- 相关推荐
一次函数教案
作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?下面是小编整理的一次函数教案,仅供参考,欢迎大家阅读。
一次函数教案1
教学目标
1、通过朗读,感受文中饱满、深沉的爱国情感。
2、了解作者选择有意味的景物组成一个个画面,展现东北大地特有的丰饶美丽的景象。
3、学习作者采用的人称变化、呼告、排比等表现手法。培养学生对土地、对祖国的热爱之情。
教学重难点:
重点:揣摩、欣赏精彩段落和语句。难点:品味作者蕴含在字里行间的深厚情感。
教学媒体:powerpoint课件
教学用时:一课时教学类型:自读课教学过程与方法:
一、情境导入
师:同学们,在开始学习新课之前,我们先一起来欣赏一首歌曲——《松花江上》。师:如屏幕所示,这首歌讲述了一件什么事?生:“九一·八”事变。
师:是的,1931年9月18日,日军在东北制造了震惊中外的“九”事变,东三省沦陷,大批东北人民被迫背井离乡、流离失所,于是就有了这首抒发流浪者心情的歌曲《松》。今天,我们一起来学习端的《土》,用我们的心来感受同样身为流浪者的作者在这篇文章中所蕴含的感情。(点击出示课题)
二、初读课文,整体感知
师:《土》是一篇抒情散文,下面我们先朗读课文,初步感受作者的情感。那么,老师是这样安排的,文章只有2段,大家先听录音范读第一段,再一起朗读第二段。在听读和朗读过程中完成屏幕上的要求。(点击显示“初读课文”)
师:文章的生字词较多,大家要注意下列字词的正确读音。(点击生字)师:大家一齐读出来——(逐个点击)
师:很好,预习比较充分。那么我们先听录音范读(点击朗读)师:大家觉得朗读者读的怎样?生:很好,情感很投入等(或其他)
师:对,朗读者情感很投入,让人听了感同身受。那就请大家先酝酿一下情绪,尝试把自己的身心都融入到文章中去。准备好了吗?“土地是我的母亲”开始——
师:听的出来大家都很用心在读。谁来说说看,你读的时候,从这篇文章中感受到作者的什么感情?生:爱家乡,爱土地(重点:土地)
师:其实作者一开篇就开门见山告诉我们他对土地的情感?大家找出来生:“炽痛的热爱”
师:作者对东北的土地有一种“炽痛的热爱”,这与他的'出生背景有很大关系。接下来我们来看一下作者的一些情况,就知道作者为什么有这么炽热的情感了。(点击,简单介绍)
师:我们知道,这篇文章写于1941年,整整十年,作者回去了没有?生:没有。
师:是的,作者足足流浪了十年。正是因为作者有背井离乡的亲身体验,更有对故土日思夜想的牵挂,才能写下如此炽热、深沉的文章。接下来我们就一起来细细品味这篇文章。
三、研读赏析
师:请同学们快速朗读课文,按研究性学习小组分组,以组为单位分工合作完成屏幕上的任务。
师:第一道题哪个组来?
师:作者的故乡就是关东大地,那文中哪些内容是对作者故乡土地的描写?描写的对象是?运用什么手法使景色的描写生动形象?【点击板书】此处重点:第一段的景色描写,描写对象是东北特有的景色(白桦林、高粱、豆粒)和物产(金矿、煤矿)。
运用修辞手法(比喻,拟人,排比)大量的修饰语(用的好不好?好在哪里?会不会多余?如金黄的豆粒,黑色的土地,红玉的脸庞,黑玉的眼睛)
师:从这段描写看,东北大地有独特的景色,有丰富的矿产,能用文中的两个词语概括吗?
生:美丽,丰饶【点击板书】
师:很好,请坐。除了这一段是作者对故土的描写之外,还有没有?第二段的景色描写,主要是“我”旧日在故乡的土地上生活的情景。师:从描写看,“我”旧日的生活快乐吗?生:快乐。
师:那现在这种快乐还在吗?生:不在。
师:从哪里看出来的?生:“埋葬”。
师:如何理解“埋葬”这词?本义?在这里的含义?生:师:同样是对故乡土地的描写,为什么作者不将两段合起来?
