高中数学教案

时间:2024-07-22 19:43:18 教案 我要投稿

高中数学教案(汇编15篇)

  作为一名为他人授业解惑的教育工作者,通常需要准备好一份教案,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?下面是小编为大家整理的高中数学教案,希望对大家有所帮助。

高中数学教案(汇编15篇)

高中数学教案1

  教学目标:

  1、理解并掌握曲线在某一点处的切线的概念;

  2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

  3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

  问题的能力及数形结合思想。

  教学重点:

  理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

  教学难点:

  用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

  教学过程:

  一、问题情境

  1、问题情境。

  如何精确地刻画曲线上某一点处的变化趋势呢?

  如果将点P附近的曲线放大,那么就会发现,曲线在点P附近看上去有点像是直线。

  如果将点P附近的曲线再放大,那么就会发现,曲线在点P附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点P附近将逼近一条确定的直线,该直线是经过点P的所有直线中最逼近曲线的一条直线。

  因此,在点P附近我们可以用这条直线来代替曲线,也就是说,点P附近,曲线可以看出直线(即在很小的范围内以直代曲)。

  2、探究活动。

  如图所示,直线l1,l2为经过曲线上一点P的两条直线,

  (1)试判断哪一条直线在点P附近更加逼近曲线;

  (2)在点P附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

  (3)在点P附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

  二、建构数学

  切线定义: 如图,设Q为曲线C上不同于P的一点,直线PQ称为曲线的割线。 随着点Q沿曲线C向点P运动,割线PQ在点P附近逼近曲线C,当点Q无限逼近点P时,直线PQ最终就成为经过点P处最逼近曲线的直线l,这条直线l也称为曲线在点P处的切线。这种方法叫割线逼近切线。

  思考:如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  三、数学运用

  例1 试求在点(2,4)处的切线斜率。

  解法一 分析:设P(2,4),Q(xQ,f(xQ)),

  则割线PQ的斜率为:

  当Q沿曲线逼近点P时,割线PQ逼近点P处的切线,从而割线斜率逼近切线斜率;

  当Q点横坐标无限趋近于P点横坐标时,即xQ无限趋近于2时,kPQ无限趋近于常数4。

  从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

  解法二 设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

  练习 试求在x=1处的.切线斜率。

  解:设P(1,2),Q(1+Δx,(1+Δx)2+1),则割线PQ的斜率为:

  当?x无限趋近于0时,kPQ无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

  小结 求曲线上一点处的切线斜率的一般步骤:

  (1)找到定点P的坐标,设出动点Q的坐标;

  (2)求出割线PQ的斜率;

  (3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

  思考 如上图,P为已知曲线C上的一点,如何求出点P处的切线方程?

  解 设

  所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

  变式训练

  1。已知,求曲线在处的切线斜率和切线方程;

  2。已知,求曲线在处的切线斜率和切线方程;

  3。已知,求曲线在处的切线斜率和切线方程。

  课堂练习

  已知,求曲线在处的切线斜率和切线方程。

  四、回顾小结

  1、曲线上一点P处的切线是过点P的所有直线中最接近P点附近曲线的直线,则P点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

  2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

  五、课外作业

高中数学教案2

  教学目标:

  1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

  学生全面认识数学的科学价值、应用价值和文化价值。

  2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

  教学重点:

  如何建立实际问题的目标函数是教学的重点与难点。

  教学过程:

  一、问题情境

  问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

  问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

  问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

  二、新课引入

  导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

  1。几何方面的应用(面积和体积等的最值)。

  2。物理方面的应用(功和功率等最值)。

  3。经济学方面的应用(利润方面最值)。

  三、知识建构

  例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

  说明1解应用题一般有四个要点步骤:设——列——解——答。

  说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

  值及端点值比较即可。

  例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才

  能使所用的材料最省?

  变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

  说明1这种在定义域内仅有一个极值的函数称单峰函数。

  说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

  S1列:列出函数关系式。

  S2求:求函数的导数。

  S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

  例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

  多大时,才能使电功率最大?最大电功率是多少?

