函数的奇偶性教案

时间:2024-07-13 07:29:45 说课稿 我要投稿
  • 相关推荐

函数的奇偶性教案人教版

  作为一名辛苦耕耘的教育工作者,总不可避免地需要编写教案,教案有助于顺利而有效地开展教学活动。那么写教案需要注意哪些问题呢?以下是小编精心整理的函数的奇偶性教案人教版,供大家参考借鉴,希望可以帮助到有需要的朋友。

函数的奇偶性教案人教版

  今天我说课的课题是高中数学人教a版必修一第一章第三节函数的基本性质中的函数的奇偶性,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。

  (一)教材特点、教材的地位与作用。

  本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

  函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

  (二)重点、难点。

  1、本课时的教学重点是:函数的奇偶性及其几何意义。

  2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

  (三)教学目标。

  1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;

  2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

  3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  1.教学方法:启发引导式。

  结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.

  2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习.

  为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。

  (一)设疑导入,观图激趣。

  让学生感受生活中的美:展示图片蝴蝶,雪花。

  学生举例生活中的对称现象。

  折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。

  问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。

  以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开.观察坐标喜之中的图形:

  问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点。

  (二)指导观察,形成概念。

  这节课我们首先从两类对称:轴对称和中心对称展开研究.

  思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何。

  借助课件演示,学生会回答自变量互为相反数,函数值相等.接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示.

  思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征。

  引导学生发现函数的定义域一定关于原点对称.根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

  提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢(同时打出y=1/x的图象让学生观察研究)。

  学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:

  强调注意点:"定义域关于原点对称"的条件必不可少.

  接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:

  (1)求出函数的定义域,并判断是否关于原点对称。

  (2)验证f(-x)=f(x)或f(-x)=-f(x)3)得出结论。

  给出例题,加深理解:

  例1,利用定义,判断下列函数的奇偶性:

  (1)f(x)=x2+1。

  (2)f(x)=x3-x。

  (3)f(x)=x4-3x2-1。

  (4)f(x)=1/x3+1。

  提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?

  得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数。

  接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)。

  然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:

  函数f(x)是奇函数=图象关于原点对称。

  函数f(x)是偶函数=图象关于y轴对称。

  给出例2:书p63例3,再进行当堂巩固,1,书p65ex2。

  y=x4;y=x-1;y=x;y=x-2;y=x5;y=x-3。

  归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数。

  (三)学生探索,发展思维。

  思考:

  2,函数y=0有是什么函数。

  (四)布置作业。

  课本p39习题1.3(a组)第6题,b组第3。

【函数的奇偶性教案】相关文章:

函数的奇偶性说课稿01-24

人教版高一数学必修1《函数奇偶性》说课稿03-04

指数函数教案06-13

二次函数教案07-30

一次函数教案07-07

五年级数学教案:《数的奇偶性》06-01

函数概念说课稿11-28

《函数的概念》说课稿12-12

一次函数教案【实用15篇】07-07

《对数函数》说课稿06-22