师:大家一起看,在第一段描写关东大地的景色之后,作者是这样写的:“这时我听到故乡在召唤我,故乡有一种声音在召唤着我。她低低的呼唤着我的名字,声音是那样的急切,使我不得不回去。”
师:大家说,土地是人吗?不是,那为什么这里作者用女性“她”来称呼土地?哪位同学来说说看?生:是把土地看成是母亲,所以
师:(小结)是的,作者在这里是把土地看成母亲。前面我们说过,作者对关东大地怀有一种“炽痛的热爱”。面对美丽丰饶的关东大地,作者情不自禁地将她想象成母亲,大地母亲召唤着我,甚至跟我心灵相通。于是,我便自然而然地回忆起旧日我在大地母亲身边生活的幸福情景,也就是第二段景色描写。这是作者情感的步步深入,所以两段景色描写不能合在一起。【点击板书】
师:在这里我们先停一下,一起回过头来看文章的标题。请一位同学说说看,你是如何理解文章标题的?
生:作者向土地立下的誓言。
师:很好。那么你能从文中找出作者发出的誓言吗?
生:“没有人污秽和耻辱”。(如果时间够就叫学生朗读这一部分)
师:这里有点奇怪。刚刚我们说,作者把土地看成母亲,所以用女性“她”称呼土地。但这里,“没有人站立”,人称却从“她”变为“你”,是作者写错了吗?
生:不是。这是作者的誓言,人称上的变化可以使作者的情感表达更亲切,更直接,更强烈。
师:(小结)不错。我们回过头来纵观全文,作者先通过对故乡景色的生动描写表达对土地的炽爱,跟着将土地想象成母亲,在母亲的召唤下回忆起旧日的幸福生活。然而,旧日的幸福被侵略者埋葬,大地母亲被污辱长达10年。面对这一切,作者炽热的情感达到顶点,将满腔的热情化为热切的渴望,立下铮铮誓言——誓要看到一个(生齐答:更美丽的故乡)【点击板书】。其实,土地也就是一个国家的主权问题,作者爱故乡的土地,也就是(学生答:爱国)。那么到这里,作者的情感从爱故乡的土地升华为爱国,可谓是水到渠成。
师:作者的情感如此浓烈,除了刚才我们赏析的语句之外,相信这篇文章还有很多富有感情的语句足以打动你,接下来就请几位同学来读一读你认为最有感情最能打动你的语句。
四、拓展练习
师:有点欲罢不能的样子,看来大家学了这篇文章之后是深受感染。好,那么就请大家把这种情感化成文字,写一写你们自己的故乡。
提示:也可以写你喜欢的,或是曾经去过、给你留下深刻印象的地方。不用很长,几句话就可以。(评价略)
五、总结(略)
六、学生齐读课文
教学后记:
土地也就是一个国家的主权问题,用1941年9月18日的“九·一八事变”来导入,配合当时的一些历史影片更容易让学生接受,并融入自己的情感。文章是写事变过去十年后,抗日战争正处在十分艰难的时候,所以历史背景很重要,教学中主要联系时代背景,通过反复朗读、品味课文,使学生慢慢地体会作者的思想感情。但对现在的学生来说,这篇文章还是太深了一些,因此教师的引导更显重要,这一点也是做得还不够的地方。
一次函数教案2
【教学目标】
【知识目标】
1、使学生初步理解二元一次方程与一次函数的关系
2、能根据一次函数的图象求二元一次方程组的近似解.
3、能利用二元一次方程组确定一次函数的表达式
【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.
【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.
【教学重点】
1、二元一次方程和一次函数的关系
2、能根据一次函数的图象求二元一次方程组的近似解
【教学难点】方程和函数之间的对应关系即数形结合的意识和能力
知识点
一、学生起点分析:
学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。
学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.
二、学习任务分析:
本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
1.初步理解二元一次方程和一次函数的关系;
2.掌握二元一次方程组和对应的两条直线之间的关系;
3.发展学生数形结合的`意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
教学重点
二元一次方程和一次函数的关系;
教学难点
数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.
同步练习
A,B两地相距100千米,甲、乙两人骑车同时分别从A,B两地相向而行.假设他们都保持匀速行驶,则他们各自到A地的距离S(千米)都是骑车时间t(时)的一次函数.1小时后乙距离A地80千米;2小时后甲距离A地30千米.问经过多长时间两人将相遇?
三典型例题,探究一次函数解析式的确定
内容:例1某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y(元)是行李质量x(千克)的一次函数.现知李明带了60千克的行李,交了行李费5元,张华带了90千克的行李,交了行李费10元.
