七年级数学教案

时间:2024-06-08 13:17:03 教案 我要投稿

七年级数学教案

  作为一名老师,编写教案是必不可少的,借助教案可以更好地组织教学活动。怎样写教案才更能起到其作用呢?下面是小编整理的七年级数学教案,欢迎大家分享。

七年级数学教案

七年级数学教案1

  教学目标

  知识与能力

  从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

  教学思考

  能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

  在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

  情感态度与价值观

  在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

  教学重点难点:

  在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

  教学过程

  创设情境,切入标题

  同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究

  请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

  请各小组分别派一名代表,看哪组能转出红色。

  结果,8小组有6组转出了红色。

  为什么会出现这样的结果呢?

  因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

  大家同意这种看法吗?下面我们亲自动手感受一下。

  学生按照题目要求进行实验。

  请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

  请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

  根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

  在小组内实验结果不明显,实验次数越多越能说明问题。

  通过实验,我们确定感受到,转盘游戏中各区域的.面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

  游戏与交流

  下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

  每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

  请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

  如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

  同学们说出很多种方法,不一一列举。

  “平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

  如果将这个实验继续做下去,卡片上所有数的平均数会增大。

  同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

  以下过程同教学设计,略去。

  随堂练习

  指导学生完成教材第206页习题。

  课时小结

  学生可从各个方面加以小结。 布置作业

  仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案2

  学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。

  3、电脑演示:

  如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。

  由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。

  四、做一做(实践)

  1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。

  2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。

  五、试一试(探索)

  课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的`,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。

  教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体

  1、以正四面体为例,说出它的顶点数、棱数和面数。

  2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。将结果记入书上的P128的表格。引导学生发现结论。

  3、(延伸):若随意做一个多面体,看看是否还是那个结果。

  学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。

  六、小结,布置课后作业:

  1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?

  2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。

  让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。

七年级数学教案3

  教学目标:

  知识能力:理解有理数的概念,掌握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

  过程与方法:通过本节的学习,培养学生正确的分类讨论观点和分类能力。

  情感、态度、价值观:通过本节课的学习,体验成功的喜悦,保持学好数学的`信心。

  教学重点:

  掌握有理数的两种分类方法

  教学难点:

  给定的数字将被填入它所属的集合中

  教学方法:

  问题导向法

  学习方法:

  自主探究法

  教学过程:

  一、形势归纳

  小学我们学了整数和分数,上节课我们学了正数和负数。谁能快速提出以下问题?

  1、有以下数字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33

  (1)将以上数字填入以下两组:正整数集{}和负整数集{}。你填完了吗?

  (2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。你填完了吗?

  称整数和分数为有理数。(指点题,板书)

  二、自学指导

  学生自学课本,根据课本寻找自学的机会

  提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,并了解掌握学生自学情况,为展示归纳作准备。

  三、展示归纳

  1、找有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书;

  2、发动学生进行评价、补充、完善,教师根据每个题目的展示情况进行必要的讲解和强调;

  3、全部展示完毕后,老师对本段知识做系统梳理,关键点予以强调。

  四、变式练习

  逐题出示,先让学生独立完成,再请有问题的学生汇报结果,老师板书,并发动其他学生评价、补充并完善,最后老师根据需要进行重点强调。

  五、总结与反思:通过本节课的学习,你有什么收获?

  六、作业:必做题:课本14页:1、9题

七年级数学教案4

  我今天说课的课题是人教版义务教育课程标准实验教科书七年级数学上册第二章第1节《整式》第一课时“单项式”。下面我从:教材的分析、教法与学法及教学手段、教学过程、板书设计四部分来说这一节课,其中,教学过程分为:创设情境导入新课、新课讲解、小结作业三部分;整个过程是先由实际问题引入新课,让学生自然走入文本.合作交流去感受知识获取的过程,并且运用所学的知识解决相关的问题.

  教材分析

  1、教材地位与作用。

  就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的互逆关系。它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下作用。

  2、教学目标。

  根据单项式这一节课的内容,对于掌握各种单项式的系数和次数方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:

  (一)知识目标:

  1.理解单项式及单项式系数、次数的概念。

  2.会准确迅速地确定一个单项式的系数和次数。

  (二)能力目标:

  3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

  4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

  (三)情感目标:

  1.通过参与对单项式概念的探究活动,提高学习数学的兴趣。

  2.培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。

  3、教学重点与难点。

  本节课理解单项式的概念及组成是学习本节单项式的关键,而学生由数到式的变形是一个由质到量变化的抽向思维。学生对新概念的形成有一定的障碍。因此我将本课的学习重点、难点确定为:

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立。

  2/教法与学法及教学手段。

  教法:为让学生体验单项式概念产生的过程;以及概念的形成和同化相结合,促进学生对单项式概念的理解;同时让学生主动暴露思维过程,及时得到信息的反馈。我采用先学后导-自主合作-问题评价教学。

  学法:针对教法,在教学的过程中引导学生自主的学习:让学生去亲身体验单向式形成的过程,使学生的认识知识、感受知识,学生在活动的过程中积极参与,主动获取知识,体现了以学生为主体的新教学理念,结合教材内容,让学生“自主探索、合作交流”。通过同学之间相互讲解、演示、操作等方法让学生开动脑筋,互相讨论,找出解决问题的方法。使学生逐步地形成技能技巧,从而获得能力。

  教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣,电脑软件的交互性,可以很好地体现教师在教学过程中的思路和策略。

  教学过程

  本节课,一共设以下几个环节

  第一环节,设置实际问题,激发学习兴趣:

  兴趣是最好的老师,可以激发情感,唤起某种动机,从而引导学生成为学习的主人。若能利用短短几分钟时间,在刚开始就激发学生的兴趣,这正是老师追求的一个目标。所以这个环节我设置以下的问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:

  列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  (让学生思考、利用已有的学习经验轻松解答,对整节的学习也创设了良好的情绪状态。)数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

  第二环节,以旧探新,引出课题(分2部分)

  单项式的概念,借助于学生已有的能用字母表示是数的基础,给学生提供一些问题背景,同时给学生留有充分思考的空间,。这个环节围绕几个问题展开,在积极的状态下,用观察-猜想-验证-自主学习的方法,找到新知生长点,把数的有关知识正迁移到式,由学生自己给出单项式的名称,引出课题,显得顺理成章。

  利用多媒体课件,依次出示,让学生回答。

  1.(回顾旧知)计算:

  (1).边长为a的正方体的表面积为(),体积为()。

  (2).铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是()元。

  (3).一辆汽车的速度是v千米/时,它t小时行驶的路程为()。

  (4).数n的相反数是()。

  给学生一定的时间思考,在学生原有的知识结构建成的基础上,得出答案.符合学生的认知规律.

  2.(走入文本,自主学习)我们看看列出的式子有什么特点?对此大家都有一定的想法,也许一样,也许不一样.其实在我们的教材中给出了他们的说法,这样大家可以借助教材55页第二自然段-四自然段内容来验证一下.大家先独立阅读学习,然后前后每4人为一组相互交流,体验自己的收获,认识不足的.地方大家可以相互弥补.这一设计,主要目的是以教材为中心为学生营造自主合作学习的氛围,形成新的学习方式.符合数学课程标准中指出:主动参与特定的数学活动,通过观察,探索获得数学的知识经验.”实现培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。这个情感目标.同时对于学生的收获及时地整理,使获得成就感.

  第三环节初步应用,巩固新知:趁此时学生处在一个积极思维的状态,教师给出练习

  1.判断下列各代数式哪些是单项式?

  (1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;

  (6)-xy2;(7)-5。

  △这安排是为通过尝试教学,引导学生主动探究,造求学生自主学习的积极势态,通过一定的练习,达到知觉水平上的运用,加深学生对单项式概念的理解,从而突出本节课的重点,同时寻求认识单项式的方法,为下一个环节例题的讲解作了个铺垫,降低了本节课的难点。

  第四环节范例教学,练习反馈:

  范例学习

  用单项式填空,并指出它们的系数和次数:

  (1)每包书有12册,n包书有()册;

  (2)底边长为a,高为h的三角形的面积();

  (3)一个长方体的长和宽都是a,高是h,它的体积是();

  (4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价为()元;

  (5)一个长方形的长是0.9,宽是a,这个长方形的面积是().

  (给学生一定的时间思考讨论,教师适当引导.)

