高中数学教案

时间:2025-03-15 00:27:17 教案 我要投稿

(必备)高中数学教案

  作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?以下是小编帮大家整理的高中数学教案,希望能够帮助到大家。

(必备)高中数学教案

高中数学教案1

  教学目标

  (1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

  (2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

  (3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;

  (4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.

  重点难点

  理解二元一次不等式表示平面区域是教学重点。

  如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

  教学步骤

  (一)引入新课

  我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的'线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?

高中数学教案2

  教学目标

  理解数列的概念,掌握数列的运用

  教学重难点

  理解数列的概念,掌握数列的运用

  教学过程

  【知识点精讲】

  1、数列:按照一定次序排列的一列数(与顺序有关)

  2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

  (通项公式不)

  3、数列的`表示:

  (1)列举法:如1,3,5,7,9……;

  (2)图解法:由(n,an)点构成;

  (3)解析法:用通项公式表示,如an=2n+1

  (4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1

  4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,xx数列

  5、任意数列{an}的前n项和的性质

高中数学教案3

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出例题1:

  (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)线段(D)不存在

  (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

  这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

  (二)理解定义、解决问题

  例2:

  (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2),求|PA|

  【设计意图】

  运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

  【学情预设】

  根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

  (三)自主探究、深化认识

  如果时间允许,练习题将为学生们提供一次数学猜想、试验的`机会。

  练习:

  设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

  引申:若将点A移到圆C外,点M的轨迹会是什么?

  【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

  可借助“多媒体课件”,引导学生对自己的结论进行验证。

  【知识链接】

  (一)圆锥曲线的定义

  1、圆锥曲线的第一定义

  2、圆锥曲线的统一定义

  (二)圆锥曲线定义的应用举例

  1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

  2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4、例题:

  (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

  (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

  七、教学反思

  1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教案4

  一、向量的概念

  1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

  2、叫做单位向量

  3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

  4、且的向量叫做相等向量

  5、叫做相反向量

  二、向量的表示方法:

  几何表示法、字母表示法、坐标表示法

  三、向量的加减法及其坐标运算

  四、实数与向量的乘积

  定义:实数 λ 与向量 的积是一个向量,记作λ

  五、平面向量基本定理

  如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

  六、向量共线/平行的充要条件

  七、非零向量垂直的充要条件

  八、线段的定比分点

  设是上的 两点,p是上xx的任意一点,则存在实数,使xxx,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点

  定比分点坐标公式及向量式

  九、平面向量的数量积

  (1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

  (2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

  (3)平面向量的数量积的坐标表示

  十、平移

  典例解读

  1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

  其中,正确命题的.序号是xx

  2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=xxxx

  3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为xx

  4、下列算式中不正确的是( )

  (a) ab+bc+ca=0 (b) ab-ac=bc

  (c) 0·ab=0 (d)λ(μa)=(λμ)a

  5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

  ?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

  (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

  7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

  (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

  (c)2x-y=0 (d)x+2y-5=0

  8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=xx

  9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长

  10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

  (a)-5 (b)5 (c)7 (d)-1

  11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

  (a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

  (c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0

  12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

  (a)2 (b)0 (c)1 (d)2

  16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

  17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值

  18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量

高中数学教案5

  一、教材分析

  1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

  2、教学目标:

  知识目标:

  (1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

  (2)进一步培养学生把空间问题转化为平面问题的化归思想。

  能力目标:

  (1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

  (2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

  德育目标:

  (1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识

  (2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

  情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

  3、重点、难点:

  重点:“二面角”和“二面角的平面角”的概念

  难点:“二面角的平面角”概念的形成过程

  二、教法分析

  1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

  2、教学控制与调节的`措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

  3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

  三、学法指导

  1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

  2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

  3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

  四、教学过程

  心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

  (一)、二面角

  1、揭示概念产生背景。

  问题情境1、在平面几何中“角”是怎样定义的?

  问题情境2、在立体几何中我们还学习了哪些角?

  问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

  通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。

  2、展现概念形成过程。

  问题情境4、那么,应该如何定义二面角呢?

  创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

  问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

  问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

  2、展现概念形成过程

  (1)、类比。教师启发,寻找类比联想的对象。

  问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。

  问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。

  问题情境9、这个平面的角的顶点及两边是如何确定的?