(1)写出y与x之间的函数表达式;
(2)旅客最多可免费携带多少千克的行李?
一次函数教案3
教学目的和要求:
1.能通过函数图像获取信息,增强图能力,发展形象思维。
2.能利用函数图像解决简单的实际问题,发展数学应用能力。
教学重点和难点:
重点:
1、能通过函数图象获取信息,发展形象思维能力。
2、能利用函数图象解决实际问题,发展数学应用能力。
3、初步体会议程与函数的关系,建立良好知识的联系。
难点:
1.利用函数图象解决实际问题。
2.用函数的观点研究方程。
快速反应
1.下图是某地某日24小时气温随时间变化的曲线图,根据图象填空:
(1)气温最低,最低气温是℃。
(2)气温最高,最高气温是℃。
(3)气温是0℃。
2.如图是反映某水库的蓄水量V(万米3)随着干旱持续时间t(天)变化的'图象,根据图象填空。
(1)水库原有水量万米3,干旱连续10天,水库蓄水量为。
(2)蓄水量小于400万米3时,将发出严重干旱警报,则连续干旱天将发出严重干旱警报。
(3)持续干旱天水库将干涸。
自主学习
为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中,所使用的“便民卡”与“如意卡”在玉溪市范围内每月(30天)的通话时间x(min)与通话费y(元)的关系如图6—5—1所示:
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式;
(2)请帮用户计算,在一个月内使用哪一种卡便宜?
答案:(1)
(2)当y1=y2时,
当 时,
所以,当通话时间等于96 min时,两种卡的收费一致;当通话时间小于 mim时,“如意卡便宜”;当通话时间大于 min时,“便民卡”便宜。
2、某医药研究所开发了一种
小结:
1.含有两个未知数,并且所含未知数的项的次数都是非曲直的方程叫做二元一次方程.
2.含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.
3.适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
4.二元一次方程组中多个方程的公共解,叫做这个二元一次方程组的解.
课外作业:
《畅游数学》“§7.1谁的包裹多”部分
一次函数教案4
学习目标:
1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;
2、能熟练应用平行线的性质公理及定理。
一、试一试
自学指导:平行线性质公理:两直线平行,同位角相等
1、 思考下列各题,你能利用平行线性质公理解决它们吗?
2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。
(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2
由此得平行线性质定理1:
(2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的定理证明∠1+∠2=180°
由此得平行线性质定理2:
二、练一练
1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b
(1)求证:a∥c
(2)请将(1)题证得的结论用一句话总结出来
2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。
四、记一记
1、两直线平行的性质公理及两个性质定理;
2、平行线的性质补充结论
(1)垂直于两平行线之一的直线必垂直于另一条直线
(2)夹在两平行线之间的平行线段相等;
(3)两条平行线间的.距离处处相等;
(4)经过直线外一点,有且只有一条直线和已知直线平行;
(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补
B组:请在补充结论中选择你感兴趣的进行证明:
一次函数教案5
教学目标
1.知识与技能
领会一次函数的概念,会从实际问题中建立一次函数的模型
2.过程与方法
经历探索一次函数的过程,感受一次函数的解析式的特征
3.情感、态度与价值观
培养数形结合的数学,体会一次函数在实际生活中的应用价值
重、难点与关键
1.重点:一次函数的概念.
2.难点:从实际生活中建立一次函数的模型.
3.关键:把握好实际问题中的两个变量之间的相等关系,建立模型
教学方法
采用“情境──探究”的方法,让学生在实际问题中感悟一次函数的概念
教学过程
一、创设情境,揭示课题
问题思索1:某登山队大本营所在地的气温为5℃,海拔每升高1km,气温下降6℃,登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,试用解析式表示y与x的关系.
思路点拨y随x变化的规律是,从大本营向上当海拔加xkm时,气温从5℃减少6x℃,因此y与x的函数关系为y=5-6x(或y=-6x+5),当登山队员由大本营向上登高0.5km时,他们所在位置的气温就是x=0.5时函数y=-6x+5的值,即y=2(℃).
学生活动合作探究,寻找解题途径,踊跃发言,发表各自看法.
问题思索2:下列问题中变量间的对应关系可用怎样的函数表示?这些函数有什么共同点?