  1.为了进一步淡化难点,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知所富有的个性,使学生真正成为学习的主体,我马上让学生模仿解题尝试练习:

  例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

  ①x+1;②;③πr2;④-a2b。

  下面各题的判断是否正确?

  ①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;

  ④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。

  3、填空:

  (1)单项式-5y的系数是_____,次数是_____

  (2)单项式a3b的系数是_____,次数是_____

  (3)单项式的系数是_____,次数是____

  (4)单项式-5πR2的系数是___,次数是___

  学生接受单项式的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调单项式判断标准及单项式中的系数和次数的不同和概念中要求,比如只有字母的系数的不是1就是-1,单独一个字母的指数是1等知识出现的思维错觉必须学生通过甄别、理解,逐步提高准确度和熟练度.同时及时总结提升经验.

  第五环节知识整理,归纳小结:

  让学生形成善于归纳、总结的学习方式。当学生把所获得的数学内容与原有的认知结构建立起密切的多方面的联系时,才能更有效地掌握数学内容。能够提高学生的归纳总结能力和语言表达能力.因此,学生形成归纳总结的学习方式是必须的。

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。

七年级数学教案5

  教学目标

  (一)教学知识点

  1、了解近似数的概念,并按要求取近似数

  2、体会近似数的意义及在生活中的作用

  (二)能力训练要求

  能根据实际问题的需要选取近似数,收集数据

  (三)情感与价值观要求

  进一步体会数学的应用价值,发展“用数学”的信心和能力

  教学重点

  1、体会和感受生活中的近似数和精确数,明白测量的结果都是近似数

  2、能按要求对一个数四舍五入取近似数

  教学难点

  合理地对一个数四舍五入取近似值

  教学方法

  实验——讲——练相结合

  通过测量实验体会生活中存在着近似数和精确数,经过讲解和练习能将一个数按要求取近似值

  教具准备

  1、收集不同形状的树叶制成标本

  2、最小单位是厘米的刻度尺和最小单位是毫米的刻度尺

  教学过程

  Ⅰ、创设情景,引入新课

  [师]在我们学习和生活中,经常会遇到一些数据。例如:

  (1)小明班上有45人;

  (2)吐鲁番盆地低于海平面155米;

  (3)某次地震中,伤亡10万人;

  (4)小红测得数学书的长度为21.0厘米

  而这些数据在收集的过程中,有些是精确的,而有些由于客观条件无法或难以得到精确数据或无需要得到精确数据而取了近似数

  凭你生活的经验,你能判断一下,哪些是精确数?哪些是近似数吗?

  [生]我认为第(1)个中的数据是精确的,而第(2)、(3)、(4)中的数据都是近似的

  [师]很好,下面我们接着来做一个实验,进一步体验近似数的意义和在生活中的作用、

  Ⅱ、引入新课,获得直观的体验

  1、实验——测得树叶的长度

  [师]同学们在下面收集了不少的树叶,把这些树叶制成标本的时候,要求必须在标本中注明每片树叶的长度,下面我们就以同桌为一小组,用你准备好的最小刻度是厘米和最小刻度是毫米的刻度尺测量你收集到的树叶的长度,并读取数据

  (教师可以让学生交流,讨论读取数据的方法,同时给予指导,让同学们体验到测量读取的数据是有误差的)

  [师]在同学们测量的过程中,同桌的小明和小颖用最小单位不同的刻度尺测量了同一片树叶的长度,如图3-1所示:

  图3-1

  (1)根据小明的测量方法,你能知道他用的刻度尺最小刻度是什么吗?这片树叶的长度约为多少?根据小颖的测量呢?

  (2)谁的测量结果更精确一些?说说你的理由

  [生]小明用的刻度尺最小单位是厘米,这片树叶的长度约为6.8厘米,其中6是精确的,8是估计的,即是近似的;小颖用的刻度尺最小单位是毫米,她测量的结果可以读成6.78厘米,其6和7都是精确的,而8是估计的,即是近似的

  [生]从刚才这位同学的分析,很容易看出小颖测量的结果要比小明的'更精确一些

  [师]同学们分析得很精细,同桌的小明和小颖共收集了12片树叶,测得刚才那片树叶的长度的值分别约为6.8厘米和6.78厘米、在这一收集数据的过程中,哪些数据是精确的,哪些数据是近似的呢?

  [生]他们一共收集了12片树叶,这个数据是精确的,而测量的树叶的长度的值是近似的

  [师]大家还可以用你的刻度尺测量一下桌子的长度、厚度,数学课本的长度、厚度,又可以读出一些数据,它们是精确的还是近似的?

  [生]我测得我的课桌的长度是80.5厘米,它是近似的

  [生]我测得课桌的长度是80.45厘米,它也是近似数

  [师]由此,我们可知测量得出的结果都是近似的,例如珠峰的高度是8848米,是测量得出的,它是近似数

  在生活中,除了测量的结果是近似数以外,还有没有其他数据也是近似的?

  [生]有,例如方便面袋子上写着:总净含量110克,数据110克是近似的

  [生]饮料桶标注的净含量是350 mL也是近似数

  [生]天气预报中报到今天的最高气温是28℃,“28℃”这个数据也是近似数

  [生]咱们这本教科书字数是202千字,“202千字”这个数据也是近似的

  [师]真棒,同学们能列举生活中这么多的近似数据,说明同学们平时很留心观察一些事物,这一点很值得肯定

  2、议一议

  图3-2

  (1)上面的数据,哪些是精确的?哪些是近似的?

  (2)举例说明生活中哪些数据是精确的?哪些数据是近似的?

  [生](1)2000年第五次人口普查表明,我国人口总数为12.9533亿,人口总数为12.9533亿这个数据是近似数

  [师]为什么呢?(Why?)

  [生]因为我国地域辽阔,客观条件就决定了在人口普查的过程中是无法或难以得到精确数据的

  [师]的确如此,在测量过程中,我们难以得到精确数据,尽管现在科技的发展,有了更为精密的仪器、在人口普查中,由于客观条件等的限制,也难以或无法取到精确值

  [生]第二幅图是精确值

  [生]第三幅图中,年级共有97人是精确值,而买门票大约需要800元是近似值、

  [师]回答正确、这里的“800元”也是近似值,但这个近似值不是无法或难以得到精确数据,而是根据实际情况要估算一下大约需多少钱,无需得到精确值

  你还能举出生活中一些例子说明哪些数据是精确的?哪些数据是近似的吗?

  [生]小明的身高是1.58米,体重40公斤,年龄14岁,这些数据都是近似数

  [生]小明今天上了6节课,是精确的

  [生]一条草鱼重2.854千克,这个数据也是近似数

  [生]我们班有25个女生,这个数据是精确数

  [师]我们了解了生活中存在着这么多的近似数和精确数,下面我们来看一看如何根据具体情况和要求采用四舍五入法求一个数的近似数、

  3、做一做

  例1小明量得课桌长为1.025米,请按下列要求取这个数的近似数:

  (1)四舍五入到百分位;

  (2)四舍五入到十分位;

  (3)四舍五入到个位、

  [分析]用四舍五入法求一个数的近似数,关键是看四舍五入到哪一位,看这一位后面一位的数够五不够五,来决定取舍,特别注意近似数1.0,末尾的0不能随意去掉、

  解:(1)四舍五入到百分位为1.03米;

  (2)四舍五入到十分位为1.0米;

  (3)四舍五入到个位为1米

  例2小丽与小明在讨论问题

  小丽:如果你把7498近似到千位数,你就会得到7000

  小明:不,我有另外一种解答方法,可以得到不同的答案、首先,将7498近似到百位,得到7500,接着把7500近似到千位,就得到了8000

  小丽:……

  你怎样评价小丽和小明的说法呢?

  [生]小丽的说法是正确的因为一个数近似到千位,要一次做完,看百位上的数决定四舍五入,而不能先近似到百位,再近似到千位

  例3中国国土面积约为9596960千米2,美国和罗马尼亚的国土面积约为9364000千米2(四舍五入到千位)和240000千米2(四舍五入到万位)如果要将中国国土面积与它们相比较,那么中国国土面积分别四舍五入到哪一位时,比较起来的误差可能会小些?

