指数函数教案

时间:2024-06-13 16:25:56 教案 我要投稿
  • 相关推荐

指数函数教案

  在教学工作者实际的教学活动中,时常需要编写教案,借助教案可以有效提升自己的教学能力。教案要怎么写呢?以下是小编为大家收集的指数函数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

指数函数教案

指数函数教案1

  教学目标:

  进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题。

  教学重点:

  用指数函数模型解决实际问题。

  教学难点:

  指数函数模型的建构。

  教学过程:

 一、情境创设

  1、某工厂今年的年产值为a万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为XX万元,后年的产值为XX万元。若设x年后实现产值翻两番,则得方程 。

  二、数学建构

  指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等

  递增的常见模型为=(1+p%)x(p>0);递减的常见模型则为=(1-p%)x(p>0)。

  三、数学应用

  例1 某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式。

  例2 某医药研究所开发一种新药,据检测:如果成人按规定的剂量服用,服药后每毫升血液中的含药量为(微克),与服药后的时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数=at的图象。试根据图象,求出函数= f(t)的解析式。

  例3 某位公民按定期三年,年利率为2.70%的方式把5000元存入银行。问三年后这位公民所得利息是多少元?

  例4 某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为元。

  (1)写出本利和随存期x变化的'函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和。

  (复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

  小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算。这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式。比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a(1+p%),还款后余额为a(1+p%)-b,第二次还款时本息为(a(1+p%)-b)(1+p%),再还款后余额为(a(1+p%)-b)(1+p%)-b=a(1+p%)2-b(1+p%)-b,……,第n次还款后余额为a(1+p%)n-b(1+p%)n1-b(1+p%)n2-……-b。这就是复利计算方式。

  例5 20xx~20xx年,我国国内生产总值年平均增长7.8%左右。按照这个增长速度,画出从20xx年开始我国年国内生产总值随时间变化的图象,并通过图象观察到20xx年我国年国内生产总值约为20xx年的多少倍(结果取整数)。

  练习:

  1、(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;

  (2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的年内,每年生产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式。

  2、某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个 。

  3、我国工农业总产值计划从20xx年到20xx年翻两番,设平均每年增长率为x,则得方程。

  四、小结:

  1、指数函数模型的建立;

  2、单利与复利;

  3、用图象近似求解。

  五、作业:

  课本P71—10,16题。

指数函数教案2

  一、教学目标:

  知识与技能:理解指数函数的概念,能够判断指数函数。

  过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。

  情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  二、教学重点、难点:

  教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。

  三、学情分析:

  学生已经学习了函数的知识,,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。

  四、教学内容分析

  本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的'内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。

  五、教学过程:

  (一)创设情景

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

  问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?

  (二)导入新课

  引导学生观察,两个函数中,有什么共同特征?

  (三)新课讲授指数函数的定义

  (四)巩固与练习例题:

  (五)课堂小结

  (六)布置作业

指数函数教案3

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程

  一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的'图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x y=2x y=x

  (0,1) y=log2x

  (1,0) X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、 例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴ log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2 有意义,须使4-x2≥0

  即x2≤4, |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4, ∴0≤4-x2≤4

  ∴0≤√4-x2 ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、 课堂练习

  求下列函数的定义域

  1. y=8[1/(2x-1)]

  2. y=loga(1-x)2 (a>0,且a≠1)

  七、 评讲练习

  八、 布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

指数函数教案4

  一、内容及其解析

  (一)内容:指数函数的性质的应用。

  (二)解析:通过进一步巩固指数函数的图象和性质,掌握由指数函数和其他简单函数组成的复合函数的性质:定义域、值域、单调性,最值等性质。

  二、目标及其解析

  (一)教学目标

  指数函数的图象及其性质的应用;

  (二)解析

  通过进一步掌握指数函数的图象和性质,能够构建指数函数的模型来解决实际问题;体会指数函数在实际生活中的重要作用,感受数学建模在解题中的作用,提高学生分析问题与解决问题的能力。

  三、问题诊断分析

  解决实际问题本来就是学生的一个难点,并且学生对函数模型也不熟悉,所以在构建函数模型解决实际问题是学生的一个难点,解决的方法就是在实例中让学生加强理解,通过实例让学生感受到如何选择适当的函数模型。

  四、教学过程设计

  探究点一:平移指数函数的图像

  例1:画出函数 的图像,并根据图像指出它的单调区间.