(1)有人发现,在20~30℃时蟋蟀每分鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差;(C=7t-35)
(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值;(G=h-105)
(3)某城市市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费按0.01元/分收取;(y=0.01x+22)
(4)把一个长10cm,宽5cm的长方形的长减少x,宽不变,长方形的.面积y(单位:cm2)随x的值而变化.(y=-5x+50)
教师活动提出问题,引导学生思考.
学生活动独立思考,列出函数关系式,并进行比较,得到这一类型函数的共同特征:这些函数的形式都是自变量x的k(常数)倍与一个常数的和
形成概念一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数
二、随堂练习,巩固深化
课本P11.4第练习1,2,3题.
三、课堂,发展潜能
1.y=kx+b(k,b是常数,k≠0)是一次函数.
2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例
四、布置作业,专题突破
选用课时作业设计
板书设计
14.2.2一次函数(1)
1、一次函数的概念例:
2、一次函数与正比例函数的关系练习:
一次函数教案6
教学目标
1、经历一般规律的探索过程,发展学生的抽象思维能力。 2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点 1、 一次函数、正比例函数的概念及两者之间的关系。 2、 会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、
课件教学过程
一、创设问题情境,引入新课 1、 简单复习函数的概念(设在某一变化过程中有两个变量X和Y,如果 ,那么我们称Y是X的函数,其中X是自变量,Y是因变量) 2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?
二、新课学习 1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、 一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?
让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。
问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。
问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。
并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。
3、 例题学习
例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。
例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的`能力。其中第三问严格地讲应先判断出工资的范围是800
三、随堂练习
1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。
A、y= +x B、y=-0.8x C、y=0.3+2x2 D、y=6-
2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。
四、拓展应用
学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、课堂小结
让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。2、会根据已知信息写出一次函数的关系式。
六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试
一次函数教案7
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的'两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.
2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
一次函数教案8
教学目标
1.知识与能力目标
(1)二元一次方程和一次函数的关系。
(2)二元一次方程组的图象解法。
(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。
2.情感态度价值观目标
通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。
教材分析
前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。
教学重点
1、二元一次方程和一次函数的关系。
2、能根据一次函数的图象求二元一次方程组的近似解。
教学难点
方程和函数之间的对应关系即数形结合的意识和能力。
教学方法
学生操作——————自主探索的方法
学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程组和“形”————函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。
教学过程
一. 故事引入
迪卡儿的故事——————蜘蛛给予的启示
十七世纪法国数学家迪卡儿有一次生病卧床,他看见屋顶上的一只蜘蛛顺着丝左右爬行。迪卡儿看到蜘蛛的“表演”猛的机灵一动。他想,可以把蜘蛛看成一个点,它可以上、下、左、右运动,能不能把蜘蛛的'位置用一组数确定下来呢?
在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。
这节课我们就来研究二元一次方程(数)与一次函数(形)的关系。
二. 尝试探疑
1、Y=x+1
你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?
学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。
2、函数y=x+1上的任意一点的坐标是否满足方程x—y=—1?
以方程x—y=—1的解为坐标的点在不在函数y=x+1 的图象上?方程x—y=—1与函数y=x+1有何关系?
学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x—y=—1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x—y=—1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程 x—y=—1。
然后学生会用同样的方法得出另一个结论:以方程x—y=—1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x—y=—1到底有何关系呢?通过交流自动得出结论:以方程x—y=—1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。
3。在同一坐标系下,化出y=x+1与y=4x—2的图象,他们的交点坐标是什么?
方程组y=x+1的解是什么?二者有何关系?
y=4x—2
学生根据画图象的方法画出两函数图象,画出交点坐标。用消元法解出方程组的解。学生会大吃一惊:两者出奇地相近或者干脆就相同。这是怎么回事呢?然后开始探究二者关系。通过交流、讨论得出结论:函数y=x+1和y=4x—2的交点坐标就是由两个函数表达式组成的方程组
y=x+1 的解。
Y=4x—2
教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。
三. 方程与函数关系的应用
解方程组 x—2y=—2
2x—y=2
学生会很快的用消元法解出来。
老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。
一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:
1。把两个方程都化成函数表达式的形式。
2。画出两个函数的图象。
3。画出交点坐标,交点坐标即为方程组的解。
问题又出来了,有的同学的解是 x=2 有的同学的解是 x=2。1 y=2。1
y=1。9 有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。
老师提问:你能说一下用图象法解方程组的不足吗?
学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!
教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用Z+Z智能教育平台演示一下。
[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。
四. 引申
方程组 x+y=2
x+y=5 解的情况如何?你能从函数的角度解释一下吗?