  [分析]对数据进行比较是培养数感的一个重要方面、在对数据进行比较时,有时可以根据需要选择各自的近似数进行比较、在选择近似数时,一般数据要四舍五入到同一数位,这样出现较大误差的可能性会小一些

  解:当与美国的国土面积比较时,可将中国国土面积四舍五入到千位,得到9597000千米2,因为它们同时四舍五入到了千位,这样比较起来误差会小一些

  类似地,当与罗马尼亚国土面积相比较时,可以将中国国土面积四舍五入到万位,得到9600000千米2、

  Ⅲ、课时小结

  [师]通过这节课的学习,你有何体会和收获呢?

  [生]我们知道了测量所得的数据都是近似数

  [生]生活中既有精确的数据,也有近似的数据,因此我们的生活丰富多彩、

  [生]能根据具体情况和要求求一个数的近似数

  [生]用四舍五入法取近似数时,不能随便将小数末尾的零去掉、例如2.03取近似数,四舍五入到十分位,得到近似数2.0,不能把零去掉、

  板书设计

  一、生活中的数据——近似数和精确数

  1、实验测量所得的结果都是近似的(测量树叶的长度)

  2、议一议

  二、根据具体情况,采用四舍五入求一个数的近似数、(师生共析,由学生板演)

七年级数学教案6

  一、知识结构

  二、 重点、难点分析

  本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。

  1.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,即

  其中,可以表示一个数、一个字母,也可以是一个代数式.

  2.利用法则进行单项式和多项式运算时要注意:

  (1)多项式每一项都包括前面的符号,例如中的多项式,共有两项,就是.运用法则计算时,一定要强调积的符号.

  (2)单项式必须和多项式中的每一项相乘,不能漏乘多项式中的任何一项.因此,单项式与多项式相乘的结果是一个多项式,其项数与因式中多项式的项数相同.

  (3)对于混合运算,要注意运算顺序,同时要注意:运算结果如有同类项要合并,从而得出最简结果.

  3根据去括号法则和多项式中每一项包含它前面的符号,来确定乘积每一项的符号;

  4非零单项式乘以不含同类项的多项式,乘积仍然是多项式;积的项数与所乘多项式的项数相等;

  5对于含有乘方、乘法、加减法的混合运算的题目,要注意运算顺序;也要注意合并同类项,得出最简结果.

  三、教法建议

  1.单项式与多项式相乘的基本依据是乘法分配律,故在本课开始先讲述乘法分配律,由有理数过渡到字母.

  2.由乘法分配律过渡到单项乘多项式的法则时,也可以采用以下代换的方法,如计算:(-4x 2 )·(2x 2 +3x-1).

  设m=-4x 2,a=2x 2,b=3x,c=-1,

  ∴ (-4x 2 )·(2x 2 +3x-1)

  =m(a+b+c)

  =ma+mb+mc

  =(-4x 2 )·2x 2 +(-4x 2 )·3x+(-4x 2 )·(-1)

  =-8x 4 -12x 3 +4x 2.

  这样过渡较自然,同时也渗透了一些代换的思想.

  3.单项式与多项式相乘,积仍是多项式,它的项数与多项式的项数相同.这是单项式与多项式相乘的结果,这个结果也是我们掌握法则的关键.一般说来,对于一个运算法则的掌握应从分析结果开始,分析结果的结构,分析结果与各算式的关系,这样才能较好地掌握法则.

  教学设计示例

  一、教学目标

  1.理解和掌握单项式与多项式乘法法则及推导.

  2.熟练运用法则进行单项式与多项式的乘法计算.

  3.培养灵活运用知识的能力,通过用文字概括法则,提高学生数学表达能力.

  4.通过反馈练习,培养学生计算能力和综合运用知识的能力.

  5.渗透公式恒等变形的数学美.

  二、学法引导

  1.教学方法:讲授法、练习法.

  2.学生学法:学习单项式与多项式相乘的运算法则是运用了“转化”的数学思想方法,利用分配律把单项式乘以多项式问题转化为前面学过的单项式与单项式相乘;最后再合并同

  类项,故在学习中应充分利用这种方法去解题.

  三、重点·难点·疑点及解决办法

  (一)重点

  单项式与多项式乘法法则及其应用.

  (二)难点

  单项式与多项式相乘时结果的符号的确定.

  (三)解决办法

  复习单项式与单项式的乘法法则,并注意在解题过程中将单项式乘多项式转化为单项

  式乘单项式后符号确定的问题.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪、胶片.

  六、师生互动活动设计

  1.设计一道可运用乘法分配律进行简便运算的题目,让学生复习乘法分配律,并为引入单项式与多项式的乘法法则打下良好的基础.

  2.通过面积分割法,形象直观地引入单项式与多项式的乘法法则,并引导学生用文字语言概括出其结论.

  3.通过举例,教师分析、讲解并示范板书全过程,让学生规范解题过程,再通过反复的练习巩固所学过的法则.

  七、教学步骤

  (一)明确目标

  本节课重点学习单项式与多项式的乘法法则及其应用.

  (二)整体感知

  单项式乘以多项式的乘法运算主要是将它转化为单项式与单项式的乘法运算,放首先应适当复习并掌握单项式与单项式的乘法运算方法,再在计算过程中注意单项式与多项式相乘后的符号问题.

  (三)教学过程

  1.复习导入

  复习:

  (1)叙述单项式乘法法则.

  (单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.)

  (2)什么叫多项式?说出多项式的'项和各项系数.

  2.探索新知,讲授新课

  简便计算:

  引申:计算,基中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用,则

  引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系.

  由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式

  与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.

  例1计算:

  说明:计算按课本,讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘.②要注意符号,多项式的每一项包括它前面的符号.③“把所得积相加”时,不要忘了加上加号.

  例2化简:

  化简按课本,化街时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项.

  练习:错例辨析

  (2)错在单项式与多项式的每一项相乘之后没有添上加号,故正确答案为

  (四)总结、扩展

  1.由学生叙述单项式与多项式相乘法则,并回答积仍是多项式,积的项数与多项式因式的项数相同.

  2.考点剖析:单项式乘以多项式这一知识点在中考试卷中都是以与其他知识综合命题的形式考查的.但它是多项式乘法、因式分解、分式通分、解分式方程等知识的重要基础.故必须掌握好.如

  (99,河北)下列运算中,不正确的为()

  A.B.

  C.D.

  八、布置作业

  参考答案:

  略

七年级数学教案7

  教学目标

  1 知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2 过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3 情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1 教学重点:

  掌握用整十数除的口算方法。

  2 教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1 复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2 新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

  把你喜欢的方法说给同桌听。

  (5)检查正误

  师:我们分的`结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  3 巩固提升

  1、独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2、算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3、解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

  80÷20=

七年级数学教案8

  6.2普查和抽样调查

  1.了解普查、抽样调查的概念并能区分普查和抽样调查.

  2.了解总体、个体、样本的概念及简单的抽样调查的方法.

  一、情境导入

  小号同学为了估计全市七年级学生人数,他对自己所在镇的人口和全镇七年级学生人数做了调查:全镇人口约3万,七年级学生人数为200.全市人口约60万,由此推断全市七年级学生人数约为4000,但市教育局提供的全市七年级学生人数为6000,与估计有很大偏差,这是怎么回事呢?

  二、合作探究

  探究点一:调查方式的选择

  (内江中考)下列调查中,①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()

  A.①B.②C.③D.④

  解析:①中,由于考察对象数量较少,可以采用普查方式;②中,考察对象具有破坏性,宜采用抽样调查;③中,要保证“神州9号”的成功发射,必须做到万无一失,所以要对其零部件进行普查;④中,为了保证每个旅客的安全,必须对所有乘客进行安检,即普查.故选B.

  方法总结:普查和抽样调查是两种方式,各有自己的特点,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身需要,又要考虑实现的可能性.

  下列调查,适合用普查方式的是()

  A.了解一批炮弹的杀伤半径

  B.了解扬州电视台《关注》栏目的收视率

  C.了解长江中鱼的种类

  D.了解某班学生对“扬州精神”的知晓率

  解析:A中了解一批炮弹的杀伤半径,如果普查,所有炮弹都报废,这样就失去了实际意义,故此选项错误;B中了解扬州电视台《关注》栏目的收视率的调查因为普查工作量大,适合抽样调查,故此选项错误;C中了解长江中鱼的'种类的调查,因为数量众多,无法进行普查,适合抽样调查,故此选项错误;D中了解某班学生对“扬州精神”的知晓率的调查,适用于普查,人数确定,普查准确,故此选项正确.