  (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。

  问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。

  (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。

  (4)、继续探索,得到定义。

  问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。

  (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。

  (三)、二面角及其平面角的画法

  主要分为直立式和平卧式两种,用电脑《几何画板》作图。

  (四)、范例分析

  为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。

  例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。

  分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。

  变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。

  题后反思:

  (1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)

高中数学教案6

  一、课程性质与任务

  数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

  1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

  3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的'科学态度,提高学生就业能力与创业能力。三、教学内容结构

  本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

  1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

  3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

  (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

  了解:初步知道知识的含义及其简单应用。

  理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

  计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

  空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

  分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

  数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

  (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

  第2单元不等式(8学时)

  第3单元函数(12学时)

  第4单元指数函数与对数函数(12学时)

  第5单元三角函数(18学时)

  第6单元数列(10学时)

  第7单元平面向量(矢量)(10学时)

  第8单元直线和圆的方程(18学时)

  第9单元立体几何(14学时)

  第10单元概率与统计初步(16学时)

  2.职业模块

  第1单元三角计算及其应用(16学时)

  第2单元坐标变换与参数方程(12学时)

  第3单元复数及其应用(10学时)

高中数学教案7

  课题:

  等比数列的概念

  教学目标

  1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

  2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

  3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导、

  教学用具

  投影仪,多媒体软件,电脑、

  教学方法

  讨论、谈话法、

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,—1,1,—1,1,—1,1,—1,…

  ⑦1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

  这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1、等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的'数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

  2、对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0、用数学式子表示等比数列的定义是等比数列

  ①、在这个式子的写法上可能会有一些争议,让学生研究行不行,好不好;接下来再问,能否改写为等比数列?为什么不能?式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?

  3、等比数列的通项公式(板书)

  问题:用和表示第项

  ①不完全归纳法

  ②叠乘法,…,这个式子相乘得,所以(板书)

  (1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

  (2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

  三、小结

  1、本节课研究了等比数列的概念,得到了通项公式;

  2、注意在研究内容与方法上要与等差数列相类比;

  3、用方程的思想认识通项公式,并加以应用。

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

  参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案8

  教学目标:

  1、理解并掌握曲线在某一点处的切线的概念;

  2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

  3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

  问题的能力及数形结合思想。

  教学重点:

  理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

  教学难点:

  用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

  教学过程:

  一、问题情境

  1、问题情境。

  如何精确地刻画曲线上某一点处的变化趋势呢?

  如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

  如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

  因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

  2、探究活动。

  如图所示,直线l1,l2为经过曲线上一点P的两条直线,

  (1)试判断哪一条直线在点P附近更加逼近曲线;

  (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

  (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

  二、建构数学

  切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

  思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  三、数学运用

  例1 试求在点(2,4)处的切线斜率。

  解法一 分析:设P(2,4),Q(xQ,f(xQ)),

  则割线PQ的斜率为:

  当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

  当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

  从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

  解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

  练习 试求在x=1处的切线斜率。

  解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

  小结 求曲线上一点处的.切线斜率的一般步骤:

  (1)找到定点P的坐标,设出动点Q的坐标;

  (2)求出割线PQ的斜率;

  (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

  思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  解 设

  所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

  变式训练

  1。已知,求曲线在处的切线斜率和切线方程;

  2。已知,求曲线在处的切线斜率和切线方程;

  3。已知,求曲线在处的切线斜率和切线方程。

  课堂练习

  已知,求曲线在处的切线斜率和切线方程。

  四、回顾小结

  1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

  2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

  五、课外作业

高中数学教案9

  1. 幽默风趣的你,平时在班里话语不多,也不张扬,但是,你在无意中的表现仍然赢得了很好的人际关系,学习上你认真刻苦,也能及时的完成作业,但是我觉得你总是没把全部的心思用在学习上,不然以你的聪明,应该保持在前三名才对啊,加油吧,也许关注学习成绩对你才是更有意义的事!

  2. 身为纪律委员的你,认真负责,以身作则,生活上的你平易近人,与同学关系融洽,学习上你勤奋刻苦,尤其在英语的.学习上,显示出了你的语言天赋,我觉得,假如你能把这份自信和兴趣用到其他的学科学习中,也一定会收获很多的!加油吧!

  3. 你能严格遵守校规,上课认真听讲,作业完成认真,乐于助人,愿意帮助同学,大扫除时你不怕苦,不怕累,但是英语方面还不够给力,所以,如果再投入一点,定会取得更好的结果,而且你还是一个愿意动脑筋的好学生,如果继续保持下去定会取得骄人的成绩!

  4. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高,平时善于多动笔认真作好笔记,多开动脑筋,相信你一定能在下学期更得更大的进步! 你学习认真刻苦,也能善于思考,更十分活泼,并能严格遵守班级和宿舍纪律,上课你能认真听讲,做作业时你十分专注,常常愿意花功夫钻研难题,与同学相处也十分融洽,但若能在认真做作业的同时,将速度提上去,我相信你会做得更好。要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩!

  5. 虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。你尊敬老师,和同学能和睦相处。甜美可爱的你,经过不断的努力,你会更出色的!

  6. 你是个活泼可爱的孩子,课堂上,你非常投入地学习着,朗读课文时数你最有感情。中午你还主动给老师捶背,真是个会关心人的孩子,老师谢谢你。你十分喜爱读课外书,不过课上可不能偷看啊!愿书成为你的好朋友。

  7. 学习中你能严格要求自己,这是你永不落败的秘诀。老师希望你能借助良好的学习方法,抓紧一切时间,笑在最后的一定是你!