学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。
[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。
五. 课后小结
本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”————二元一次方程与“形”——————函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。
六. 作业
1。用作图象法解方程组2x+y=4
2x—3y=12
2。如图,直线L、L相交于点 A,试求出A点坐标。
一次函数教案9
教学目标:
认知目标:1.了解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题.
2.学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的.
能力情感目标:经历不等式与函数关系问题的探究过程,学习用联系的观点看待数学问题的辨证.
教学重点:一次函数与一元一次不等式的关系的理解.
教学难点:利用一次函数的图象确定一元一次不等式的解集.
教学过程:
一、探究新知:
通过上节课的学习,我们已经知道“解一元一次方程ax+b=0”与“求自变量为何值时,一次函数y=ax+b的值为0”是同一个问题.现在我们来看看:
(1)以下两个问题是否为同一个问题?
①解不等式:2x-4>0
②当x为何值时,函数y=2x-4的值大于0?
(2)你如何利用函数的图象来说明②?
(3)“解不等式2x-4<0”可以与怎样的一次函数问题是同一的?怎样在图象上加以说明?
归纳:解一元一次不等式ax+b>0(或ax+b<0)可以看作:当一次函数y=ax+b的.值大(小)于0时,求自变量响应的取值范围.
二、应用新知:
1.练习:P42练习1(3)(4)
2.例2 用画函数图象的方法解不等式5x+4>2x+10.
思考:我们应该画出什么函数的图象来解?
思路1:将不等式化为3x-6>0,然后画出函数y=3x-6的图象.
思路2:将不等式5x+4>2x+10的两边分别看作两个一次函数,画出直线y=5x+4和直线y=2x+10,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时
5x+4>2x+10.
三、巩固练习
1.P42练习2(2)
2.P45习题11.3第3、4题
四、
五、布置作业
一次函数教案10
一、创设情境
问题画出函数y=的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
二、探究归纳
问一元一次方程=0的解与函数y=的图象有什么关系?
答一元一次方程=0的解就是函数y=的图象上当y=0时的x的值.
问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?
答不等式>0的解集就是直线y=在x轴上方部分的x的取值范围.
三、实践应用
例1画出函数y=-x-2的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y始终大于零?
解过(-2,0),(0,-2)作直线,如图.
(1)当x=-2时,y=0;
(2)当x<-2时,y>0.
例2利用图象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解设y1=2x-5,y2=-x+1,
在直角坐标系中画出这两条直线,如下图所示.
两条直线的交点坐标是(2,-1),由图可知:
(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;
(2)2x-5<-x+1的解集是y1<y2时x的'取值范围,为x<-2.
四、交流反思
运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.
五、检测反馈
1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?
2.画出函数y=3x-6的图象,根据图象,指出:
(1)x取什么值时,函数值y等于零?
(2)x取什么值时,函数值y大于零?
(3)x取什么值时,函数值y小于零?
3.画出函数y=-0.5x-1的图象,根据图象?
一次函数教案11
一、内容和内容解析
1、内容
正比例函数的概念。
2、内容解析
一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。
对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。
本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。
基于以上分析,确定本节课的教学重点:正比例函数的概念。
二、目标和目标解析
1、目标
(1)经历正比例函数概念的形成过程,理解正比例函数的概念;
(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。
2、目标解析
达成目标(1)的`标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。
达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。
三、教学问题诊断分析
正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。
因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。
一次函数教案12
一、教材分析
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.
二、学情分析
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.
三、目标分析
1.教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法.
过程与方法目标
(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.
2.教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系.
3.教学难点
数形结合和数学转化的思想意识.
四、教法学法
1.教法学法
启发引导与自主探索相结合.
2.课前准备
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.
第一环节: 设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.
第二环节 自主探索方程组的解与图像之间的`关系
内容:1.解方程组
2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像.
3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 .
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.
第四环节 反馈练习
内容:1.已知一次函数 与 的图像的交点为 ,则 .
2.已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( ).
(A)4 (B)5 (C)6 (D)7
3.求两条直线 与 和 轴所围成的三角形面积.
4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况.
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1.二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.
2.方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3.解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.
第六环节 作业布置
习题7.7
附: 板书设计
六、教学反思
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.
一次函数教案13
学习目标:(学习重点)
1.能根据k、b的符号说出一次函数y=kx+b的图象(直线)的大致情况.