  方法总结:此题主要考查了普查和抽样调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用.一般来说,对于具有破坏性的调查无法进行普查,普查的意义或价值不大时,应选择抽样调查,对于精确要求较高的调查,事关重大的调查往往选用普查.

  探究点二:总体、个体、样本

  (巴中中考)今年我市有4万名考生参加中考,为了了解这些考生的数学成绩,从中抽取20xx名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③20xx名考生是总体的一个样本;④样本容量是20xx,其中说法正确的有()

  A.4个B.3个C.2个D.1个

  解析:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;20xx名考生的中考数学成绩是总体的一个样本,样本容量是20xx.故正确的是①④.故选C.

  方法总结:(1)总体、个体、样本三者之间的关系是:所有的个体构成了总体,样本取自于总体,因此,样本是总体的一部分,没有个体就没有总体;(2)在总体、个体、样本中所提到的考察对象都是问题中的数量指标,是“量”而不是“物”.

  为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()

  A.某市八年级学生的肺活量

  B.从中抽取的500名学生的肺活量

  C.从中抽取的500学生

  D.500

  解析:本项调查中的考察对象是“某市八年级学生的肺活量”,因此样本是“从中抽取的500名学生的肺活量”.故选B项.

  方法总结:在分析总体、个体和样本时,一定要认真体会“考察对象”的含义,否则容易出现误选C的错误.

  探究点三:样本的选取

  为了了解学校大门出口处每天在学校放学时段的车流量,以帮助学生安全离校,有下面几个样本来统计大门出口处在学校放学时段的车流量,样本选取合适的是()

  A.抽取两天作为一个样本

  B.以全年每一天为样本

  C.选取每周星期日为样本

  D.春、夏、秋、冬每个季节各选两周作为样本

  解析:选项A样本容量太小,不具有广泛性;选项B抽取样本难度过大,没有必要性;选项C样本不具有代表性;选项D对个体进行分类按比例随机抽取样本.样本具有代表性,符合简单随机抽样的要求.故选D.

  方法总结:开展调查前,首先要仔细检查总体中的每个个体是否都有可能成为调查对象,样本要避免遗漏某一个群体,使样本在总体中具有广泛性和代表性,其次样本容量应足够多.

  判断下面抽样调查选取样本的方法是否合适:

  (1)检查某啤酒厂即将出厂的啤酒质量情况,先随机抽取若干箱(捆),再在抽取的每箱(捆)中,随机抽取1~2瓶检查;

  (2)通过网上问卷调查方式,了解百姓对央视春节晚会的评价;

  (3)调查某市中小学生学习负担的状况,在该市每所小学的每个班级选取一名学生,进行问卷调查;

  (4)教育部为了调查中小学乱收费情况,调查了某市所有中小学生.

  解析:本题应看样本是否为简单随机样本,是否具有代表性.

  解:

  (1)合适,这是一种随机抽样的方法,样本为简单随机样本.

  (2)不合适,我国农村人口众多,多数农民是不上网的,所以调查的对象在总体中不具有代表性.

  (3)不合适,选取的样本中个体太少.

  (4)不合适,样本虽然足够大,但遗漏了其他城市里的这些群体,应在全国范围内分层选取样本,除了上述原因外,每班的学生全部作为样本是没有必要的

  方法总结:判断选取样本的方法是否合适,一般应从以下几个方面判断:

  (1)选取的样本是否具有代表性;

  (2)选取的样本各层都要有,各层是否有遗漏;

  (3)用整体随机抽样的,要看所选群体能否代表总体.

  三、板书设计

  普查与抽样调查样本应具有代表性和广泛性(样本的概念)

  教学过程中,强调学生自主探索与合作交流,经历收集、加工、整理等思维过程,培养学生的探索精神和分析问题、处理问题的能力.

七年级数学教案9

  第一章教学评价指导

  一、总体设计思路:

  1、通过观察现实生活中的物体,认识基本几何体及点、线、面。

  2、通过展开与折叠活动,认识棱柱的基本性质。

  3、通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验。

  4、通过平面图形与空间几何体相互转换的活动过程中,建立空间观念,发展几何直觉。

  5、由空间到平面,认识常见的平面图形.

  ——观察、操作、描述、想象、推理、交流.

  二、总体教学建议:

  1、充分挖掘图形的现实模型,鼓励学生从现实世界中“发现”图形.

  2、充分让学生动手操作、自主探索、合作交流,以积累有关图形的经验和数学活动经验,发展空间观念。

  其中动手操作是学习过程中的重要一环---在学生学习开绐阶段,它可能帮助学生认识图形,发展空间观念,以后,它可以用来验证学生对图形的空间想象。因此,学习之初,教师要鼓励学生先动手、后思考,以后,则鼓励学生先想象,再动手。

  3、教学中应有意识地满足多样化的学习需要,发展学生的个性。

  如开展正方体表面展开、棱柱模型制作等教学。

  几点说明:

  1、为什么安排展开与折叠、切与截、从不同方向看等那么多实践活动,目的是什么?

  2、教学中要处理好动手操作和思考想象的关系?

  3、生活中的立体图形性质的认识过程

  用自己语言充分地描述----点、线、面之间的关系-----通过操作归纳出比较准确的数学语言-------更好地想象图形。

  4、展开与折叠的目的与处理(想和做的关系:先做后想----先想后做)

  三、总体评价建议

  1、关注学生在展开与折叠、切截、从不同方向看等数学活动中空间观念的发展。

  2、关注学生是否能正确认识现实生活中大量存在的柱、锥、球的实物模型。

  3、关注学生在观察、操作、想象等数学活动中的主动参与的程度以及是否愿意与同伴交流各自的想法。

  4、要帮助学生建立自己的数学学习成长记录袋,让他们反思自己的数学学习情况和成长的历程。

  四、每一节的教学目标、重难点、教学建议与评价方法

  第一节:生活中的立体图形

  第一课时:

  教学目标:

  1.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩。

  2.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们的某些特征。

  3.了解圆柱与圆锥、棱柱与圆柱的相同点和不同点。

  重点:图形的识别。

  难点:图形的分类。

  教学建议:

  1.多给学生创设一些情境,使学生于这些情景中认识棱柱、棱锥、圆锥、球等几何体,学会从复杂的组合图形中把这些图形分离出来,或者让学生辨认复杂图形是由哪些基本图形组合而成的;

  2.这里对图形的认识是初步的,不必给予精确定义。

  评价建议:

  1. 过程性:关注学生从现实世界中抽象出图形的过程,关注学生能否从现实世界中发现图形;

  2.知识性:正确辨认圆柱、圆锥、正方体、长方体、棱柱和球这些几何体,并能用自己的语言描述它们的特征。

  第二课时:

  教学目标:

  1.通过大量的实例, 丰富对点、线、面的认识;

  2.体会点、线、面之间的关系。

  3.会识别平面和曲面、直线和曲线;

  4.了解“点动成线”、“线动成面”、“面动成体”的现象。

  重点:点、线、面的认识。

  难点:用运动的观点描述它们的形成过程。

  教学建议:

  1.几何中的点只有位置,没有大小。当我们把日常生活总的某个物体看作点时,我们只是强调其位置,而忽略了它们的大小。对于线、面亦是如此。在教学时可以通过P5页下面一幅图说说这方面的思想,让学生领会即可;

  2.点、线、面间的关系,书上从静止和运动两个方面来说明的,可让学生多举一些生活中的实例加以说明。

  评价建议:

  1.过程性:关注并鼓励学生参与到课堂活动中来,通过自己的主动思考,体会点、线、面是构成图形的基本元素。

  2.知识性:从静态和动态两个角度了解点、线、面的关系,会识别平面和曲面,直线和曲线。

  第二节:展开与折叠

  第一课时:

  教学目标:

  1.经历折叠、模型制作等活动, 发展空间观念, 积累数学活动经验;

  2.在操作活动中认识棱柱的某些特性;

  3.了解(直)棱柱的侧面展开图, 能根据展开图判断和制作简单的立体模型。

  重点:通过活动认识归纳出棱柱的基本性质, 并能感受到研究空间问题的

  思维方法

  难点:正确判断哪些平面图形可折叠为棱柱

  教学建议:

  1.做一做是了解棱柱特性的一个重要手段,教学时应让学生动手折叠;

  2.建议先让学生观察折叠好的棱柱,说一说棱柱有哪些特点,再根据书上的问题串归纳;

