌握画垂线的方法。
2、通过动手操作活动,学会用三角板准确的画垂线,会验证两条直线是否互相垂直。培养学作图能力。
3、活学活用,用画垂线的方法来画图形。
4、培养学生良好的观察能力、作图能力和应用意识。
教学重难点:
1、使学生明确垂线的重要性质,并通过这一性质学会画垂线
2、明确不同情况下的垂线画,用画垂线的方法画长方形。
教学准备:课件、三角板、直尺、量角器等
教学过程:
一、复习巩固积累运用
1、学习新课之前,让我们回忆一下上节课学过的知识。
生:我们学习了平行和垂直。请两名分别具体的说一说。
生1:在同一平面内……。生2:两条直线相交成直角,……
(预设:回答问题的同学说的不完整,不严密,可以找同学补充、纠正)
2、再次复习巩固垂直的概念
3、动手操作
画两条互相垂直的直线
师:想一想该画,用什么工具画?
生:用三角板上的直角画,用直尺上的直角画,用量角器上的90度直角画
(预设,可能学生还会说,我用两个三角板拼成一个直角来画等等,只要是合理就要给予肯定)
师生:同学们在自己的练习纸上画,找几名同学来
(预设:找几个有性的画法来展示)
师:评价并引出本节课所重点知识:画垂线(板书课题:画垂线)
二、创设情境生成问题
有一条直线l,他有一个好点a,他们每天形影不离。
1、过直线上的一点a做已知直线l的垂线
生:思考后尝试画
师:找若干名同学来讲述他们的画法。
生:把三角板的一条直角边与这条直线重合,三角板直角的顶点与直线上一点重合,沿另一条直角边画一条直线,这条直线就是已知直线的垂线,他们相交的交点就是垂足,画上垂直符号。
(预设:一名同学板眼,描述,其他同学认真听,如果有疑议货发现错误,可以来纠正、补充)
(重点强调:三角板的直角边,直角的顶点,与……重合,垂足等等这些关键的说法)
三、探索交流解决问题
一天直线l的好朋友点a出去旅行了,我们可以用画垂线的方式来帮助他们联系,谁来帮帮他们。
2、过直线外一点a画已知直线l的垂线
生:先尝试画
师:找两名同学来画
(预设:找两名同学用两种不同颜色的粉笔来画,之后询问学生发现了什么?引导学生说出:过直线外一点只能画一条已知直线的垂线。再思考:过直线上一点又是怎样的情况?)
生:汇报展示画法。
生:发现两条垂线重合在了一起。思考总结过直线外一点垂线的画法,再尝试总结过直线上一点垂线的画法,并说明原因。
(预设:可能会说出结论或原因,但也有可能说得不是很准确,很精简,可以给予一些提示、点拨)
师:做的总结,帮助学生加深印象。
四、一鼓作气乘胜追击
一天直线l和好朋友点a在吵架了,点a不见了
4、按要求做已知直线的'垂线
生:尝试画
生:汇报演示
师:观察画图,说明问题,如果没有点的限制,可以画几条已知直线的垂线?
(预设:无数条,因为直线式可以无限延伸的)
五、回顾整理提升
师:老师遇到了一个棘手的问题,需要大家来帮忙
画一个长5厘米,宽3厘米的长方形
已知:长方形的。
提示:长方形的特点是什么?相邻的两条边。
思考:可以用的方法来画长方形。
师:找一名同学读题,一名同学分析,同学们小组研讨。
生:汇报一下小组讨论的结果。
六、学有所得感知有趣
这节课,你有什么和?
七年级数学教案6
教学目标:
1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质
过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,
增强学生的'数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:
同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:
一、复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
二、情境引入
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课
1.利用乘方的意义,提问学生,引出法则:计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)=105.
2.引导学生建立幂的运算法则:
将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算?(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用提高
活动内容:
1.完成课本“想一想”:a?a?a等于什么?
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
3.独立处理例2,从实际情境中学会处理问题的方法。
4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp
五、拓展延伸
活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
六、课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。
七、布置作业
1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。
2.完成课本习题1.4中所有习题。
七年级数学教案7
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。
教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书p105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?