2.理解并掌握一次函数y=kx+b的性质.
补充例题:
例1.在同一直角坐标系中画出下列函数的图象.
①y=2x-4y=12x+1
观察直线y=2x-4:
(1)图象与x轴的交点坐标是,与y轴的交点坐标是
(2)图象经过这些点:(-3,);(-1,);(0,);(,-2);(,2)
(3)当x的值越来越大时,y的值越来越
(4)整个函数图象来看,是从左至右(填上升或下降)
(5)当x取何值时,y>0?
②y=-2x+2y=-13x-1
观察直线y=-2x+2:
(1)图象与x轴的交点坐标是,与y轴的交点坐标是
(2)图象经过这些点:(-3,);(-1,);(0,);(,-4);(,-8)
(3)当x的值越来越大时,y的值越来越
(4)整个函数图象来看,是从左至右(填上升或下降)
(5)当x取何值时,y<0?
小结:一次函数y=kx+b有下列性质:1.当k>0时,y随x的增大而______,这时函数的.图象从左到右_____;当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
2.当b>0时,这时函数的图象与y轴的交点在______
当b>0时,这时函数的图象与y轴的交点在_____.
当b=0时,这时函数的图象与y轴的交点在_____.
3.当k>0,b>0时,一次函数图像经过______________象限.
当k>0,b<0时,一次函数图像经过______________象限.
当k<0,b>0时,一次函数图像经过______________象限.
当k<0,b<0时,一次函数图像经过______________象限.
当k>0,正比例函数图像经过______________象限.
当k<0,正比例函数图像经过______________象限.
补充例题:
例1.(1)一次函数y=kx+b的图象位置大致如下图所示,试分别确定k、b的符号,并说出函数的性质.
(2)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,且mn≠0)的图象是()
例2.(1)若k>0,b>0,则直线y=kx+b的图象经过第___________象限.
(2)若k<0,b>0,则直线y=kx+b的图象经过第___________象限.
(3)已知函数y=kx+b的图象不经过第二象限,则k______,b______.
例3.已知一次函数y=(m+5)x+(2-n).①m为何值时,y随x的增大而减少?②m、n为何值时,函数图像与y轴的交点在x轴上方?③m、n为何值时,函数图像过原点?④m、n为何值时,函数图像经过二、三、四象限?
例4.已知一次函数y=(1-2m)x+m-1,若函数y随x的增大而减小,并且函数的图象与y轴的交点在x轴下方,求m的取值范围.
课后续助:
一、填空题:
1.已知一次函数y=kx+5的图象经过点(-1,2),则k=_________.
2.一次函数y=kx+b的图象如图所示,则k=_______,b=________.
3.若k<0,b<0,则一次函数y=kx+b的图象经过第______________象限.
4.已知直线l1:y=ax+b经过第一、二、四象限,那么直线l2:y=bx+a所经过的象限是.
5.(1)一次函数y=x-1的图象与x轴交点坐标为__________,与y轴的交点坐标为__________,y随x的增大而____________.
(2)一次函数y=-5x+4的图象经过___________象限,y随x的增大而________.
(3)一次函数y=kx+1的图象过点A(2,3),则k=_______,该函数图象经过点B(-1,____)和C(0,_____)
(4)已知函数y=mx+(m+2),当m________时,的图象过原点;当m________时,函数y值x随的增大而增大.
(5)写出一个y随x的增大而减少的一次函数_______.
二、选择题:
1.直线y=x+1不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
2.下列函数中,y随x的增大而增大的函数是()
A.y=-3xB.y=-2x+1C.y=x-3D.y=-x-2
3.若函数y=(m-1)x+1是一次函数,且y随自变量x的增大而减小,那么m的取值为()A.m>1B.m≥1C.m<1D.m=1
4.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则它的大致图象是()
ABCD
三、解答题:
1.已知一次函数y=(p+8)x+(6-q).
①p、q为何值时,y随x的增大而增大?
②p、q为何值时,函数与y轴交点在x轴上方?
③p、q为何值时,图象过原点?
2.若一次函数y=(2k-3)x+2-k的图象与y轴的交点在x轴上方,且y随x的增大而增大,求k的取值范围.
3.已知一次函数y=ax+1+a2的图象与y轴的交点的纵坐标为5,且图象经过第一、二、三象限,求此函数的解析式.
4.已知一次函数y=(3m-8)x+1-m图象与y轴交点在x轴下方,且y随x的增大而减小,其中m为整数.