  3.想一想应让学生先猜想说明理由后再操作确认;

  4.棱柱、直棱柱、正棱柱这三个概念不必向学生说明,教师叙述时注意不能混为一谈。

  评价建议:

  1.过程性:关注学生在做一做中动手能力的培养,以及在观察、想象、归 纳等活动中合作交流意识的形成。

  2.知识性:了解棱柱的有关概念以及基本特性,能应用棱柱的基本特性解决图形折叠的某些问题。

  第二课时:

  教学目标:

  1.了解立体图形与平面图形的关系,会把正方体的表面展开为平面图形,进而会把棱柱表面展开成平面图形;

  2.了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型;

  3.通过展开与折叠实践操作,积累数学活动经验;在平面图形与空间几何体表面转换的过程中,初步建立空间观念,发展几何直觉。

  重点:会把正方体表面展开成平面图形。

  难点:按照预定的形状把正方体展开成平面图形。

  教学建议:

  1.对棱柱的各种展开方式不必求全;

  2.注重对图形的辨别,不必侧重于十一种平面展开图的分类。

  评价建议:

  1.过程性:关注学生在正方体表面展开活动中空间观念的发展,鼓励学生制作长方体、正方体、圆柱和圆锥等几何体的模型。

  2.知识性:能把正方体表面展开成平面图形,了解圆柱、圆锥的侧面展开图。

  第三节:截一个几何体

  教学目标:

  1.通过经历对几何体切截的实践过程,让学生体验面与体之间的转换,探索截面形状与切截方向之间的联系;

  2.于面与体的转换中丰富几何直觉和数学活动经验,发展学生的空间观念和创造性思维能力;

  3.培养学生主动探索、动手实践、勇于发现、合作交流的意识。

  重点:理解截面的含义。

  难点:根据所给的条件做出它的截面。

  教学建议:

  1.由于学生的空间想象能力和识图能力不强,讲截面问题时,必须充分运用实物和动手实验;

  2.由于截面形状与截面的位置密切相关,教学时必须把截面的位置交代清楚。

  评价建议:

  1.过程性:注重学生在对几何体的切截过程中空间观念和创造性思维能力的培养。

  2.知识性:了解截面的意义以及截面的形状是由几何体的形状与截面的位置决定的。

  第四节:从不同的方向看

  第一课时:

  教学目标:

  1.学生经历从不同方向观察几何物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,发展空间观念,能与他人的交流过程中,合理清晰地表达自己的思维过程;

  2.能识别简单物体的三视图,体会物体三视图的合理性;

  3.会由实物画立方体及其简单组合的三视图;

  4.渗透图形的二维空间与三维空间的转换。

  重点:体会从不同方向看同一物体可能看到不同的结果。

  难点: 能画立方体及其简单组合的三视图。

  教学建议:

  1.创设丰富的情境,让学生于观察、交流中体会不同方向看某个(或某组)物体时看到的图像可能是不同的;

  2.由于学生想象能力薄弱,建议多利用实物模型帮助学生认识三视图。

  评价建议:

  1.过程性:注重学生通过观察等活动自己认识到同一物体从不同方向看可能看到不同的`图形。关注学生用语言清晰表达自己思维过程的能力的培养。

  2. 知识性:认识到从不同的方向观察同一物体时,能看到的图形往往是不同的。正确认识三视图的意义。

  第二课时:

  教学目标:

  1.会画由正方体组成的较复杂图形的各视图;

  2.能根据正方体所搭的几何体的俯视图, 画出相应几何体的主视图和左视图;

  3.会根据(由正方体组成的)物体的三视图去辨认该物体的形状。

  重点:根据主视图、左视图、俯视图相象出实物图形。

  难点:确定组合体中小立方块的个数。

  教学建议:

  1.做一做部分建议按先摆、再看、后画的方式进行处理;

  2.例1建议先让学生猜想,再通过摆一摆验证,最后归纳一般方法。

  评价建议:

  1.过程性:关注学生在画三视图过程中空间想象能力的培养,以及在观察、想象、交流等活动中的主动参与程度。

  2.知识性:会画由立方块组成的简单几何体的三视图,能根据俯视图正确画出主视图和左视图。

  第五节:生活中的平面图形

  教学目标:

  1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;

  2.在具体情境中认识多边形、扇形,了解圆与扇形的关系;

  3.通过对多边形的分割,感受把复杂图形转化为简单图形的方法;

  4.在丰富的活动中发现有条理的思考。

  重点:多边形、弧、扇形的概念。

  难点:把复杂图形转化为简单图形的方法。

七年级数学教案10

  (第一课时)

  一、素质教育目标

  (一)知识教学点

  会列二元一次方程组解简单的应用题,并能检查结果是否正确、合理.

  (二)能力训练点

  培养学生分析问题、解决问题的能力.

  (三)德育渗透点

  1.体会代数方法的优越性.

  2.向学生进一步渗透把未知转化为已知的思想.

  3.向学生进行理论联系实际的教育.

  (四)美育渗透点

  学习列方程组解应用题时,若能在错综复杂的关系中抓住问题的关键,就能迅速通过相等求解,从而渗透解题的简捷性的数学美,以及解题的奇异美.

  二、学法引导

  1.教学方法:尝试指导法、观察法、讲练结合法.

  2.学生学法:本节主要学习列二元一次方程组和三元一次方程组解应用题的方法,尤其重点要掌握列出二元一次方程组解应用题,其分析方法和解题步骤都与前面学过的列一元一次方程解应用题类似,可在学习中进行类比从而加强理解.

  三、重点?难点?疑点及解决办法

  (一)重点与难点

  根据简单应用题的题意列出二元一次方程组.

  (二)疑点

  正确找出表示应用题全部含义的两个相等关系,并把它们表示成两个方程.

  (三)解决办法

  通过反复读题、审题,分析出题目中存在的两个相等关系是列方程组的关键.

  四、课时安排

  一课时.

  五、教学具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  1.通过提问,复习列一元一次方程解应用题的步骤,尤其相等关系的'寻找问题.

  2.师生共同探索新知识?列二元一次方程组解应用题的一般步骤.

  3.通过反馈练习,检查学生掌握知识的情况,以便有针对性地进行差漏补缺.

  七、教学步骤

  (一)明确目标

  本节课主要学习列二元一次方程组解应用题.

  (二)整体感知

  列二元一次方程组解应用题的关键在于通过准确的审题迅速寻找出两个正确的相等关系来列二元一次方程组.

  (三)教学过程

  1.创设情境、导入新课

  (1)根据下列条件设适当的未知数,列出二元一次方程.

  ①甲、乙两数的和是10.

  ②甲地的人数比乙地的人数的2倍还多70.

  ③买4支铅笔、3支圆珠笔共花了1.6元.

  (2)甲、乙两工人师傅制作某种工件,每天共制作12件.已知甲每天比乙多制作2件,求甲、乙每人每天可制作几件?

  ①列出一元一次方程和二元一次方程组解题.

  ②比较一下,两种方法得到的结果是否相同?是列一元一次方程容易,还是列二元一次方程组容易?

  学生活动:第(1)题口答,第(2)题在练习本上完成.

  【教法说明】第(1)题为根据相等关系列二元一次方程打下了基础;第(2)题通过两种解法的比较,让学生体会列方程组的优越性,这样引入课题,可以引起学生学习新知识的兴趣.

  2.探索新知,讲授新课

  例1?小华买了80分与2元的邮票共16枚,共花了18元8角,80分与2元的邮票各买了多少枚?

  分析:(1)题中有几个未知数?分别是什么?

  (2)题中有几个相等关系?分别是什么?

  学生活动:观察、分析后回答.

  未知数:80分邮票枚数与2元的邮票枚数.

  相等关系(1)80分邮票枚数+2元邮票枚数=总枚数.

  (2)80分邮票总价+2元邮票总价=全部邮票总价.

  学生活动:设未知数、根据相等关系列方程.

  解:设共买枚80分邮票,枚2元邮票,根据题意得

  解这个方程组,得

  答:80分邮票买了11枚,2元邮票买了5枚.

  强调:(1)选定几个未知数,根据问题中的条件找几个相等关系,这几个相等关系正好表示了应用题的全部含义.

  (2)列方程组解应用题时,解方程组过程在练习本上完成.

  (3)得到结果后,要检验是不是原方程组的解,是不是符合应用题的实际意义,然后再写答句.