  8. 许丽君——你思想上进,踏实稳重,诚实谦虚,尊敬老师。黑板报中有你倾注的心血,集体荣誉簿里有你的功劳。但学习的主动精神不够,竞争意识不强,也很少看到你向老师请教,成绩进步不明显。请相信:世上没有比脚更长的路,也没有比心更高的山!望今后大胆进取,多思多问,发挥你的聪明才智,进一步激发活力,提高学习效率,持之以恒,美好的明天属于你!

  9. 每天你都背着书包高高兴兴地来上学,学到了不少的知识,可惜只能记住很少的一部分。希望你改进学习方法,提高学习效率,在下学期有更大的进步!

  10. 你言语不多,但待人诚恳、礼貌,作风踏实,品学兼优,热爱班级,关爱同学,勤奋好学,思维敏捷,成绩优秀。愿你扎实各科基础,坚持不懈,!一定能考上重点! 优秀的男生肯定是逗人喜欢的,老师希望你能一如既往的优秀,把这种优秀保持在你人生的每一阶段中。你的人生就是辉煌如意的!

高中数学教案10

  教学目标:

  1。理解并掌握瞬时速度的定义;

  2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;

  3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。

  教学重点:

  会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。

  教学难点:

  理解瞬时速度和瞬时加速度的定义。

  教学过程:

  一、问题情境

  1。问题情境。

  平均速度:物体的运动位移与所用时间的比称为平均速度。

  问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的.快慢程度?

  问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.

  2。探究活动:

  (1)计算运动员在2s到2.1s(t∈)内的平均速度。

  (2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。

  (3)如何计算运动员在更短时间内的平均速度。

  探究结论:

  时间区间

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  当?t?0时,?-13.1,

  该常数可作为运动员在2s时的瞬时速度。

  即t=2s时,高度对于时间的瞬时变化率。

  二、建构数学

  1。平均速度。

  设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。

  可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。

  三、数学运用

  例1物体作自由落体运动,运动方程为,其中位移单位是m,时

  间单位是s,,求:

  (1)物体在时间区间s上的平均速度;

  (2)物体在时间区间上的平均速度;

  (3)物体在t=2s时的瞬时速度。

  分析

  解

  (1)将?t=0.1代入上式,得:=2.05g=20.5m/s。

  (2)将?t=0.01代入上式,得:=2.005g=20.05m/s。

  (3)当?t?0,2+?t?2,从而平均速度的极限为:

  例2设一辆轿车在公路上作直线运动,假设时的速度为,

  求当时轿车的瞬时加速度。

  解

  ∴当?t无限趋于0时,无限趋于,即=。

  练习

  课本P12—1,2。

  四、回顾小结

  问题1本节课你学到了什么?

  1理解瞬时速度和瞬时加速度的定义;

  2实际应用问题中瞬时速度和瞬时加速度的求解;

  问题2解决瞬时速度和瞬时加速度问题需要注意什么?

  注意当?t?0时,瞬时速度和瞬时加速度的极限值。

  问题3本节课体现了哪些数学思想方法?

  2极限的思想方法。

  3特殊到一般、从具体到抽象的推理方法。

  五、课外作业

高中数学教案11

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的.含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图(2)变量与赋值(3)循环结构(4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择

  八、单元教学过程分析

  1.算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3.基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

  4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1.重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2.正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教案12

  1.课题

  填写课题名称(高中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握。.。.。.知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过。.。.。.(讨论、发现、探究),提高。.。.。.(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4、教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5、教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:奇函数的定义)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的`易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

  (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6、教学板书

高中数学教案13

  一、教学目标

  知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:任意角概念的理解;区间角的集合的书写。

  教学难点:终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  1、回顾角的定义

  ①角的第一种定义是有公共端点的`两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  例1、如图⑴⑵中的角分别属于第几象限角?

高中数学教案14

  [核心必知]

  1、预习教材,问题导入

  根据以下提纲,预习教材P6~P9,回答下列问题、

  (1)常见的程序框有哪些?

  提示:终端框(起止框),输入、输出框,处理框,判断框、

  (2)算法的基本逻辑结构有哪些?

  提示:顺序结构、条件结构和循环结构、

  2、归纳总结,核心必记

  (1)程序框图

  程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、

  在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、

  (2)常见的程序框、流程线及各自表示的功能

  图形符号名称功能

  终端框(起止框)表示一个算法的起始和结束

  输入、输出框表示一个算法输入和输出的信息

  处理框(执行框)赋值、计算

  判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”

  流程线连接程序框

  ○连接点连接程序框图的两部分

  (3)算法的基本逻辑结构

  ①算法的三种基本逻辑结构

  算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的

  ②顺序结构

  顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:

  [问题思考]

  (1)一个完整的'程序框图一定是以起止框开始,同时又以起止框表示结束吗?

  提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、

  (2)顺序结构是任何算法都离不开的基本结构吗?