(1)求m的值;
(2)当x取何值时,0<y<4?
一次函数教案14
教学内容:
一次函数
教学目标:
1、知识与技能:
掌握一次函数解析式的特点及意义;理解一次函数图象特征与解析式的联系规律。
2、过程与方法:
利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力。
3、情感态度与价值观:
通过学习,培养学生独立思考、合作探究,科学的思维方法。
4、法制目标:
通过对新知的应用,向学生渗透《中华人民共和国环境保护法》提高学生对法律的认识。
教学重点:
1、一次函数解析式特点.
2、一次函数图象特征与解析式联系规律。
教学难点:
一次函数图象特征与解析式的联系规律。
教学过程
一、提出问题,创设情境
问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y?与x的关系。
分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)
当然,这个函数也可表示为:y=-6x+15(x≥0)
当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃)。
这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题。
二、导入新课
1、合作探究:
我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
(1)、有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的.值约是t的7倍与35的差。
(2)、一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值。
(3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取)。
(4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化。
通过思考分析,可以得到这些问题的函数解析式分别为:
(1)、c=7t-35。
(2)、G=h-105。
(3)、y=0.01x+22。
(4)、y=-5x+50。
2、归纳总结:
它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和。
一般地,形如y=kx+b(k、b是常数,k≠0?)的函数,?叫做一次函数(?linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数。
3、新知应用:
某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元。在生产过程中,平均每生产一件产品就有0.5立方米污水排出,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施。
方案一:工厂污水净化处理1立方米污水所用原材料费为2元,并且每月排污设备损耗费为30000元。
方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需要付14元的排污费。
问:
(1)设工厂每月X件件产品,每月利润为y元,分别求出依方案一和方案二处理污水时y与x的函数关系式。(利润=总收入—总支出)
(2)设工厂每月生产量为6000件产品时,你作为厂长在不污染环境,又节约资源的前提下应选用哪一种处理污水的方案?请通过计算加以说明。
通过此题,可以向学生渗透《中华人民共和国环境保护法》中的第二十四条产生环境污染和其他公害的单位,必须把环境保护工作纳入计划,建立环境保护责任制度;采取有效措施,防治在生产建设或者其他活动中产生的废气、废水、废渣、粉尘、恶臭气体、放射性物质以及噪声振动、电磁波辐射等对环境的污染和危害。
第二十五条新建工业企业和现有工业企业的技术改造,应当采用资源利用率高、污染物排放量少的设备和工艺,采用经济合理的废弃物综合利用技术和污染物处理技术。第二十八条排放污染物超过国家或者地方规定的污染物排放标准的企业事业单位,依照国家规定缴纳超标准排污费,并负责治理。水污染防治法另有规定的,依照水污染防治法的规定执行。等内容,要求学生要保护环境。
三、课堂练习:
1、下列函数中哪些是一次函数,哪些又是正比例函数
8(1)y=-8x(2)y=(3)y=5x2+6(3)y=-0.5x-1
2、汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y是x的一次函数吗?
四、课时小结
本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方
法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性
五、作业:
P120第9题。
一次函数教案15
一、教材分析
1、教材的地位和作用
函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点
重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标
知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明
对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程
(一)感知身边数学
学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
(二)享受探究乐趣
1、探究一次函数与二元一次方程的关系
[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。
2、探究一次函数与二元一次方程组的关系
[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的`过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。
(三)乘坐智慧快车
例题:我市一家电信公司给顾客提供两种上网收费方式:方式A以每分0。1元的价格按上网时间计费;方式B除收月基费20元外再以每分0。05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?
[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。
(四)体验成功喜悦
1、抢答题
2、旅游问题
[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。
(五)分享你我收获
在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?
[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。
(六)开拓崭新天地
1、数学日记
2、布置作业
[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。
四、教学设计反思
1、贯穿一个原则——以学生为主体的原则
2、突出一个思想——数形结合的思想
3、体现一个价值——数学建模的价值
4、渗透一个意识——应用数学的意识
【一次函数教案】相关文章:
《起始课教案》教案08-26
教案06-18
大班教案科学教案11-10
《穷人》教案 穷人教案课件11-18
表里的生物教案 《表里生物》教案09-23
幼儿园教案美术教案12-01
小班教案鸡蛋变娃娃教案11-15
小班健康教案小熊过桥教案11-26
《荷花》教案08-28