  反馈练习:P35? 1,2.(只列不解)

  例2?小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分;做5个小狗、6个小汽车用去3小时37分.平均每1个小狗与1个汽车各用多少时间?

  仿照刚才分析例1的方法,分析问题.

  学生活动:拟题、自由提问,其他学生抢答.

  教师根据学生的拟题板书.

  两个未知数:平均做1个小狗的时间与1个小汽车的时间

  (1)做4个小狗的时间+做7个小汽车的时间=3时42分

  (2)做5个小狗的时间+做6个小汽车的时间=3时37分

  解题过程由学生完成,一个学生板演.

  解:设平均做1个小狗用分,做1个小汽车有分,根据题意,得

  解这个方程组,得

  答:平均做一个小狗用17分,做1个小汽车用22分.

  【教法说明】例2用拟题训练的方法让学生自己去尝试分析问题,不但能活跃课堂气氛,而且能促进学生积极思维,培养学生分析问题、解决问题的能力.

  反馈练习:P35 3,4.

  学生活动:口答、设未知数、列方程组.

  3.变式训练,培养能力

  用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身、多少张制盒底,可以正好制成整套罐头盒?

  分析:此题的相等关系不明显,应启发学生认真思考,找到第二个相等关系.

  相等关系:(1)制盒身铁皮张数+制盒底铁皮张数=150张.

  (2)盒底总数=2×盒身总数.

  解:设用张铁皮制盒身,张铁皮制盒底,可以制成整套缺头盒.根据题意,得

  (四)总结、扩展

  我们这节课学习了二元一次方程组的应用,你能简单归纳出列二元一次方程组解应用题的步骤吗?

  学生发言后,老师适当补充、纠正.

  八、布置作业

  (一)必做题:P39 1,2,3.

  (二)选做题:P41 B组2.

  (三)补充题:给定两数5和3,编一道列出二元一次方程组求解的应用题,使得这个方程组的解就是给定的两数.

  参考答案

  (一)1.到甲地130人,到乙地70人.

  2.有28个队参加篮球赛,20个队参加排球赛.

  3.长38?,宽16?.

  (二)解:设一辆大车、一辆小车一次分别可运货吨、吨,根据题意,得

  解得

  ∴4×3+2.5×5=24.5(吨)

  九、 板书设计

  投影幕

  例1例2练习

  小结:

七年级数学教案11

  【知识讲解】

  一、本讲主要学习内容

  1、代数式的意义

  2、列代数式的注意点

  3、代数式值的意义

  其中列代数式是重点,也是难点。

  下面讲述一下这三点知识的主要内容。

  1、代数式的意义

  用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等

  2.列代数式的注意点

  ⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。

  ⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。

  ⑶数字写在字母的前面。

  ⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。

  ⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。

  (6)两个代数式相乘,应该用分数形式表示。

  3.代数式值的意义

  用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。

  二、典型例题

  例1 填空

  ①棱长是acm 的正方体的体积是___cm3。

  ②温度由t°c下降2°c后是___°c。

  ③产量由m千克增长10%,就达到___千克。

  ④a和b 的倒数和是___。

  ⑤a和b的和的倒数是___。

  解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

  说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。

  ⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。

  例2、用代数式表示

  ⑴被4整除得 m的数

  ⑵被2除商为 a余1的数

  ⑶两数的平均数

  ⑷a和b两数的平方差与这两数平方和的商

  ⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。

  ⑺个位数字是8,十位数字是 b 的两位数。

  解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。

  ⑷ ⑸ ⑹ ⑺10b+8

  分析说明:

  ⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。

  ⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。

  ⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的'字母表示。

  ⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。

  ⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。

  ⑹平均速度=

  所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。

  题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。

  例3说出下列代数式的意义。

  ⑴ 3a+2 ⑵ 3(a+2) (3)

  (4) a- (5)(a-b)2 (6)a2-b2

  分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。

  ①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;

  ②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;

  ③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。

  解:(1)a的3倍与2的和;

  (2)a与2的和的3倍;

  (3)a与b的差除以c的商;

  (4)a与b除以c的差;

  (5)a与b的差的平方;

  (6)a、b的平方差。

  例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。

  解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

  说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。

  【一周一练】

  1、选择题

  (1)下列各式中,属于代数式的有( )个。

  , s= ah, 5× , -y, x-2=y, a-b, 3x>y

  a、2 b、3 c、4 d、5

  (2)下列代数式,书写正确的是( )

  a、2 b、m· n c、 mn d、(m+n)÷2

  (3)用代数式表示“a的 乘以b减去c的积”是( )

  a、 ab-c b、 a(b-c) c、 a( b-c) d、

  (4)用语言叙述代数式 ,表述不正确的是( )

  a、比a的倒数小2的数; b、a与2的差的倒数

  c、1除以a减去2的商 d、比a小2的数的倒数

  2、判断题

  ⑴n除m用代数式可表示成 ( )

  ⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )

  ⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )

  3、填空题

  ⑴每本练习本是0.3元,买a本练习本需__元。

  ⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。

  ⑶被3整除得n 的数是__。

  ⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。

  ⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。

  ⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。

  ⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__

  ⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。

  4.求下列代数式的值。

  ⑴ 其中a=2

  ⑵当 时,求代数式 的值。

  5、填表

  x

  y

  x+y

  x-y

  xy

  5

  15

  6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。

七年级数学教案12

  一.教学目标:

  1.认知目标:

  1)了解二元一次方程组的概念。

  2)理解二元一次方程组的解的概念。

  3)会用列表尝试的方法找二元一次方程组的解。

  2.能力目标:

  1)渗透把实际问题抽象成数学模型的思想。

  2)通过尝试求解,培养学生的探索能力。

  3.情感目标:

  1)培养学生细致,认真的学习习惯。

  2)在积极的教学评价中,促进师生的情感交流。

  二.教学重难点

  重点:二元一次方程的意义及二元一次方程的解的概念。

  难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  三.教学过程

  (一)创设情景,引入课题

  1.本班共有40人,请问能确定男女生各几人吗?为什么?

  (1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

  (2)这是什么方程?根据什么?

  2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少?

  3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示?

  两个方程中的x表示什么?类似的两个方程中的y都表示?

  像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

  4.点明课题:二元一次方程组。

  (设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

  (二)探究新知,练习巩固

  1.二元一次方程组的概念

  (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

  [让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解.]

  (2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

  ①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

  2.二元一次方程组的解的概念

  (1)由学生给出引例的答案,教师指出这就是此方程组的解。

  (2)练习:把下列各组数的题序填入图中适当的位置:

  方程x+y=0的解,方程2x+3y=2的解,方程组的解。

  (3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

  (4)练习:已知是方程组的解,求a,b的值。

  (三)合作探索,尝试求解

  现在我们一起来探索如何寻找方程组的解呢?

  1.已知两个整数x,y,试找出方程组的解.

  学生两人一小组合作探索。并让已经找出方程组解的'学生利用实物投影,讲明自己的解题思路。

  一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.

  (设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

  2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

  (1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

  由学生独立完成,并分析讲解。

  3.例 已知方程3X+2Y=10

  ⑴当X=2时,求所对应的Y 的值;

  ⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;

  ⑶用含X的代数式表示Y;

  ⑷用含Y 的代数式表示X;

  ⑸当X=-2,0 时,所对应的Y值是多少;

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

  (四)课堂小结,布置作业

  1.这节课学哪些知识和方法?

  2.你还有什么问题或想法需要和大家交流?

  3.教材P82

  教学设计说明:

  1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

  2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

  3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

七年级数学教案13

  一、教学目标

  1了解平行线的概念,理解学过的描述图形形状和位置关系的语句

  2掌握平行公理及推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线;会用学过的几何语句描述简单的图形和根据语句画图

  3通过画平行线和按几何语句画图的题目练习,培养学生画图能力

  4通过平行公理推论的推理,培养学生的逻辑思维能力和进行推理的能力

  二、学法引导

  1教师教法:尝试法、引导法、发现法

  2学生学法:在教师的引导下,尝试发现新知,造就成就感

  三、重点、难点及解决办法

  (一)重点

  平行公理及推论

  (二)难点

  平行线概念的理解

  (三)解决办法

  通过引导学生尝试发现新知、练习巩固的方法来解决

  四、教具学具准备

  投影仪、三角板、自制胶片

  五、师生互动活动设计

  1通过投影片和适当问题创设情境,引入新课

  2通过教师引导,学生积极思维,进行反馈练习,完成新授

  3学生自己完成本课小结

  六、教学步骤

  (-)明确目标

  掌握平行公理及其推论的应用,能画出平行线,会用几何语句描述图形的画法,培养学生的逻辑推理能力

  (二)整体感知

  以情境引出课题,以生活知识和已有的知识为基础,引导学生学习平行公理及其推论,并以变式训练强化和巩固新知

  (三)教学过程

  创设情境,引出课题

  师:前面我们学习了两条直线相交的情形,下面清同学们看投影片观察投影片中的铁路桥梁以及立在路边的三根电线杆,再请同学们观察黑板相对的两条边和横格本中两条横线,若把它们向两方延长,看成直线,它们还是相交直线吗?