原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。
二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。
例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
1 2 3 4 5 6 7 8
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。
一、教学目标
知识与技能
了解数轴的概念,能用数轴上的点准确地表示有理数。
过程与方法
通过观察与实际操作,理解有理数与数轴上的点的对应关系,体会数形结合的思想。
情感、态度与价值观
在数与形结合的过程中,体会数学学习的乐趣。
二、教学重难点
教学重点
数轴的'三要素,用数轴上的点表示有理数。
教学难点
数形结合的思想方法。
三、教学过程
(一)引入新课
提出问题:通过实例温度计上数字的意义,引出数学中也有像温度计一样可以用来表示数的轴,它就是我们今天学习的数轴。
(二)探索新知
学生活动:小组讨论,用画图的形式表示东西向马路上杨树,柳树,汽车站牌三者之间的关系:
提问1:上面的问题中,“东”与“西”、“左”与“右”都具有相反意义。我们知道,正数和负数可以表示具有相反意义的量,那么,如何用数表示这些树、电线杆与汽车站牌的相对位置呢?
学生活动:画图表示后提问。
提问2:“0”代表什么?数的符号的实际意义是什么?对照体温计进行解答。
教师给出定义:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足:任取一个点表示数0,代表原点;通常规定直线上向右(或上)为正方向,从原点向左(或下)为负方向;选取合适的长度为单位长度。
提问3:你是如何理解数轴三要素的?
师生共同总结:“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点,正方向是人为规定的,要依据实际问题选取合适的单位长度。
(三)课堂练习
如图,写出数轴上点a,b,c,d,e表示的数。
(四)小结作业
提问:今天有什么收获?
引导学生回顾:数轴的三要素,用数轴表示数。
课后作业:
课后练习题第二题;思考:到原点距离相等的两个点有什么特点?
学习目标(学习重点):
1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2、运用菱形的识别方法进行有关推理。
补充例题:
例1.如图,在△abc中,ad是△abc的角平分线。de∥ac交ab于e,df∥ab交ac于f.四边形aedf是菱形吗?说明你的理由。
例2.如图,平行四边形abcd的对角线ac的垂直平分线与边ad、bc分别交于e、f.
四边形afce是菱形吗?说明理由。
例3.如图,abcd是矩形纸片,翻折b、d,使bc、ad恰好落在ac上,设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点
(1)试说明四边形aecg是平行四边形;
(2)若ab=4cm,bc=3cm,求线段ef的长;
(3)当矩形两边ab、bc具备怎样的关系时,四边形aecg是菱形。
课后续助:
一、填空题
1、如果四边形abcd是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2、如图,d、e、f分别是△abc的边bc、ca、ab上的点,且de∥ba,df∥ ca
(1)要使四边形afde是菱形,则要增加条件______________________
(2)要使四边形afde是矩形,则要增加条件______________________
二、解答题
1、如图,在□abcd中,若2,判断□abcd是矩形还是菱形?并说明理由。
2、如图,平行四边形a bcd的两条对角线ac,bd相交于点o,oa=4,ob=3,ab=5.
(1)ac,bd互相垂直吗?为什么?
(2)四边形abcd是菱形吗?
3、如图,在□abcd中,已知adab,abc的平分线交ad于e,ef∥ab交bc于f,试问:四边形abfe是菱形吗?请说明理由。
4、如图,把一张矩形的纸abcd沿对角线bd折叠,使点c落在点e处,be与ad交于点f.
⑴求证:abf≌
⑵若将折叠的图形恢复原状,点f与bc边上的点m正好重合,连接dm,试判断四边形bmdf的形状,并说明理由。
七年级数学教案8
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是-,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
-+y=10
2-+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(-和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
-+y=10
2-+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的-、y的值有哪些?把它们填入表中。
- -y
y
上表中哪对-、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的`教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
①通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
七年级数学教案9
教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质
过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,
增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:
一、复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
二、情境引入
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的.意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课
1.利用乘方的意义,提问学生,引出法则:计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)=105.
2.引导学生建立幂的运算法则:
将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算?(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
三、应用提高
活动内容:1.完成课本“想一想”:a?a?a等于什么?
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
3.独立处理例2,从实际情境中学会处理问题的方法。
4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp
四、拓展延伸
活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。
六、布置作业
1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。
2.完成课本习题1.4中所有习题。
1.2幂的乘方与积的乘方(一)
七年级数学教案10
一、素质教育目标
(一)知识教学点
1.掌握数轴的三要素,能正确画出数轴.
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
(二)能力训练点
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.
2.对学生渗透数形结合的思想方法.
(三)德育渗透点
使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
(四)美育渗透点
通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.
二、学法引导
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣手脑并用启发诱导反馈矫正”的教学方法.
2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.