  解析:由函数的解析式可得:

  其图像分成两部分,一部分是将 (x-1)的图像作出,而它的图像可以看作 的图像沿x轴的负方向平移一个单位而得到的,另一部分是将 的图像作出,而它的图像可以看作将 的图像沿x轴的负方向平移一个单位而得到的`.

  解:图像由老师们自己画出

  变式训练一:已知函数

  (1)作出其图像;

  (2)由图像指出其单调区间;

  解:(1) 的图像如下图:

  (2)函数的增区间是(-,-2],减区间是[-2,+).

  探究点二:复合函数的性质

  例2:已知函数

  (1)求f(x)的定义域;

  (2)讨论f(x)的奇偶性;

  解析:求定义域注意分母的范围,判断奇偶性需要注意定义域是否关于原点对称。

  解:(1)要使函数有意义,须 -1 ,即x 1,所以,定义域为(- ,0) (0,+ ).

  (2)变式训练二:已知函数 ,试判断函数的奇偶性;

  简析:∵定义域为 ,且 是奇函数;

  探究点三 应用问题

  例3某种放射性物质不断变化为其他物质,每经过一年,这种物质剩留的质量是原来的

  84%.写出这种物质的剩留量关于时间的函数关系式.

  【解】

  设该物质的质量是1,经过 年后剩留量是 .

  经过1年,剩留量

  变式:储蓄按复利计算利息,若本金为 元,每期利率为 ,设存期是 ,本利和(本金加上利息)为 元.

  (1)写出本利和 随存期 变化的函数关系式;

  (2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.

  分析:复利要把本利和作为本金来计算下一年的利息.

  【解】

  (1)已知本金为 元,利率为 则:

  1期后的本利和为

  2期后的本利和为

  期后的本利和为

  (2)将 代入上式得

  六.小结

  通过本节课的学习,本节课应用了指数函数的性质来解决了什么问题?如何构建指数函数模型,解决生活中的实际问题?

指数函数教案5

  学习目标

  1. 熟练掌握指数函数概念、图象、性质;

  2. 掌握指数型函数的定义域、值域,会判断其单调性;

  3. 培养数学应用意识.

  学习过程

  一、课前准备

  (预习教材P57~ P60,找出疑惑之处)

  复习1:指数函数的形式是 ,

  其图象与性质如下

  aa1图性质

  (1)定义域:

  (2)值域:

  (3)过定点:

  (4) 单调性:

  复习2:在同一坐标系中,作出函数图象的草图:

  思考:指数函数的图象具有怎样的分布规律?

  二、新课导学

  ※ 典型例题

  例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.20xx年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.

  (1)按照上述材料中的1%的增长率,从20xx年起,x年后我国的人口将达到20xx年的多少倍?

  (2)从20xx年起到20xx年我国人口将达到多少?

  小结:学会读题摘要;掌握从特殊到一般的归纳法.

  试试:20xx年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x年后的总产值为原来的多少倍?多少年后产值能达到120亿?

  小结:指数函数增长模型.

  设原有量N,每次的增长率为p,则经过x次增长后的'总量y= . 我们把形如 的函数称为指数型函数.

  例2 求下列函数的定义域、值域:

  (1) ; (2) ; (3) .

  变式:单调性如何?

  小结:单调法、基本函数法、图象法、观察法.

  试试:求函数 的定义域和值域,并讨论其单调性.

  ※ 动手试试

  练1. 求指数函数 的定义域和值域,并讨论其单调性.

  练2. 已知下列不等式,比较 的大小.

  (1) ; (2) ;

  (3) ;(4) .

  练3. 一片树林中现有木材30000 m3,如果每年增长5%,经过x年树林中有木材y m3,写出x,y间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m3.

  三、总结提升

  ※ 学习小结

  1. 指数函数应用模型 ;

  2. 定义域与值域;

  2. 单调性应用(比大小).

  ※ 知识拓展

  形如 的函数值域的研究,先求得 的值域,再根据 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视 . 而形如 的函数值域的研究,易知 ,再结合函数 进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.

  学习评价

  ※ 自我评价

  你完成本节导学案的情况为( ).

  A. 很好 B. 较好 C. 一般 D. 较差

  ※ 当堂检测

  (时量:5分钟 满分:10分)计分:

  1. 如果函数y=ax (a1)的图象与函数y=bx (b1)的图象关于y轴对称,则有( ).