  说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

  例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

  例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

  (1)设,生产多少单位产品时,边际成本最低?

  (2)设,产品的'单价,怎样的定价可使利润最大?

  四、课堂练习

  1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

  2。在半径为R的圆内,作内接等腰三角形,当底边上高为 时,它的面积最大。

  3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

  4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

  五、回顾反思

  (1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

  (2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

  (3)相当多有关最值的实际问题用导数方法解决较简单。

  六、课外作业

  课本第38页第1,2,3,4题。

高中数学教案3

  一、课程性质与任务

  数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

  1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

  3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

  本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

  1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

  3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求

  (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

  了解:初步知道知识的含义及其简单应用。

  理解:懂得知识的'概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

  计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

  空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

  分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

  数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

  (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

  第2单元不等式(8学时)

  第3单元函数(12学时)

  第4单元指数函数与对数函数(12学时)

  第5单元三角函数(18学时)

  第6单元数列(10学时)

  第7单元平面向量(矢量)(10学时)

  第8单元直线和圆的方程(18学时)

  第9单元立体几何(14学时)

  第10单元概率与统计初步(16学时)

  2.职业模块

  第1单元三角计算及其应用(16学时)

  第2单元坐标变换与参数方程(12学时)

  第3单元复数及其应用(10学时)

高中数学教案4

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的全排列数为 .

  根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的.能力.

  作业参考答案

  2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

  3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

  探究活动

  同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

  解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

  解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

  甲拿乙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丁制作的贺卡时,则贺卡有3种分配方法.

  由加法原理得,贺卡分配方法有3+3+3=9种.

  解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

  正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

  逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

高中数学教案5

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的'代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学教案6

  教学准备

  教学目标

  熟悉两角和与差的正、余公式的推导过程,提高逻辑推理能力。

  掌握两角和与差的.正、余弦公式,能用公式解决相关问题。

  教学重难点

  熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

  教学过程

  复习

  两角差的余弦公式

  用- B代替B看看有什么结果?

高中数学教案7

  一、教学目标:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  二、教学重点:

  向量的性质及相关知识的.综合应用。

  三、教学过程:

  (一)主要知识:

  1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  (二)例题分析:略

  四、小结:

  1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

  2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  五、作业:

  略

高中数学教案8

  教学目标

  1.了解映射的概念,象与原象的概念,和一一映射的概念.

  (1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

  (2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

  (3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

  2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

  3.通过映射概念的学习,逐步提高学生对知识的探究能力.

  教学建议

  教材分析

  (1)知识结构

  映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

  由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

  (2)重点,难点分析

  本节的教学重点和难点是映射和一一映射概念的形成与认识.

  ①映射的概念是比较抽象的'概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

  映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

  ②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.

  教法建议

  (1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

  (2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

  (3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

  (4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

  (5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

  教学设计方案

  2.1映射

  教学目标(1)了解映射的概念,象与原象及一一映射的概念.

  (2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

  (3)通过映射概念的学习,逐步提高学生的探究能力.

  教学重点难点::映射概念的形成与认识.

  教学用具:实物投影仪

  教学方法:启发讨论式

  教学过程:

  一、引入

  在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

  二、新课

  在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

  我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

  提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

  让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

  提问2:能用自己的语言描述一下这几个对应的共性吗?

  经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高中数学教案9

  【教学目标】

  1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  2.能根据几何结构特征对空间物体进行分类。

  3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

  【教学重难点】

  教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  教学难点:柱、锥、台、球的结构特征的概括。

  【教学过程】

  1.情景导入

  教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

  2.展示目标、检查预习

  3、合作探究、交流展示

  (1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

  (2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  (3)提出问题:请列举身边的棱柱并对它们进行分类

  (4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的'结构特征,并得出相关的概念,分类以及表示。

  (5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

  (6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  (7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  (1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

  (2)棱柱的任何两个平面都可以作为棱柱的底面吗?