  学生齐声答:不是

  师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)

  [板书]24平行线及平行公理

  【教法说明】通过具体的实物和实物的图形,使学生建立起不相交的感性认识,同时在头脑中初步形成平行线的图形

  探究新知,讲授新课

  师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?

  学生:窗户相对的棱,桌面的对边,书的对边……

  师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线

  [板书]在同一平面内,不相交的两条直线叫做平行线

  【教法说明】初中几何必须重视几何概念的直观性,所以让学生多观察实物形状,在形成了感性认识的基础上,认识数学名称,让学生从中感受到数学的实在性,减少抽象性

  教师出示投影片(课本第74页图2?17)

  师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?

  学生:不会相交

  师:那么它们是平行线吗?

  学生:不是

  师:也就是说平行线的定义必须有怎样的前提条件?

  学生:在同一平面内

  师:谁能说为什么要有这个前提条件?

  学生:因为空间里,不相交的直线不一定平行

  【教法说明】通过教师的引导,学生观察分析,自己得出结论,从而使学生切实体会到平行线的“在同一平面内”这个前提条件的重要性

  教师在黑板上给出课本第73页图2

  讲解:平行用符号“”表示,如图直线与是平行线记作“”(或)读作“平行于”(或平行于)也就是说平行是相互的

  【教法说明】这里教师不必赘述,让学生清楚平行线符号表示、读法和记法就可以了,对于平行线的图形经常会使用变式图形,不要总是横平竖直的,以防形成思维定式

  师:请同学们思考,在同一平面内任意画两条不同的直线,它们的位置关系只能有几种情况,试画一画,同桌的可以讨论

  学生:两种相交和平行

  由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种

  尝试反馈,巩固练习(出示投影)

  1判断正误

  (1)两条不相交的直线叫做平行线()

  (2)有且只有一个公共点的两直线是相交直线()

  (3)在同一平面内,不相交的两条直线一定平行()

  (4)一个平面内的两条直线,必把这个平面分为四部分( )

  2下列说法中正确的是()

  A在同一平面内,两条直线的位置关系有相交、垂直、平行三种

  B在同一平面内,不垂直的两直线必平行

  C在同一平面内,不平行的两直线必垂直

  D在同一平面内,不相交的两直线一定不垂直

  学生活动:学生回答,并简要说明理由

  【教法说明】这组练习旨在巩固学生掌握平行线定义及平面内两直线的位置关系,通过判断(1)、(3)题让学生进一步体会平行线的“在同一平面内”的前提条件,通过判断(2)、(4)题和选择题使学生对两直线位置关系,尤其是对垂直是相交的一种特殊情况有更深层的理解

  师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)

  已知直线和外一点,过点画直线

  师:请根据语句,自己画出已知图形

  学生活动:学生在练习本上画出图形

  师:下面请你们按要求画出直线

  学生活动:学生能够很快完成,然后请一个学生在黑板上板演,其他学生观察他的画图过程是否正确,然后师生一起订正

  注意:(1)在推动三角尺时,直尺不要动;

  (2)画平行线必须用直尺三角板,不能徒手画

  【教法说明】画平行线是几何画图的基本技能之一,在以后的画图中常常会遇到,要求学生使用工具,不仅能养成良好的学习习惯,也能培养学生严谨的学习态度

  尝试反馈,巩固练习(出示投影)

  1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)

  2读下列语句,并画图形

  (1)点是直线外的一点,直线经过点,且与直线平行

  (2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于

  (3)过点画,交的延长线于

  学生活动:学生在练习本上按要求画图,并由两个学生在黑板上画第2题的(2)、(3)题,学生画完后教师给出第1题的图形(提前做好的投影片),请学生回答测量的结果,然后共同订正第2题的(2)、(3)题

  【教法说明】这组练习重点巩固平行线的画法及理解描述图形形状和位置关系的语句,能够根据语句画出正确图形,注意要求学生用准确的几何语言反映图形,同时真正理解几何语言才能画好图形

  师:我们练习了过直线外一点画已知直线的平行线,请同学们回忆,过直线外一点能不能画直线的`垂线,能画几条?

  学生活动:学生思考并回答,能画,而且只能画一条

  师:下面请你试一试,前面我们完成的过直线外一点与已知直线平行的直线可以画几条,想一想,你能得到什么结论?

  学生活动:学生动手操作,思考后总结出结论:经过直线外一点,有且只有一条直线与已知直线平行

  师:我们把这个结论叫平行公理,教师板书

  【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行

  【教法说明】学生对垂线的惟一性比较熟悉,通过对惟一性的回顾,学生能够用类比的思想,把自己动手得到的实验结论采用准确的几何语言描述出来,这样不仅培养了学生善于类比的思想,同时也训练了学生语言的规范性

  师:过直线外一点,能画这条直线的惟一平行线,若没有条件“过直线外一点”,问你能画已知直线的平行线吗?能画多少条?

  学生:思考后,立即回答,能画无数条

  师:请同学们在练习本上完成

  (出示投影)

  已知直线,分别画直线、,使,

  学生活动:学生在练习本上完成

  师:请同学们观察,直线、能不能相交?

  学生活动:观察,回答:不相交,也就是说

  师:为什么呢?同桌可以讨论

  学生活动:学生积极讨论,各抒己见

  【教法说明】几何的学习不仅要求学生有较强的识图能力,而且要求学生有过硬的分析能力,也就是说理能力初一几何课是几何课的起始课,从开始就让学生养成自己动手、动脑、思考、分析问题的习惯,即加强几何思维不惯的培养,这是个很重要的内容

  学生活动:教师让学生积极发表意见,然后给出正确的引导

  师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论

  学生活动:学生在教师的启发引导下思考、讨论,得出结论

  师:同学们想得很好,因为,,于是过点就有两条直线、都与平行,根据平行公理,这是不可能的,这就是说,与不能相交,只能平行,由此我们得到平行公理的推论

  [板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行

  师:在同一平面内,不相交的两条直线是平行的,那么不相交的两条射线(或线段)也是平行的,对吗?为什么?

  学生活动:学生思考,回答:不对,给出反例图形,

  例如:如图1所示,射线与就不相交,也不平行

  师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?

  生:它们所在的直线平行

  尝试反馈,巩固练习(投影)

七年级数学教案14

  一、素质教育目标

  (一)知识教学点

  1.能根据一个数的表示“距离”,初步理解的概念.

  2.给出一个数,能求它的

  (二)能力训练点

  在把的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

  (三)德育渗透点

  1.通过解释的几何意义,渗透数形结合的思想.

  2.从上节课学的相反数到本节的,使学生感知数学知识具有普遍的联系性.

  (四)美育渗透点

  通过数形结合理解的意义和相反数与的联系,使学生进一步领略数学的和谐美.

  二、学法引导

  1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

  2.学生学法:研究+6和-6的不同点和相同点→概念→巩固练习→归纳小结(代数意义)

  三、重点、难点、疑点及解决办法

  1.重点:给出一个数会求出它的.

  2.难点:的几何意义,代数定义的导出.

  3.疑点:负数的是它的相反数.

  四、课时安排

  2课时

  五、教具学具准备

  投影仪(电脑)、三角板、自制胶片.

  六、师生互动活动设计

  教师提出+6和-6有何相同点和不同点,学生研究讨论得出概念;教师出示练习题,学生讨论解答归纳出代数意义.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

  学生活动:一个学生板演,其他学生在练习本上画.

  【教法说明】的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

  (二)探索新知,导入 新课

  师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

  学生活动:思考讨论,很难得出答案.

  师:在数轴上标出到原点距离是6个单位长度的点.