  A. a B. ab

  C. ab=1 D. a与b无确定关系

  2. 函数f(x)=3-x-1的定义域、值域分别是( ).

  A. R, R? B. R,

  C. R, D.以上都不对

  3. 设a、b均为大于零且不等于1的常数,则下列说法错误的是( ).

  A. y=ax的图象与y=a-x的图象关于y轴对称?

  B. 函数f(x)=a1-x (a1)在R上递减

  C. 若a a ,则a1?

  D. 若 1,则

  4. 比较下列各组数的大小:

  ; .

  5. 在同一坐标系下,函数y=ax, y=bx, y=cx, y=dx的图象如右图,则a、b、c、d、1之间从小到大的顺序是 .

  课后作业

  1. 已知函数f(x)=a- (aR),求证:对任何 , f(x)为增函数.

  2. 求函数 的定义域和值域,并讨论函数的单调性、奇偶性.

指数函数教案6

  一、教学目标:

  1、知识与技能

  (1)理解指数函数的概念和意义;

  (2)与的图象和性质;

  (3)理解和掌握指数函数的图象和性质;

  (4)指数函数底数a对图象的影响;

  (5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小

  (6)体会具体到一般数学讨论方式及数形结合的思想。

  2、情感、态度、价值观

  (1)让学生了解数学来自生活,数学又服务于生活的哲理。

  (2)培养学生观察问题,分析问题的能力。

  二、重、难点:

  重点:

  (1)指数函数的概念和性质及其应用。

  (2)指数函数底数a对图象的影响。

  (3)利用指数函数单调性熟练比较几个指数幂的大小。

  难点:

  (1)利用函数单调性比较指数幂的.大小。

  (2)指数函数性质的归纳,概括及其应用。

  三、教法与教具:

  ①学法:观察法、讲授法及讨论法。

  ②教具:多媒体。

  四、教学过程:

  第一课时

  讲授新课

  指数函数的定义

  一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。

  提问:在下列的关系式中,哪些不是指数函数,为什么?

指数函数教案7

  教材分析:

  “指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的.作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.

  学情分析:

  通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.

  教学目标:

  知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.

  过程与方法:

  (1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;

  (2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.

  情感、态度与价值观:

  (1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;

  (2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣.

  教学重点:指数函数的图象和性质

  教学难点:指数函数概念的引入及指数函数性质的应用

  教法研究:

  本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识.

  利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识

  本节课使用的教学方法有:直观教学法、启发引导法、发现法

  教学过程:

  一、问题情境 :

  问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?

  问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗?

  分析可知,函数的关系式分别是 与

  问题3:在问题1和2中,两个函数的`自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?

  这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.

  二、数学建构 :

  1]定义:

  一般地,函数 叫做指数函数,其中 .

  问题4:为什么规定 ?

  问题5:你能举出指数函数的例子吗?

  阅读材料(“放射性碳法”测定古物的年代):

  在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变.经过5740年( 的半衰期),它的残余量为原来的一半.经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = .

  这种方法经常用来推算古物的年代.

  练习1:判断下列函数是否为指数函数.

  (1) (2)

  (3) (4)

  说明:指数函数的解析式y= 中, 的系数是1.

  有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k Z);

  有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1

  2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成

  问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?

  函数的定义域,值域,单调性,奇偶性等;

  利用函数图象研究函数的性质

  问题7:作函数图象的一般步骤是什么?

  列表,描点,作图

  探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.

  引导学生分析图象并总结此时指数函数的性质(底数大于1):

  (1)定义域?R

  (2)值域?函数的值域为

  (3)过哪个定点?恒过 点,即

  (4)单调性? 时, 为 上的增函数

  (5)何时函数值大于1?小于1? 当 时, ;当 时,

  问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?

  (引导学生自我分析和反思,培养学生的反思能力和解决问题的能力).

  根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.

  问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗?