三、重点、难点、疑点及解决办法
1.重点:正确掌握数轴画法和用数轴上的点表示有理数.
2.难点:有理数和数轴上的点的对应关系。
四、课时安排
1课时
五、教具学具准备
电脑、投影仪、自制胶片.
六、师生互动活动设计
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
七、教学步骤
(一)创设情境,引入新课
师:大家知识温度计的用途是什么?
生:温度计可以测量温度
(出示投影1)
三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
我们能否用类似温度计的图形表示有理数呢?
这种表示数的图形就是今天我们要学的内容数轴(板书课题).
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.
(二)探索新知,讲授新课
1.数轴的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
第一步:画直线定原点原点表示0(相当于温度计上的0℃).
第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).
第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的.长度).
【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
让学生观察画好的直线,思考以下问题:
(出示投影1)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.
【教法说明】通过“观察类比思考概括表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
教师根据学生回答给予肯定或否定,纠正后板书.
2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.
向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.
学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.
3.尝试反馈,巩固练习
请大家回答下列问题:
(出示投影2)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
学生活动:学生思考,不准讨论,想好后举手回答.
让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.
【教法说明】此组练习的目的是巩固数轴的概念.
答案:(2)①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.
4.有理数与数轴上点的关系
通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.
例1画一条数轴,并画出表示下列各数的点:
1,5,0,-2.5,.
学生练习:同学们在练习本
七年级数学教案11
一、素质教育目标
(一)知识教学点
1、了解有理数除法的定义。
2、理解倒数的意义。
3、掌握有理数除法法则,会进行运算。
(二)能力训练点
1、通过有理数除法法则的导出及运算,让学生体会转化思想。
2、培养学生运用数学思想指导思维活动的能力。
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性。
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美。
二、学法引导
1、教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语并及时点拨,使学生主动发展思维和能力。
2、学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1、重点:除法法则的灵活运用和倒数的概念。
2、难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值。
3、疑点:对零不能作除数与零没有倒数的理解。
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔。
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成。
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题。
教法说明
同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习。
(二)探索新知,讲授新课
1、倒数。
(出示投影1)
4×()=1;×()=1;0.5×()=1;
0×()=1;—4×()=1;×()=1。
学生活动:口答以上题目。
教法说明
在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法。
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数。(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×()=1得出0乘以任何数都不得1,0没有倒数。
师:引入负数后,乘积是1的两个负数也互为倒数,如—4与,与互为倒数,即的倒数是。
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
教法说明
教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是。对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习。
(出示投影2)
求下列各数的倒数:
(1);(2);(3);
(4);(5)—5;(6)1。
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求。
2。计算:8÷(—4)。
计算:8×()=?(—2)
8÷(—4)=8×()。
再尝试:—16÷(—2)=?—16×()=?
师:根据以上题目,你能说出怎样计算吗?能用含字母的.式子表示吗?
学生活动:同桌互相讨论。(一个学生回答)
师强调后板书:
[板书]
教法说明
通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力。
(三)尝试反馈,巩固练习
师在黑板上出示例题。
计算(1)(—36)÷9,(2)()÷()。
学生尝试做此题目。
(出示投影3)
1、计算:
(1)(—18)÷6;(2)(—63)÷(—7);(3)(—36)÷6;
(4)1÷(—9);(5)0÷(—8);(6)16÷(—3)。
2、计算:
(1)()÷();(2)(—6.5)÷0.13;
(3)()÷();(4)÷(—1)。
学生活动:
1题让学生抢答,教师用复合胶片显示结果。
2题在练习本上演示,两个同学板演(教师订正)。
教法说明
此组练习中两个题目都是对的直接应用。1题是整数,利用口答形式训练学生速算能力。2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算。
提出问题:
(1)两数相除,商的符号怎样确定,商的绝对值呢?
(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答。
[板书]
2、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何不等于0的数,都得0。
教法说明
通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法。
(四)变式训练,培养能力
回顾例1计算:
(1)(—36)÷9;(2)()÷()。
提出问题:每个题目你想采用哪种法则计算更简单?
学生活动:
(1)题采用两数相除,异号得负并把绝对值相除的方法较简单。
(2)题仍用除以一个数等于乘以这个数的倒数较简单。
提出问题:—36:9=?;:()=?它们都属于除法运算吗?