  提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、

  [课前反思]

  通过以上预习,必须掌握的几个知识点:

  (1)程序框图的概念:

  (2)常见的程序框、流程线及各自表示的功能:

  (3)算法的三种基本逻辑结构:

  (4)顺序结构的概念及其程序框图的表示:

  问题背景:计算1×2+3×4+5×6+…+99×100。

  [思考1]能否设计一个算法,计算这个式子的值。

  提示:能。

  [思考2]能否采用更简洁的方式表述上述算法过程。

  提示:能,利用程序框图。

  [思考3]画程序框图时应遵循怎样的规则?

  名师指津:

  (1)使用标准的框图符号。

  (2)框图一般按从上到下、从左到右的方向画。

  (3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。

  (4)在图形符号内描述的语言要非常简练清楚。

  (5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。

高中数学教案15

  (一)教学具准备

  直尺,投影仪.

  (二)教学目标

  1.掌握,的定义域、值域、最值、单调区间.

  2.会求含有、的三角式的定义域.

  (三)教学过程

  1.设置情境

  研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

  2.探索研究

  师:同学们回想一下,研究一个函数常要研究它的哪些性质?

  生:定义域、值域,单调性、奇偶性、等等.

  师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)

  师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

  师:请同学思考以下几个问题:

  (1)正弦、余弦函数的定义域是什么?

  (2)正弦、余弦函数的值域是什么?

  (3)他们最值情况如何?

  (4)他们的正负值区间如何分?

  (5)的解集如何?

  师生一起归纳得出:

  (1)正弦函数、余弦函数的定义域都是.

  (2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.

  (3)取最大值、最小值情况:

  正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.

  余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.

  (4)正负值区间:

  ()

  (5)零点:()

  ()

  3.例题分析

  【例1】求下列函数的定义域、值域:

  (1);(2);(3).

  解:(1),

  (2)由()

  又∵,∴

  ∴定义域为(),值域为.

  (3)由(),又由

  ∴

  ∴定义域为(),值域为.

  指出:求值域应注意用到或有界性的条件.

  【例2】求下列函数的最大值,并求出最大值时的集合:

  (1),;(2),;

  (3)(4).

  解:(1)当,即()时,取得最大值

  ∴函数的.最大值为2,取最大值时的集合为.

  (2)当时,即()时,取得最大值.

  ∴函数的最大值为1,取最大值时的集合为.

  (3)若,,此时函数为常数函数.

  若时,∴时,即()时,函数取最大值,

  ∴时函数的最大值为,取最大值时的集合为.

  (4)若,则当时,函数取得最大值.

  若,则,此时函数为常数函数.

  若,当时,函数取得最大值.

  ∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.

  指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.

  思考:此例若改为求最小值,结果如何?

  【例3】要使下列各式有意义应满足什么条件?

  (1);(2).

  解:(1)由,

  ∴当时,式子有意义.

  (2)由,即

  ∴当时,式子有意义.

  4.演练反馈(投影)

  (1)函数,的简图是()

  (2)函数的最大值和最小值分别为()

  A.2,-2 B.4,0 C.2,0 D.4,-4

  (3)函数的最小值是()

  A.B.-2 C.D.

  (4)如果与同时有意义,则的取值范围应为()

  A.B.C.D.或

  (5)与都是增函数的区间是()

  A.,B.,

  C.,D.,

  (6)函数的定义域________,值域________,时的集合为_________.

  参考答案:1.B 2.B 3.A 4.C 5.D

  6.;;

  5.总结提炼

  (1),的定义域均为.

  (2)、的值域都是

  (3)有界性:

  (4)最大值或最小值都存在,且取得极值的集合为无限集.

  (5)正负敬意及零点,从图上一目了然.

  (6)单调区间也可以从图上看出.

  (四)板书设计

  1.定义域

  2.值域

  3.最值

  4.正负区间

  5.零点

  例1

  例2

  例3

  课堂练习

  课后思考题:求函数的最大值和最小值及取最值时的集合

  提示:

《(必备)高中数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【高中数学教案】相关文章:

高中数学教案01-02

高中数学教案11-28

高中数学教案05-20

高中数学教案(经典)12-14

高中数学教案范文10-17

高中数学教案(15篇)11-15

高中数学教案15篇08-29

高中数学教案(通用15篇)10-13

高中数学教案(汇编15篇)07-22

(必备)高中数学教案

  作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?以下是小编帮大家整理的高中数学教案,希望能够帮助到大家。

(必备)高中数学教案

高中数学教案1

  教学目标

  (1)了解线性规划的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

  (2)了解线性规划问题的图解法,并能应用它解决一些简单的实际问题;

  (3)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;

  (4)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.

  重点难点

  理解二元一次不等式表示平面区域是教学重点。

  如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

  教学步骤

  (一)引入新课

  我们已研究过以二元一次不等式组为约束条件的二元线性目标函数的'线性规划问题。那么是否有多个两个变量的线性规划问题呢?又什么样的问题不用线性规划知识来解决呢?