  (学生完成表格的设计,教师适当引导)

指数函数教案8

  我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。

  一、教材分析

  1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的`性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

  2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

  二、教学目标分析

  基于对教材的理解和分析,我制定了以下的教学目标

  1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用

  2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力

  3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

  三、教法学法分析

  1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

  2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

  3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

指数函数教案9

  一、教材分析

  (一)教材的地位和作用

  本课时主要学习指数函数的图像和性质概念,通过指数函数图像的研究归纳其性质。“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。本节课的重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。

  (二)教学目标

  知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  能力维度:学生利用描点法画出函数的图像,并描述出函数的`图像特征,能够为研究指数函数的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

  1、知识与技能目标:

  (1)掌握指数函数的概念(能理解对a的限定以及自变量的取值可推广至实数范围);

  (2)会做指数函数的图像;

  (3)能初步把握指数函数的图像,性质及其简单应用。

  2、过程与方法目标:

  通过由指数函数的图像归纳其性质的学习过程,由图像研究指数函数的性质。利用性质解决实际问题,培养学生探究、归纳分析问题的能力。

  3、情感态度与价值观目标:

  (1)在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题

  (2)通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、 综合的能力通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。

  (三)教学重点和难点

  教学重点:指数函数的图象和性质。

  教学难点:指数函数的图象性质与底数a的关系。

  教学关键:从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  课时安排:1课时

  二、学情分析

  学生已有一定的函数基本知识、可建立简单的函数关系,为以函数关系的建立作为本节知识的引入做了知识准备。此外,初中所学有理数范围内的指数相关知识,将已有知识推广至实数范围。在此基础上进入指数函数的学习,并将所学对函数的认识进一步推向系统化。

  三、教法分析

  (一)教学方式

  直接讲授与启发探究相结合

  (二)教学手段

  借助多媒体,展示学生的做图结果;演示指数函数的图像

  四、教学基本思路:

  (一)创设情境,揭示课题。

  1创设情境(如何建立一个关于指数函数的数学模型——后续解决)

  2引入指数函数概念

  (二)探究新知。

  1研究指数函数的图象

  2归纳总结指数函数的性质

  (三)巩固深化,发展思维

  (四)归纳整理,提高认识

  (五)巩固练习与作业

  (六)教学设计说明

  1、抛出生活中的实例,需要建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。

  2、用简单易懂的实例引入指数函数概念,体会由特殊到一般的思想。

  3、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。

  4、进行一些巩固练习从而能对函数进行较为基本的应用

指数函数教案10

  一、教学目标:

  1、知识与技能:

  (1) 结合实例,了解正整数指数函数的概念.

  (2)能够求出正整数指数函数的解析式,进一步研究其性质.

  2、 过程与方法:

  (1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

  (2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

  3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

  二、教学重点: 正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

  三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

  四、教学过程

  (一)新课导入

  [互动过程1]:

  (1)请你用列表表示1个细胞分裂次数分别

  为1,2,3,4,5,6,7,8时,得到的细胞个数;

  (2)请你用图像表示1个细胞分裂的次数n( )与得到的细

  胞个数y之间的关系;

  (3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用

  科学计算器计算细胞分裂15次、20次得到的细胞个数.

  解:

  (1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,

  4,5,6,7,8次后,得到的细胞个数

  分裂次数 1 2 3 4 5 6 7 8

  细胞个数 2 4 8 16 32 64 128 256

  (2)1个细胞分裂的次数 与得到的细胞个数 之间的关系可以用图像表示,它的图像是由一些孤立的点组成

  (3)细胞个数 与分裂次数 之间的关系式为 ,用科学计算器算得 ,

  所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

  探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数 随着分裂次数 发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数. 细胞个数 与分裂次数 之间的关系式为 .细胞个数 随着分裂次数 的增多而逐渐增多.

  [互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1.

  (1)计算经过20,40,60,80,100年,臭氧含量Q;

  (2)用图像表示每隔20年臭氧含量Q的变化;

  (3)试分析随着时间的增加,臭氧含量Q是增加还是减少.

  解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;

  (2)用图像表示每隔20年臭氧含量Q的变化如图所

  示,它的图像是由一些孤立的点组成.

  (3)通过计算和观察图形可以知道, 随着时间的增加,

  臭氧含量Q在逐渐减少.

  探究:从本题中得到的函数来看,自变量和函数值分别

  又是什么?此函数是什么类型的函数?,臭氧含量Q随着

  时间的增加发生怎样变化?你从哪里看出?

  小结:从本题中可以看出我们得到的臭氧含量Q都是底数为0.9975的指数,而且指数是变量,取值为正整数. 臭氧含量Q近似满足关系式Q=0.9975 t, 随着时间的增加,臭氧含量Q在逐渐减少.