  (3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  (5)绕直角三角形某一边的几何体一定是圆锥吗?

  5、典型例题

  例1:判断下列语句是否正确。

  ⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

  ⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

  答案 A B

  6、课堂检测:

  课本P8,习题1.1 A组第1题。

  7.归纳整理

  由学生整理学习了哪些内容

  【板书设计】

  一、柱、锥、台、球的结构

  二、例题

  例1

  变式1、2

  【作业布置】

  导学案课后练习与提高

  1.1.1柱、锥、台、球的结构特征

  课前预习学案

  一、预习目标:

  通过图形探究柱、锥、台、球的结构特征

  二、预习内容:

  阅读教材第2—6页内容,然后填空

  (1)多面体的概念: 叫多面体,

  叫多面体的面, 叫多面体的棱,

  叫多面体的顶点。

  ① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱

  ②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥

  ③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。

  (2)旋转体的概念: 叫旋转体, 叫旋转体的轴。

  ①圆柱: 所围成的几何体叫做圆柱

  ②圆锥: 所围成的几何

  体叫做圆锥

  ③圆台: 的部分叫圆台

  . ④球的定义

  思考:

  (1)试分析多面体与旋转体有何去别

  (2)球面球体有何去别

  (3)圆与球有何去别

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

  疑惑点 疑惑内容

高中数学教案10

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的.探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

高中数学教案11

  一、自我介绍

  我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。

  二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

  (一)为什么要学习数学

  相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。

  数学家华罗庚在《人民日报》精彩描述了数学在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁"等方面无处不有重要贡献。

  问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?

  海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。

  1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为"海王星"。

  1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,"冥王星是大行星"早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。

  马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。

  其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

  问题2:徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)

  我的观点:上帝不是万能的。为什么呢?仔细听我讲来。

  证明:(反证法)假如上帝是万能的

  那么他能够制作出一块无论什么力量都搬不动的石头

  根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头

  这与"无论什么力量都搬不动的石头"相矛盾

  所以假设不成立

  所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?

  当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:"读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

  故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。"国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

  人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。

  数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

  数学思想:退到最简单、最特殊的地方。

  故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

  渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

  学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的`地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……

  (二)如何学好数学

  高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:

  第一:对数学学科特点有清楚的认识

  主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是"想当然"的话,那就学不下去了。

  第二:要改变一个观念。

  有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。

  第三:学数学要摸索自己的学习方法

  学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。

  第四:养成良好的学习习惯(与一中学生相比较)

  ㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

  ㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

  ㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流

  ㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

  好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高中数学教案12

  高中数学趣味竞赛题(共10题)

  1 、撒谎的有几人

  5个高中生有,她们面对学校的新闻采访说了如下的话:

  爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”

  玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”

  千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?

  2、她们到底是谁

  有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。

  穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?

  3、半只小猫

  听说祖父家的波斯猫生了好多小猫,喜欢猫的'我兴高采烈地来到祖父家。可是,只剩下1只小猫了。

  “一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?

  4、被虫子吃掉的算式

  一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。

  那么,请问原来的算式是什么样子的呢?

  5、巧动火柴

  用16根火柴摆成5个正方形。请移动2根火柴,

  使

  正形变成4。

  6、折过来的角

  把正三角形的纸如图那样折过来时,角?的度数是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、啊!双胞胎?

  丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。

  结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?

  9、赠送和降价哪个更好?

  1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?

  10、折成15度

  用折纸做成45度很简单是吧。那么,请折成15度,你会吗?