高中数学教案2

  教学目标

  理解数列的概念,掌握数列的运用

  教学重难点

  理解数列的概念,掌握数列的运用

  教学过程

  【知识点精讲】

  1、数列:按照一定次序排列的一列数(与顺序有关)

  2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

  (通项公式不)

  3、数列的`表示:

  (1)列举法:如1,3,5,7,9……;

  (2)图解法:由(n,an)点构成;

  (3)解析法:用通项公式表示,如an=2n+1

  (4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1

  4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,xx数列

  5、任意数列{an}的前n项和的性质

高中数学教案3

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

  四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

  五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出例题1:

  (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)线段(D)不存在

  (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

  这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

  (二)理解定义、解决问题

  例2:

  (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2),求|PA|

  【设计意图】

  运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

  【学情预设】

  根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

  (三)自主探究、深化认识

  如果时间允许,练习题将为学生们提供一次数学猜想、试验的`机会。

  练习:

  设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

  引申:若将点A移到圆C外,点M的轨迹会是什么?

  【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

  可借助“多媒体课件”,引导学生对自己的结论进行验证。

  【知识链接】

  (一)圆锥曲线的定义

  1、圆锥曲线的第一定义

  2、圆锥曲线的统一定义

  (二)圆锥曲线定义的应用举例

  1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

  2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4、例题:

  (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

  (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

  七、教学反思

  1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教案4

  一、向量的概念

  1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

  2、叫做单位向量

  3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

  4、且的向量叫做相等向量

  5、叫做相反向量

  二、向量的表示方法:

  几何表示法、字母表示法、坐标表示法

  三、向量的加减法及其坐标运算

  四、实数与向量的乘积

  定义:实数 λ 与向量 的积是一个向量,记作λ

  五、平面向量基本定理

  如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

  六、向量共线/平行的充要条件

  七、非零向量垂直的充要条件

  八、线段的定比分点

  设是上的 两点,p是上xx的任意一点,则存在实数,使xxx,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点

  定比分点坐标公式及向量式

  九、平面向量的数量积

  (1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

  (2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

  (3)平面向量的数量积的坐标表示

  十、平移

  典例解读

  1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

  其中,正确命题的.序号是xx

  2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=xxxx

  3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为xx

  4、下列算式中不正确的是( )

  (a) ab+bc+ca=0 (b) ab-ac=bc

  (c) 0·ab=0 (d)λ(μa)=(λμ)a

  5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

  ?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

  (a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

  7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

  (a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

  (c)2x-y=0 (d)x+2y-5=0

  8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=xx

  9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长

  10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

  (a)-5 (b)5 (c)7 (d)-1

  11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

  (a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

  (c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0

  12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

  (a)2 (b)0 (c)1 (d)2

  16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

  17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值

  18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量

高中数学教案5

  一、教材分析

  1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

  2、教学目标:

  知识目标:

  (1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

  (2)进一步培养学生把空间问题转化为平面问题的化归思想。

  能力目标:

  (1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

  (2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

  德育目标:

  (1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识

  (2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

  情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

  3、重点、难点:

  重点:“二面角”和“二面角的平面角”的概念

  难点:“二面角的平面角”概念的形成过程

  二、教法分析

  1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

  2、教学控制与调节的`措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

  3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

  三、学法指导

  1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

  2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

  3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

  四、教学过程

  心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

  (一)、二面角

  1、揭示概念产生背景。

  问题情境1、在平面几何中“角”是怎样定义的?

  问题情境2、在立体几何中我们还学习了哪些角?

  问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

  通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。

  2、展现概念形成过程。

  问题情境4、那么,应该如何定义二面角呢?

  创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

  问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

  问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

  2、展现概念形成过程

  (1)、类比。教师启发,寻找类比联想的对象。

  问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。

  问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。

  问题情境9、这个平面的角的顶点及两边是如何确定的?

  (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。

  问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。

  (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。

  (4)、继续探索,得到定义。

  问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。

  (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。

  (三)、二面角及其平面角的画法

  主要分为直立式和平卧式两种,用电脑《几何画板》作图。

  (四)、范例分析

  为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。

  例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。

  分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。

  变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。

  题后反思:

  (1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)

高中数学教案6

  一、课程性质与任务

  数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

  1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

  3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的'科学态度,提高学生就业能力与创业能力。三、教学内容结构

  本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

  1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

  3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

  (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

  了解:初步知道知识的含义及其简单应用。

  理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

  计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

  空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

  分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

  数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

  (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

  第2单元不等式(8学时)

  第3单元函数(12学时)

  第4单元指数函数与对数函数(12学时)

  第5单元三角函数(18学时)

  第6单元数列(10学时)

  第7单元平面向量(矢量)(10学时)

  第8单元直线和圆的方程(18学时)

  第9单元立体几何(14学时)

  第10单元概率与统计初步(16学时)

  2.职业模块

  第1单元三角计算及其应用(16学时)

  第2单元坐标变换与参数方程(12学时)

  第3单元复数及其应用(10学时)

高中数学教案7

  课题:

  等比数列的概念

  教学目标

  1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

  2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

  3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导、

  教学用具

  投影仪,多媒体软件,电脑、

  教学方法

  讨论、谈话法、

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,—1,1,—1,1,—1,1,—1,…

  ⑦1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

  这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1、等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的'数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

  2、对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0、用数学式子表示等比数列的定义是等比数列

  ①、在这个式子的写法上可能会有一些争议,让学生研究行不行,好不好;接下来再问,能否改写为等比数列?为什么不能?式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?