  [互动过程3]:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的'取值范围又是什么?这样的函数图像又是什么样的?为什么?

  正整数指数函数的定义:一般地,函数 叫作正整数指数函数,其中 是自变量,定义域是正整数集 .

  说明: 1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

  (二)、例题:某地现有森林面积为1000 ,每年增长5%,经过 年,森林面积为 .写出 , 间的函数关系式,并求出经过5年,森林的面积.

  分析:要得到 , 间的函数关系式,可以先一年一年的增长变化,找出规律,再写出 , 间的函数关系式.

  解: 根据题意,经过一年, 森林面积为1000(1+5%) ;经过两年, 森林面积为1000(1+5%)2 ;经过三年, 森林面积为1000(1+5%)3 ;所以 与 之间的函数关系式为 ,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

  练习:课本练习1,2

  补充例题:高一某学生家长去年年底到银行存入20xx元,银行月利率为2.38%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?

  解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3,, n个月后他应取回的钱数为y=20xx(1+2.38%)n; 所以n与y之间的关系为y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12.

  补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元,那么第n年后该厂的年产值为多少?

  (三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

  (四)、作业:课本习题3-1 1,2,3

指数函数教案11

  教材分析

  (一) 本课时在教材中的地位及作用:

  指数函数的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

  (二) 教学目标:

  1.知识目标:掌握指数函数的概念,图像和性质

  2.能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生

  分析问题,解决问题的.能力。

  3.德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的

  特殊性与一般性之间的关系,培养学生善于探索的思维品质。

  (三)教学重点,难点和关键:

  1、重点:指数函数的定义、性质和图象

  2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

  3、关键:能正确描绘指数函数的图象

  (三)

  (四)

  教学基本思路:

  在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

  一.学法指导:

  1,学情分析:

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

  2, 学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

指数函数教案12

  一、教学类型

  新知课

  二、教学目标

  1、理解指数函数的定义,初步掌握指数函数的定义域,值域及其奇偶性。

  2、通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

  三、教学重点和难点

  重点:理解指数函数的定义,把握图象和性质。

  难点:认识底数对函数值影响的认识。

  四、教学用具

  投影仪

  五、教学方法

  启发讨论研究式

  六、教学过程

  1)引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数。指数函数(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系。

  1、定义:形如的函数称为指数函数。(板书)

  教师在给出定义之后再对定义作几点说明。

  2、几点说明(板书)

  (1)关于对的规定:

  (2)关于指数函数的定义域(板书)

  (3)关于是否是指数函数的判断(板书)刚才分别认识了指数函数中底数,指数的.要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数。学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象。最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

  3、归纳性质

  七、思考问题,设置悬念

  八、小结

指数函数教案13

  一、教学目标:

  知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

  过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

  情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  二、教学重点、难点:

  教学重点:指数函数的概念、图象和性质。

  教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

  三、教学过程:

  (一)创设情景

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

  学生回答:y与x之间的关系式,可以表示为y=2x。

  问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的`84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。

  学生回答:y与x之间的关系式,可以表示为y=0。84x。

  引导学生观察,两个函数中,底数是常数,指数是自变量。

  1.指数函数的定义

  一般地,函数y?a?a?0且a?1?叫做指数函数,其中x是自变量,函数的定义域是R。x

  问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?

  (1)若a<0会有什么问题?(如a??2,x?

  x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x?0,a无意义)

  (3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)

  师:为了避免上述各种情况的发生,所以规定a?0且a?1。

  练1:指出下列函数那些是指数函数:

  ?1?(1)y?4x(2)y?x4(3)y??4x(4)y???4?(5(转载于:,n的大小:

  设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

  (五)课堂小结

  (六)布置作业

指数函数教案14

  教学目标

  1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

  (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

  (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

  2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

  3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

  教学建议

  教材分析

  (1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

  (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的`图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

  (3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议

  (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

  (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣.