高中数学教案13

  教学目标:

  1。了解反函数的概念,弄清原函数与反函数的定义域和值域的关系。

  2。会求一些简单函数的反函数。

  3。在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识。

  4。进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力。

  教学重点:

  求反函数的方法。

  教学难点:

  反函数的概念。

  教学过程:

  教学活动

  设计意图一、创设情境,引入新课

  1。复习提问

  ①函数的概念

  ②y=f(x)中各变量的意义

  2。同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数。在这种情况下,我们说t=是函数S=vt的反函数。什么是反函数,如何求反函数,就是本节课学习的内容。

  3。板书课题

  由实际问题引入新课,激发了学生学习兴趣,展示了教学目标。这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性。

  二、实例分析,组织探究

  1。问题组一:

  (用投影给出函数与;与()的图象)

  (1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称。是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算。同样,与()也互为逆运算。)

  (2)由,已知y能否求x?

  (3)是否是一个函数?它与有何关系?

  (4)与有何联系?

  2。问题组二:

  (1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

  (3)函数 ()的定义域与函数()的值域有什么关系?

  3。渗透反函数的概念。

  (教师点明这样的函数即互为反函数,然后师生共同探究其特点)

  从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力。

  通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础。

  三、师生互动,归纳定义

  1。(根据上述实例,教师与学生共同归纳出反函数的定义)

  函数y=f(x)(x∈A) 中,设它的值域为 C。我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) 。如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数。这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数。记作: 。考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成。

  2。引导分析:

  1)反函数也是函数;

  2)对应法则为互逆运算;

  3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

  4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

  5)函数y=f(x)与x=f(y)互为反函数;

  6)要理解好符号f;

  7)交换变量x、y的原因。

  3。两次转换x、y的对应关系

  (原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的)

  4。函数与其反函数的关系

  函数y=f(x)

  函数

  定义域

  A

  C

  值 域

  C

  A

  四、应用解题,总结步骤

  1。(投影例题)

  【例1】求下列函数的反函数

  (1)y=3x—1 (2)y=x 1

  【例2】求函数的反函数。

  (教师板书例题过程后,由学生总结求反函数步骤。)

  2。总结求函数反函数的步骤:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x与y互换得。

  3° 写出反函数的定义域。

  (简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

  (2)的反函数是________。

  (3)(x<0)的反函数是__________。

  在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数。在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握。

  通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解。

  通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力。

  题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进。并体现了对定义的反思理解。学生思考练习,师生共同分析纠正。

  五、巩固强化,评价反馈

  1。已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2。已知函数f(x)=(xR,且x)存在反函数,求f(7)的值。

  五、反思小结,再度设疑

  本节课主要研究了反函数的定义,以及反函数的求解步骤。互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究。

  (让学生谈一下本节课的`学习体会,教师适时点拨)

  进一步强化反函数的概念,并能正确求出反函数。反馈学生对知识的掌握情况,评价学生对学习目标的落实程度。具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性。"问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂。

  六、作业

  习题2。4 第1题,第2题

  进一步巩固所学的知识。

  教学设计说明

  "问题是数学的心脏"。一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程。本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念。

  反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号。由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念。为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成。另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用。通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维。使学生自然成为学习的主人。

高中数学教案14

  教材分析:

  三角函数的诱导公式是普通高中课程标准实验教科书(人教B版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

  教案背景:

  通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。因此本节内容在三角函数中占有非常重要的地位.

  教学方法:

  以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式。

  教学目标:

  借助单位圆探究诱导公式。

  能正确运用诱导公式将任意角的三角函数化为锐角三角函数。

  教学重点:

  诱导公式(三)的推导及应用。

  教学难点:

  诱导公式的应用。

  教学手段:

  多媒体。

  教学情景设计:

  一.复习回顾:

  1. 诱导公式(一)(二)。

  2. 角 (终边在一条直线上)

  3. 思考:下列一组角有什么特征?( )能否用式子来表示?

  二.新课:

  已知 由

  可知

  而 (课件演示,学生发现)

  所以

  于是可得: (三)

  设计意图:结合几何画板的演示利用同一点的'坐标变换,导出公式。

  由公式(一)(三)可以看出,角 角 相等。即:

  .