  3、等比数列的通项公式(板书)

  问题:用和表示第项

  ①不完全归纳法

  ②叠乘法,…,这个式子相乘得,所以(板书)

  (1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

  (2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

  三、小结

  1、本节课研究了等比数列的概念,得到了通项公式;

  2、注意在研究内容与方法上要与等差数列相类比;

  3、用方程的思想认识通项公式,并加以应用。

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

  参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案8

  教学目标:

  1、理解并掌握曲线在某一点处的切线的概念;

  2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

  3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

  问题的能力及数形结合思想。

  教学重点:

  理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

  教学难点:

  用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

  教学过程:

  一、问题情境

  1、问题情境。

  如何精确地刻画曲线上某一点处的变化趋势呢?

  如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

  如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

  因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

  2、探究活动。

  如图所示,直线l1,l2为经过曲线上一点P的两条直线,

  (1)试判断哪一条直线在点P附近更加逼近曲线;

  (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

  (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

  二、建构数学

  切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

  思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  三、数学运用

  例1 试求在点(2,4)处的切线斜率。

  解法一 分析:设P(2,4),Q(xQ,f(xQ)),

  则割线PQ的斜率为:

  当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

  当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

  从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

  解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

  练习 试求在x=1处的切线斜率。

  解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

  小结 求曲线上一点处的.切线斜率的一般步骤:

  (1)找到定点P的坐标,设出动点Q的坐标;

  (2)求出割线PQ的斜率;

  (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

  思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  解 设

  所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

  变式训练

  1。已知,求曲线在处的切线斜率和切线方程;

  2。已知,求曲线在处的切线斜率和切线方程;

  3。已知,求曲线在处的切线斜率和切线方程。

  课堂练习

  已知,求曲线在处的切线斜率和切线方程。

  四、回顾小结

  1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

  2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

  五、课外作业

高中数学教案9

  1. 幽默风趣的你,平时在班里话语不多,也不张扬,但是,你在无意中的表现仍然赢得了很好的人际关系,学习上你认真刻苦,也能及时的完成作业,但是我觉得你总是没把全部的心思用在学习上,不然以你的聪明,应该保持在前三名才对啊,加油吧,也许关注学习成绩对你才是更有意义的事!

  2. 身为纪律委员的你,认真负责,以身作则,生活上的你平易近人,与同学关系融洽,学习上你勤奋刻苦,尤其在英语的.学习上,显示出了你的语言天赋,我觉得,假如你能把这份自信和兴趣用到其他的学科学习中,也一定会收获很多的!加油吧!

  3. 你能严格遵守校规,上课认真听讲,作业完成认真,乐于助人,愿意帮助同学,大扫除时你不怕苦,不怕累,但是英语方面还不够给力,所以,如果再投入一点,定会取得更好的结果,而且你还是一个愿意动脑筋的好学生,如果继续保持下去定会取得骄人的成绩!

  4. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高,平时善于多动笔认真作好笔记,多开动脑筋,相信你一定能在下学期更得更大的进步! 你学习认真刻苦,也能善于思考,更十分活泼,并能严格遵守班级和宿舍纪律,上课你能认真听讲,做作业时你十分专注,常常愿意花功夫钻研难题,与同学相处也十分融洽,但若能在认真做作业的同时,将速度提上去,我相信你会做得更好。要多讲究学习方法,不能靠熬夜来完成学习任务,提高学习效率,老师相信你一定能通过自己的努力取得更好的成绩!

  5. 虽然你个头小,但每次你领读时的那股认真劲儿,令老师暗暗称赞。你尊敬老师,和同学能和睦相处。甜美可爱的你,经过不断的努力,你会更出色的!

  6. 你是个活泼可爱的孩子,课堂上,你非常投入地学习着,朗读课文时数你最有感情。中午你还主动给老师捶背,真是个会关心人的孩子,老师谢谢你。你十分喜爱读课外书,不过课上可不能偷看啊!愿书成为你的好朋友。

  7. 学习中你能严格要求自己,这是你永不落败的秘诀。老师希望你能借助良好的学习方法,抓紧一切时间,笑在最后的一定是你!

  8. 许丽君——你思想上进,踏实稳重,诚实谦虚,尊敬老师。黑板报中有你倾注的心血,集体荣誉簿里有你的功劳。但学习的主动精神不够,竞争意识不强,也很少看到你向老师请教,成绩进步不明显。请相信:世上没有比脚更长的路,也没有比心更高的山!望今后大胆进取,多思多问,发挥你的聪明才智,进一步激发活力,提高学习效率,持之以恒,美好的明天属于你!