学生活动:口答出答案。
(出示投影4)
例2化简下列分数
例3计算
(1)()÷(—6);
(2)—3.5÷×();
(3)(—6)÷(—4)×()。
学生活动:
例2让学生口答,例3全体同学独立计算,三个学生板演。
教法说明
例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算。例3培养学生分析问题的能力,优化学生思维品质:
如在(1)()÷(—6)中。
根据方法①()÷(—6)=×()=。
根据方法②()÷(—6)=(24+)×=4+=。
让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算。(2)(3)小题也是如此。
(五)归纳小结
师:今天我们学习了及倒数的概念,回答问题:
1的倒数是__________________();
学生活动:分组讨论。
教法说明
对这节课全部知识点的回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力。
八、随堂练习
1、填空题
(1)的倒数为__________,相反数为____________,绝对值为___________
(2)(—18)÷(—9)=_____________;
(3)÷(—2.5)=_____________;
(4);
(5)若,是;
(6)若、互为倒数,则;
(7)或、互为相反数且,则,;
(8)当时,有意义;
(9)当时,;
(10)若,则,和符号是_________,___________。
2、计算
(1)—4.5÷()×;
(2)(—12)÷〔(—3)+(—15)〕÷(+5)。
九、布置作业
(一)必做题:
1、仿照例1、例2自编2道题,同桌交换解答。
2、计算:(1)()×()÷();
(2)—6÷(—0.25)×。
3、当,时求的值。
(二)选做题:
1、填空:用“>”“
(1)如果,则,;
(2)如果,则,;
(3)如果,则,;
(4)如果,则,;
2、判断:正确的打“√”错的打“×”
(1)();
(2)()。
3、(1)倒数等于它本身的数是______________。
(2)互为相反数的数(0除外)商是________________。
教法说明
必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力。
选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会。
七年级数学教案12
一、选择题:(本题共24分,每小题3分)。
在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.
1.若一个数的倒数是7,则这个数是().
a.-7b.7c.d.
2.如果两个等角互余,那么其中一个角的度数为().
a.30°b.45°c.60°d.不确定。
3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.
a.20ab.80ac.100ad.120a。
4.下列各式中结果为负数的是().
a.b.c.d.
5.如图,已知点c是线段ab的中点,点d是cb的`中点,那么下列结论中错误的是().
a.ac=cbb.bc=2cdc.ad=2cdd.
6.下列变形中,根据等式的性质变形正确的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().
a.acb.abc.add.不确定。
8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.
a.48b.36c.24d.12。
二、填空题:(本题共12分,每空3分)。
9.人的大脑约有100000000000个神经元,用科学记数法表示为.
10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.
11.一个角的补角与这个角的余角的差等于度.
12.瑞士的教师巴尔末从测量光谱的数据,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.
三、解答题:(本题共30分,每小题5分)。
13.用计算器计算:(结果保留3个有效数字)。
14.化简:
15.解方程。
16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.
拓展知识。
七年级数学教案13
教学目标:
1、正确理解数轴的意义,理解数轴的三要素。
2、掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小。
3、理解相反数的意义及求法。
4、对学生渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力。
重点难点:
1、正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数。
2、有理数和数轴上的的点的对应关系。
教学方法:
合作探究交流
学法指导:
观察归纳概括
教学过程:
一、情景引入:
(1)你会读温度计吗?完成课本43页最上面的读温度计的问题。
(2)我们能否用类似温度计的图形表示有理数呢?
二、讲授新课:认真阅读课本第43页至45页,完成下列问题
(1)画一条水平直线,在直线上取一点O(叫做▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴。
于是,+3可以用数轴上位于原点右边3个单位的点表示,—4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边点表示,在数轴上位于原点左边1、5的点表示,任何有理数都可以用数轴上的一个点来表示。
三、例题讲解、巩固提高
例1、如图,指出数轴上A、B、C、D各点表示什么数?
A D CB
–2 –1 0 1 2 3
解:点A表示—2;点B表示2;点C表示0;
点D表示—1
练习:画出数轴并用数轴上的点表示下列个数:
—5,0,5,—4,—、
四、继续探究
2与—2有什么相同点与不同点?它们在数轴上的位置有什么关系?5与—5,与–呢?
如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数、特别地0的相反数是0、
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等、
练习:1、5的相反数是▁▁;▁▁的相反数是—3、5。
议一议
数轴上的两个点,右边点表示的.数与左边点表示的数有怎样的大小关系?
数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。
练习:比较大小:—3▁5;0 ▁—4;—3 ▁—2、5。
3、合作交流
(1)什么是数轴?怎样画数轴。
(2)有理数与数轴上的点之间存在怎样的关系?
(3)什么是相反数?怎样求一个数的相反数?
(4)如何利用数轴比较有理数的大小?
5、随堂练习:
(1)下列说法正确的是()
A、数轴上的点只能表示有理数
B、一个数只能用数轴上的一个点表示
C、在1和3之间只有2
D、在数轴上离原点2个单位长度的点表示的数是2
(2)语句:①—5是相反数?②—5与+3互为相反数③—5是5的相反数④—5和5互为相反数⑤0的相反数是0⑥—0=0。上述说法中正确的是()
A、①②⑥ B、②③⑤ C、①④ D、③④⑤⑥
(3)大于—4而小于4的整数有▁▁▁▁▁▁。
(4)用“﹤”或“﹥”号填空
①—5▁▁—7②0 ▁▁—2③0、01▁▁▁—0、1
(5)写出下列各数的相反数
3、4,—3,0,a,2a—3。
七年级数学教案14
课题:1.2.3相反数
教学目标
1,掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
2,通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3,体验数形结合的思想。
教学难点归纳相反数在数轴上表示的点的特征
知识重点相反数的概念
教学过程(师生活动)设计理念
设置情境
引入课题问题1:请将下列4个数分成两类,并说出为什么要这样分类
4,-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力
培养学生的观察与归纳能力,渗透数形思想
深化主题提炼定义给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习体验对称的图形的特点,为相反数在数轴上的特征做准备。
深化相反数的概念;“零的相反数是零”是相反数定义的一部分。
强化互为相反数的数在数轴上表示的点的几何意义
给出规律
解决问题问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第14页第二个练习利用相反数的概念得出求一个数的相反数的方法
小结与作业
课堂小结
1,相反数的定义
2,互为相反数的数在数轴上表示的点的.特征
3,怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业1,必做题教科书第18页习题1.2第3题
2,选做题教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.
2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.
3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地.
七年级数学教案15
【知识讲解】
一、本讲主要学习内容
1、代数式的意义
2、列代数式的注意点
3、代数式值的意义
其中列代数式是重点,也是难点。
下面讲述一下这三点知识的主要内容。
1、代数式的意义
用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等
2.列代数式的注意点
⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。
⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。
⑶数字写在字母的前面。
⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。
⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。
(6)两个代数式相乘,应该用分数形式表示。
3.代数式值的意义
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。
二、典型例题
例1 填空
①棱长是acm 的正方体的体积是___cm3。
②温度由t°c下降2°c后是___°c。
③产量由m千克增长10%,就达到___千克。
④a和b 的倒数和是___。
⑤a和b的和的倒数是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。
⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。
例2、用代数式表示
⑴被4整除得 m的数
⑵被2除商为 a余1的数
⑶两数的平均数
⑷a和b两数的平方差与这两数平方和的商
⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。
⑺个位数字是8,十位数字是 b 的两位数。
解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。
⑷ ⑸ ⑹ ⑺10b+8
分析说明:
⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。
⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。
⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。
⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。
⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。
⑹平均速度=
所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。
题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。
例3说出下列代数式的意义。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。
①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;
②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;
③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。
解:(1)a的3倍与2的和;
(2)a与2的和的3倍;
(3)a与b的差除以c的商;
(4)a与b除以c的差;
(5)a与b的差的平方;
(6)a、b的平方差。
例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
说明:⑴由比例题可以看出,求代数式值的'一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。
【一周一练】
1、选择题
(1)下列各式中,属于代数式的有( )个。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代数式,书写正确的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代数式表示“a的 乘以b减去c的积”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用语言叙述代数式 ,表述不正确的是( )
a、比a的倒数小2的数; b、a与2的差的倒数
c、1除以a减去2的商 d、比a小2的数的倒数
2、判断题
⑴n除m用代数式可表示成 ( )
⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )
⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )
3、填空题
⑴每本练习本是0.3元,买a本练习本需__元。
⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。
⑶被3整除得n 的数是__。
⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。
⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。
⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。
⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__
⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。
4.求下列代数式的值。
⑴ 其中a=2
⑵当 时,求代数式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。
【七年级数学教案】相关文章:
七年级数学教案08-25
七年级数学教案06-08
七年级下册数学教案11-05
数学教案11-28
《青蛙》数学教案11-21
《左右》数学教案12-08
幼儿数学教案01-19
分类的数学教案08-29
小学数学教案10-24
优秀数学教案11-12