指数函数教案15

  教学目标

  1、使学生掌握指数函数的概念,图象和性质、

  (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域、

  (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质、

  (3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象、

  2、通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法、

  3、通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣、使学生善于从现实生活中数学的发现问题,解决问题、

  教材分析

  (1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究、

  (2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质、难点是对底数在和时,函数值变化情况的区分、

  (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的.研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究、

  教法建议

  (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是指数函数、

  (2)对底数的限制条件的理解与认识也是认识指数函数的重要内容、如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来、

  关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象、

  教学重点和难点

  重点是理解指数函数的定义,把握图象和性质、

  难点是认识底数对函数值影响的认识、

  教学用具

  投影仪

  教学方法

  启发讨论研究式

  教学过程

  一、引入新课

  我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————指数函数、

  1、6、指数函数(板书)

  这类函数之所以重点介绍的原因就是它是实际生活中的一种需要、比如我们看下面的问题:

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?

  由学生回答:与之间的关系式,可以表示为、

  问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系、

  由学生回答:、

  在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数、

  一、指数函数的概念(板书)

  1、定义:形如的函数称为指数函数、(板书)

  教师在给出定义之后再对定义作几点说明、

  2、几点说明(板书)

  (1)关于对的规定:

  教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如,此时,等在实数范围内相应的函数值不存在、

  若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要、为了避免上述各种情况的发生,所以规定且、

  (2)关于指数函数的定义域(板书)

  教师引导学生回顾指数范围,发现指数可以取有理数、此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为、扩充的另一个原因是因为使她它更具代表更有应用价值、

  (3)关于是否是指数函数的判断(板书)

  刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数、

  (1),(2),(3)

  (4),(5)、

  学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3)可以写成,也是指数图象、

  最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质、

  3、归纳性质

  作图的用什么方法、用列表描点发现,教师准备明确性质,再由学生回答、

  函数

  1、定义域:

  2、值域:

  3、奇偶性:既不是奇函数也不是偶函数

  4、截距:在轴上没有,在轴上为1、

  对于性质1和2可以两条合在一起说,并追问起什么作用、(确定图象存在的大致位置)对第3条还应会证明、对于单调性,我建议找一些特殊点、,先看一看,再下定论、对最后一条也是指导函数图象画图的依据、(图象位于轴上方,且与轴不相交、)

  在此基础上,教师可指导学生列表,描点了、取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少、

  此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据、连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线、

  二、图象与性质(板书)

  1、图象的画法:性质指导下的列表描点法、

  2、草图:

  当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且,取值可分为两段)让学生明白需再画第二个,不妨取为例、

  此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单、即=与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件、让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象、

  最后问学生是否需要再画、(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)

  由于图象是形的特征,所以先从几何角度看它们有什么特征、教师可列一个表,如下:

  以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满、

  填好后,让学生仿照此例再列一个的表,将相应的内容填好、为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质、

  3、性质、

  (1)无论为何值,指数函数都有定义域为,值域为,都过点、

  (2)时,在定义域内为增函数,时,为减函数、

  (3)时,、

  总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质、

  三、简单应用(板书)

  1、利用指数函数单调性比大小、(板书)

  一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题、首先我们来看下面的问题、

  例1、比较下列各组数的大小

  (1)与;(2)与;

  (3)与1 、(板书)

  首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同、再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小、然后以第(1)题为例,给出解答过程、

  解:在上是增函数,且

  <、(板书)

  教师最后再强调过程必须写清三句话:

  (1)构造函数并指明函数的单调区间及相应的单调性、

  (2)自变量的大小比较、

  (3)函数值的大小比较、

  后两个题的过程略、要求学生仿照第(1)题叙述过程、

  例2、比较下列各组数的大小

  (1)与;(2)与;

  (3)与、(板书)

  先让学生观察例2中各组数与例1中的区别,再思考解决的方法、引导学生发现对(1)来说可以写成,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决、(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)

  最后由学生说出>1,<1,>、

  解决后由教师小结比较大小的方法

  (1)构造函数的方法:数的特征是同底不同指(包括可转化为同底的)

  (2)搭桥比较法:用特殊的数1或0、

  三、巩固练习

  练习:比较下列各组数的大小(板书)

  (1)与(2)与;

  (3)与;(4)与、解答过程略

  四、小结

  1、指数函数的概念

  2、指数函数的图象和性质

  3、简单应用

【指数函数教案】相关文章:

指数函数说课稿06-28

《起始课教案》教案08-26

大班教案科学教案11-10

《穷人》教案 穷人教案课件11-18

幼儿园教案美术教案12-01

小班教案鸡蛋变娃娃教案11-15

小班健康教案小熊过桥教案11-26

表里的生物教案 《表里生物》教案09-23

大班教案[精选]12-06