  9. 每天你都背着书包高高兴兴地来上学,学到了不少的知识,可惜只能记住很少的一部分。希望你改进学习方法,提高学习效率,在下学期有更大的进步!

  10. 你言语不多,但待人诚恳、礼貌,作风踏实,品学兼优,热爱班级,关爱同学,勤奋好学,思维敏捷,成绩优秀。愿你扎实各科基础,坚持不懈,!一定能考上重点! 优秀的男生肯定是逗人喜欢的,老师希望你能一如既往的优秀,把这种优秀保持在你人生的每一阶段中。你的人生就是辉煌如意的!

高中数学教案10

  教学目标:

  1。理解并掌握瞬时速度的定义;

  2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;

  3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。

  教学重点:

  会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。

  教学难点:

  理解瞬时速度和瞬时加速度的定义。

  教学过程:

  一、问题情境

  1。问题情境。

  平均速度:物体的运动位移与所用时间的比称为平均速度。

  问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的.快慢程度?

  问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.

  2。探究活动:

  (1)计算运动员在2s到2.1s(t∈)内的平均速度。

  (2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。

  (3)如何计算运动员在更短时间内的平均速度。

  探究结论:

  时间区间

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  当?t?0时,?-13.1,

  该常数可作为运动员在2s时的瞬时速度。

  即t=2s时,高度对于时间的瞬时变化率。

  二、建构数学

  1。平均速度。

  设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。

  可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。

  三、数学运用

  例1物体作自由落体运动,运动方程为,其中位移单位是m,时

  间单位是s,,求:

  (1)物体在时间区间s上的平均速度;

  (2)物体在时间区间上的平均速度;

  (3)物体在t=2s时的瞬时速度。

  分析

  解

  (1)将?t=0.1代入上式,得:=2.05g=20.5m/s。

  (2)将?t=0.01代入上式,得:=2.005g=20.05m/s。

  (3)当?t?0,2+?t?2,从而平均速度的极限为:

  例2设一辆轿车在公路上作直线运动,假设时的速度为,

  求当时轿车的瞬时加速度。

  解

  ∴当?t无限趋于0时,无限趋于,即=。

  练习

  课本P12—1,2。

  四、回顾小结

  问题1本节课你学到了什么?

  1理解瞬时速度和瞬时加速度的定义;

  2实际应用问题中瞬时速度和瞬时加速度的求解;

  问题2解决瞬时速度和瞬时加速度问题需要注意什么?

  注意当?t?0时,瞬时速度和瞬时加速度的极限值。

  问题3本节课体现了哪些数学思想方法?

  2极限的思想方法。

  3特殊到一般、从具体到抽象的推理方法。

  五、课外作业

高中数学教案11

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的.含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义(2)掌握算法的基本结构(3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图(2)变量与赋值(3)循环结构(4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进(2)整合渗透前呼后应(3)三线合一横向贯通(4)弹性处理多样选择

  八、单元教学过程分析

  1.算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3.基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,

  4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1.重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2.正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教案12

  1.课题

  填写课题名称(高中代数类课题)

  2.教学目标

  (1)知识与技能:

  通过本节课的学习,掌握。.。.。.知识,提高学生解决实际问题的能力;

  (2)过程与方法:

  通过。.。.。.(讨论、发现、探究),提高。.。.。.(分析、归纳、比较和概括)的能力;

  (3)情感态度与价值观:

  通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。

  3.教学重难点

  (1)教学重点:本节课的知识重点

  (2)教学难点:易错点、难以理解的知识点

  4、教学方法(一般从中选择3个就可以了)

  (1)讨论法

  (2)情景教学法

  (3)问答法

  (4)发现法

  (5)讲授法

  5、教学过程

  (1)导入

  简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)

  (2)新授课程(一般分为三个小步骤)

  ①简单讲解本节课基础知识点(例:奇函数的定义)。

  ②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的`易错点)。

  ③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。

  (在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)

  (3)课堂小结

  教师提问,学生回答本节课的收获。

  (4)作业提高

  布置作业(尽量与实际生活相联系,有所创新)。

  6、教学板书

高中数学教案13

  一、教学目标

  知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:任意角概念的理解;区间角的集合的书写。

  教学难点:终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  1、回顾角的定义

  ①角的第一种定义是有公共端点的`两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  例1、如图⑴⑵中的角分别属于第几象限角?

高中数学教案14

  [核心必知]

  1、预习教材,问题导入

  根据以下提纲,预习教材P6~P9,回答下列问题、

  (1)常见的程序框有哪些?

  提示:终端框(起止框),输入、输出框,处理框,判断框、

  (2)算法的基本逻辑结构有哪些?