  公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

  设计意图:结合学过的公式(一)(二),发现特点,总结公式。

  1. 练习

  (1)

  设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

  (学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)

  三.例题

  例3:求下列各三角函数值:

  (1)

  (2)

  (3)

  (4)

  例4:化简

  设计意图:利用公式解决问题。

  练习:

  (1)

  (2) (学生板演,师生点评)

  设计意图:观察公式特点,选择公式解决问题。

  四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

  五.课后作业:课后练习A、B组

  六.课后反思与交流

  很荣幸大家来听我的课,通过这课,我学习到如下的东西:

  1.要认真的研读新课标,对教学的目标,重难点把握要到位

  2.注意板书设计,注重细节的东西,语速需要改正

  3.进一步的学习网页制作,让你的网页更加的完善,学生更容易操作

  4.尽可能让你的学生自主提出问题,自主的思考,能够化被动学习为主动学习,充分享受学习数学的乐趣

  5.上课的生动化,形象化需要加强

  听课者评价:

  1.评议者:网络辅助教学,起到了很好的效果;教态大方,作为新教师,开设校际课,勇气可嘉!建议:感觉到老师有点紧张,其实可以放开点的,相信效果会更好的!重点不够清晰,有引导数学时,最好值有个侧重点;网络设计上,网页上公开的推导公式为上,留有更大的空间让学生来思考。

  2.评议者:网络教学效果良好,给学生自主思考,学习的空间发挥,教学设计得好;建议:课堂讲课声音,语调可以更有节奏感一些,抑扬顿挫应注意课堂例题练习可以多两题。

  3.评议者:学科网络平台的使用;建议:应重视引导学生将一些唾手可得的有用结论总结出来,并形成自我的经验。

  4.评议者:引导学生通过网络进行探究。

  建议:课件制作在线测评部分,建议不能重复选择,应全部做完后,显示结果,再重复测试;多提问学生。

  ( 1)给学生思考的时间较长,语调相对平缓,总结时,给学生一些激励的语言更好

  ( 2)这样子的教学可以提高上课效率,让学生更多的时间思考

  ( 3)网络平台的使用,使得学生的参与度明显提高,存在问题:1.公式对称性的诱导,点与点的对称的诱导,终边的关系的诱导,要进一步的修正;2.公式的概括要注意引导学生怎么用,学习这个诱导公式的作用

  ( 4)给学生答案,这个网页要进一步的修正,答案能否不要一点就出来

  ( 5)1.板书设计要进一步的加强,2.语速相对是比较快的3.练习量比较少

  ( 6)让学生多探究,课堂会更热闹

  ( 7)注意引入的过程要带有目的,带着问题来教学,学生带着问题来学习

  ( 8)教学模式相对简单重复

  ( 9)思路较为清晰,规范化的推理

高中数学教案15

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的'宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  【例题示范 探求方法】

  (教师活动)打出字幕,给出示范,指导训练.

  [字幕]例1 列举从4个元素 中任取2个元素的所有组合.

  例2 计算:(1) ;(2) .

  (学生活动)板演、示范.

  (教师活动)讲评并指出用两种方法计算例2的第2小题.

  [字幕]例3 已知 ,求 的所有值.

  (学生活动)思考分析.

  解 首先,根据组合的定义,有

  ①

  其次,由原不等式转化为

  即

  解得 ②

  综合①、②,得 ,即

  [点评]这是组合数公式的应用,关键是公式的选择.

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

  【反馈练习 学会应用】

  (教师活动)给出练习,学生解答,教师点评.

  [课堂练习]课本P99练习第2,5,6题.

  [补充练习]

  [字幕]1.计算:

  2.已知 ,求 .

  (学生活动)板演、解答.

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

【高中数学教案】相关文章:

高中数学教案01-22

高中数学教案05-20

高中数学教案(经典)12-14

(必备)高中数学教案11-10

高中数学教案范文10-17

高中数学教案集合15篇01-23

初中数学教案02-04

利率的数学教案06-26

小学数学教案(经典)08-18