  学生活动:一个学生板演,其他学生在练习本上做.

  师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

  学生活动:产生疑问,讨论.

  师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的我们把这个距离叫+6与-6的

七年级数学教案15

  [教学目标]

  1使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系。

  2通过直线、射线、线段概念的教学,培养学生的几何想象能力和观察能力,用运动的观点看待几何图形

  3培养学生对几何图形的兴趣,提高学习几何的积极性。

  [教学重点和难点]

  直线、射线、线段的概念是重点。对直线的"无限延伸"性的理解是难点。

  [教学过程设计]

  一、联系实际,提出问题

  1让学生举出实际生活中所见到的直线的实例(可请5~6位学生发言)。

  2教师总结:铅笔、尺子、桌子边沿等都有长度,是可以度量的,它们都是直线的一部分,此时给出直线的概念"直线是向两个方向无限延伸着的。"继而提问"无限延伸"怎样解释,教师可形象的归纳出"直线是无头无尾、要多长有多长。"让学生闭起眼睛想象一下。

  再提问:在我们以前学过的知识中有没有真正是直线的例子?(数轴)

  3通过前面学生所举的例子,给出线段定义"直线上两个点和它们之间的部分叫做线段。"

  4教师画出一条直线,并在直线上标出一条线段,然后擦掉一部分,只剩下一条射线,先看它与直线、线段的区别,后给出射线的定义:"直线上的一点和它一旁的部分叫做射线。"

  二、正确表示直线、射线和线段

  1直线的表示有两种:一个小写字母或两个大写字母。但前面必须加"直线"两字,如:直线l;直线m直线AB;直线CD。(板书表示出来)

  2线段的表示也有两种:一个小写字母或用端点的两个大写字母。但前面必须加"线段"两字。如:线段a;线段AB。(板书表示出来)

  3射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加"射线"两字。如:射线a;射线OA。(板书表示出来)

  三、运动变化,找出联系

  1让学生找出三者之间的区别:端点的个数,0个,1个,2个。

  2教师通过图示将线段变化为射线、直线。指出事物之间都不是孤立的,静止的,而是互相联系的,变化的。

  (1)先画出线段AB,然后向一方延长,成为一条射线,再向相反的方向延长,成为一条直线。告诉学生:线段向一方延长就会成为射线,向两方延长就会成为直线。因此,直线、射线都可以看作是由线段运动而成的。

  (2)再画出一条直线,在直线上任找一点,擦掉一点一旁的部分,就成为一条射线,在射线上再找一点,两点之间的部分就成为一条线段。

  四、回到实际,巩固概念

  1让学生举出生活中的直线、射线和线段的事例。如:手电筒的光线,灯泡发出的光线等。

  2练习:

  (1)如图1—1,A,B,C,D为直线l上的四个点。

  问:图中共有几条线段?以C为端点的射线有哪几条?

  (2)如图1—2,A,B,C为平面上的三个点,分别画出过点A,B;点A,C;点B,C的三条直线。

  (3)如图1—3,P是直线l外一点,A是直线L上一点。过P,A作一条直线;过A作一条射线。

  (4)如图1—4,图中共有多少条线段?

  五、小结

  1教师提问:(1)本节课你掌握了几个几何概念?

  (2)直线、射线和线段三者之间的关系是什么?

  (3)本节课应该理解哪几个关键词?

  (4)在表示直线、射线和线段时应注意什么?

  在学生回答的基础上教师给以完善和补充,并进一步强调三者之间的.关系。同时指出这三个概念是平面几何的基础。

  2再设问:直线还有什么性质呢?为下节课讲直线的性质埋下伏笔。

  六、作业p。11,1;p。12,3;p。14,12。

  板书设计

  直线、射线、线段

  一、概念四、练习

  1直线……………

  2射线

  3线段

  二、表示五、小结

  如:……………

  三、联系六、作业

  1端点个数,0;1;2。

  2变化过程图

  [课堂教学设计说明]

  1本课的教学时间为1课时45分钟。

  2本设计对教材顺序稍加改动,先将直线、射线和线段的概念给出,然后再讲它们的性质。这样对于学生建构知识结构较为有利。

  3由于这节课为几何的起始课,从感性认识出发,在学生熟悉的实际生活中,抽象出几何的概念,便于认知结构的形成。

  4建议:本课时也可以将课型设计为"自学辅导式",由学生自己讨论直线、射线和线段的概念,并寻找它们之间的区别与联系,这样更有利于发挥学生自己的主观能动性,参与意识更强,课堂更加活跃。

  5在有条件的地方,对三者关系的变化过程,应用计算机辅助教学更为生动有趣,"变"的意义更为明显。

  直线、射线、线段

  [教学目标]

  1使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系。

  2通过直线、射线、线段概念的教学,培养学生的几何想象能力和观察能力,用运动的观点看待几何图形

  3培养学生对几何图形的兴趣,提高学习几何的积极性。

  [教学重点和难点]

  直线、射线、线段的概念是重点。对直线的"无限延伸"性的理解是难点。

  [教学过程设计]

  一、联系实际,提出问题

  1让学生举出实际生活中所见到的直线的实例(可请5~6位学生发言)。

  2教师总结:铅笔、尺子、桌子边沿等都有长度,是可以度量的,它们都是直线的一部分,此时给出直线的概念"直线是向两个方向无限延伸着的。"继而提问"无限延伸"怎样解释,教师可形象的归纳出"直线是无头无尾、要多长有多长。"让学生闭起眼睛想象一下。

  再提问:在我们以前学过的知识中有没有真正是直线的例子?(数轴)

  3通过前面学生所举的例子,给出线段定义"直线上两个点和它们之间的部分叫做线段。"

  4教师画出一条直线,并在直线上标出一条线段,然后擦掉一部分,只剩下一条射线,先看它与直线、线段的区别,后给出射线的定义:"直线上的一点和它一旁的部分叫做射线。"

  二、正确表示直线、射线和线段

  1直线的表示有两种:一个小写字母或两个大写字母。但前面必须加"直线"两字,如:直线l;直线m直线AB;直线CD。(板书表示出来)

  2线段的表示也有两种:一个小写字母或用端点的两个大写字母。但前面必须加"线段"两字。如:线段a;线段AB。(板书表示出来)

  3射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加"射线"两字。如:射线a;射线OA。(板书表示出来)

  三、运动变化,找出联系

  1让学生找出三者之间的区别:端点的个数,0个,1个,2个。

  2教师通过图示将线段变化为射线、直线。指出事物之间都不是孤立的,静止的,而是互相联系的,变化的。

  (1)先画出线段AB,然后向一方延长,成为一条射线,再向相反的方向延长,成为一条直线。告诉学生:线段向一方延长就会成为射线,向两方延长就会成为直线。因此,直线、射线都可以看作是由线段运动而成的。

  (2)再画出一条直线,在直线上任找一点,擦掉一点一旁的部分,就成为一条射线,在射线上再找一点,两点之间的部分就成为一条线段。

  四、回到实际,巩固概念

  1让学生举出生活中的直线、射线和线段的事例。如:手电筒的光线,灯泡发出的光线等。

  2练习:

  (1)如图1—1,A,B,C,D为直线l上的四个点。

  问:图中共有几条线段?以C为端点的射线有哪几条?

  (2)如图1—2,A,B,C为平面上的三个点,分别画出过点A,B;点A,C;点B,C的三条直线。

  (3)如图1—3,P是直线l外一点,A是直线L上一点。过P,A作一条直线;过A作一条射线。

  (4)如图1—4,图中共有多少条线段?

  五、小结

  1教师提问:(1)本节课你掌握了几个几何概念?

  (2)直线、射线和线段三者之间的关系是什么?

  (3)本节课应该理解哪几个关键词?

  (4)在表示直线、射线和线段时应注意什么?

  在学生回答的基础上教师给以完善和补充,并进一步强调三者之间的关系。同时指出这三个概念是平面几何的基础。

  2再设问:直线还有什么性质呢?为下节课讲直线的性质埋下伏笔。

  六、作业p。11,1;p。12,3;p。14,12。

  板书设计

  直线、射线、线段

【七年级数学教案】相关文章:

七年级数学教案11-03

七年级下册数学教案02-16

小学数学教案08-23

小学数学教案(经典)08-18

小学数学教案(精选)09-06

小学数学教案08-24

分类的数学教案11-16

初中数学教案02-04

【热门】小学数学教案01-25