  提示:顺序结构、条件结构和循环结构、

  2、归纳总结,核心必记

  (1)程序框图

  程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形、

  在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序、

  (2)常见的程序框、流程线及各自表示的功能

  图形符号名称功能

  终端框(起止框)表示一个算法的起始和结束

  输入、输出框表示一个算法输入和输出的信息

  处理框(执行框)赋值、计算

  判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”

  流程线连接程序框

  ○连接点连接程序框图的两部分

  (3)算法的基本逻辑结构

  ①算法的三种基本逻辑结构

  算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的

  ②顺序结构

  顺序结构是由若干个依次执行的步骤组成的这是任何一个算法都离不开的基本结构,用程序框图表示为:

  [问题思考]

  (1)一个完整的'程序框图一定是以起止框开始,同时又以起止框表示结束吗?

  提示:由程序框图的概念可知一个完整的程序框图一定是以起止框开始,同时又以起止框表示结束、

  (2)顺序结构是任何算法都离不开的基本结构吗?

  提示:根据算法基本逻辑结构可知顺序结构是任何算法都离不开的基本结构、

  [课前反思]

  通过以上预习,必须掌握的几个知识点:

  (1)程序框图的概念:

  (2)常见的程序框、流程线及各自表示的功能:

  (3)算法的三种基本逻辑结构:

  (4)顺序结构的概念及其程序框图的表示:

  问题背景:计算1×2+3×4+5×6+…+99×100。

  [思考1]能否设计一个算法,计算这个式子的值。

  提示:能。

  [思考2]能否采用更简洁的方式表述上述算法过程。

  提示:能,利用程序框图。

  [思考3]画程序框图时应遵循怎样的规则?

  名师指津:

  (1)使用标准的框图符号。

  (2)框图一般按从上到下、从左到右的方向画。

  (3)除判断框外,其他程序框图的符号只有一个进入点和一个退出点,判断框是一个具有超过一个退出点的程序框。

  (4)在图形符号内描述的语言要非常简练清楚。

  (5)流程线不要忘记画箭头,因为它是反映流程执行先后次序的,如果不画出箭头就难以判断各框的执行顺序。

高中数学教案15

  (一)教学具准备

  直尺,投影仪.

  (二)教学目标

  1.掌握,的定义域、值域、最值、单调区间.

  2.会求含有、的三角式的定义域.

  (三)教学过程

  1.设置情境

  研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

  2.探索研究

  师:同学们回想一下,研究一个函数常要研究它的哪些性质?

  生:定义域、值域,单调性、奇偶性、等等.

  师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)

  师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

  师:请同学思考以下几个问题:

  (1)正弦、余弦函数的定义域是什么?

  (2)正弦、余弦函数的值域是什么?

  (3)他们最值情况如何?

  (4)他们的正负值区间如何分?

  (5)的解集如何?

  师生一起归纳得出:

  (1)正弦函数、余弦函数的定义域都是.

  (2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.

  (3)取最大值、最小值情况:

  正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.

  余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.

  (4)正负值区间:

  ()

  (5)零点:()

  ()

  3.例题分析

  【例1】求下列函数的定义域、值域:

  (1);(2);(3).

  解:(1),

  (2)由()

  又∵,∴

  ∴定义域为(),值域为.

  (3)由(),又由

  ∴

  ∴定义域为(),值域为.

  指出:求值域应注意用到或有界性的条件.

  【例2】求下列函数的最大值,并求出最大值时的集合:

  (1),;(2),;

  (3)(4).

  解:(1)当,即()时,取得最大值

  ∴函数的.最大值为2,取最大值时的集合为.

  (2)当时,即()时,取得最大值.

  ∴函数的最大值为1,取最大值时的集合为.

  (3)若,,此时函数为常数函数.

  若时,∴时,即()时,函数取最大值,

  ∴时函数的最大值为,取最大值时的集合为.

  (4)若,则当时,函数取得最大值.

  若,则,此时函数为常数函数.

  若,当时,函数取得最大值.

  ∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.

  指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.

  思考:此例若改为求最小值,结果如何?

  【例3】要使下列各式有意义应满足什么条件?

  (1);(2).

  解:(1)由,

  ∴当时,式子有意义.

  (2)由,即

  ∴当时,式子有意义.

  4.演练反馈(投影)

  (1)函数,的简图是()

  (2)函数的最大值和最小值分别为()

  A.2,-2 B.4,0 C.2,0 D.4,-4

  (3)函数的最小值是()

  A.B.-2 C.D.

  (4)如果与同时有意义,则的取值范围应为()

  A.B.C.D.或

  (5)与都是增函数的区间是()

  A.,B.,

  C.,D.,

  (6)函数的定义域________,值域________,时的集合为_________.

  参考答案:1.B 2.B 3.A 4.C 5.D

  6.;;

  5.总结提炼

  (1),的定义域均为.

  (2)、的值域都是

  (3)有界性:

  (4)最大值或最小值都存在,且取得极值的集合为无限集.

  (5)正负敬意及零点,从图上一目了然.

  (6)单调区间也可以从图上看出.

  (四)板书设计

  1.定义域

  2.值域

  3.最值

  4.正负区间

  5.零点

  例1

  例2

  例3

  课堂练习

  课后思考题:求函数的最大值和最小值及取最值时的集合

  提示: