《数学广角──》教学设计

时间:2025-09-19 07:42:31 教学设计 我要投稿

《数学广角──》教学设计(实用)

  作为一位优秀的人民教师,往往需要进行教学设计编写工作,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的《数学广角──》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

《数学广角──》教学设计(实用)

《数学广角──》教学设计1

  教学内容:人教版三年级下册第九单元P108例1

  教学目标:

  1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。

  2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。

  教学重难点:理解集合图的各部分意义及解决简单问题的计算方法。

  教具、学具:课件、带有学生姓名的小贴片。

  教学过程:

  一、问题情境,导入新课

  师:出示下面统计表

  师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?

  生:8+9=17人,

  师:同意吗?一定吗?

  生:齐说同意、一定。

  师:出示图1集合圈,

  语文组 数学组

  师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?

  师:相机出示带有17个同学姓名的图片。

  【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】

  二、探究新知

  1、问题的引出

  师:出示例题中的统计表

  师:仔细观察这张表格提供的信息与前面的表格提供的信息有什么不同?

  生:有几个同学重复了。

  生:有三个同学既参加参加了语文小组又参加了数学小组。

  师:刚才这位同学说“重复”是什么意思?

  生:重复,就是一个人参加了两项活动。

  师:在实际生活中你们遇到过这种情况了吗?

  生:遇到过,比如我既参加了象棋小组又参加了绘画小组。

  生:我参加了三个兴趣组。

  师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?

  生:图2。因为图2有重复的部分。

  师:只能用图2来表示来表示重复的关系吗?

  生:两个长方形(正方形、三角形)交叉在一起也行。

  师:谁来说说重复的部分是什么意思?

  生:重复部分就是两项活动都参加人。

  师:同意吗?

  生:同意。

  师:参加语文组的有几个人?参加数学组的呢?

  生:语文组有8人,数学组有9人。

  师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。

  【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】

  2、交流汇报

  师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。

  师:怎样计算参加两个小组的人数一共有多少人?

  生:一共是14人,我是数出来的。

  生:8+9=17 17-3=14

  师:第一个表格为什么直接用8+9=17就算出参加两个小组的人数,而这一次8+9后还要再减去3呢?

  生:因为如果还是17的话就把杨明、李芳、刘云多算了一次,因此要减去3。

  生:第一个表格没有重复参加的,第二个表格有重复参加的。

  师:不管用数的方法还是用算式计算都要注意什么?

  生:不能把重复的三个人多算了一次。

  【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】

  3、明确“韦恩图”各部分表示的意思,感受其的价值。

  师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?

  生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。

  师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的字样。

  师:简单介绍“韦恩图”来历。

  师:在实际生活中,往往提供的信息不会像表格中那样的。

  师:相机把例题呈现在统计表中的学生姓名打乱。

  师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?

  生:用“韦恩图”来表示。

  师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。

  师:你认为在什么样情况下使用“韦恩图”来解决问题呢?

  生:有重复关系的,

  师:相机板示课题:数学广角——重叠问题。

  【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的'信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】

  三、巩固应用,落实“双基”

  1、教材p110练习二十四第1题

  2、教材P110练习二十四第2题

  四、拓展延伸,发展能力

  师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?

  师:请同学读题,并与原例题进行比较

  师:请同学拿出第二组供贴图用的学具片

  师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?

  交流回报:

  生:8+9=17人,我是把两个圆圈分开摆的

  生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的部分是2人。

  生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。

  师:结合学生的口述,相机展示学生的作品

  师:重点引导学生交流结果是9人的集合图各部分之间的关系。

  师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?

  生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。

  生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。

  师:也就是说这道题没有确定语文组和数学组之间的具体关系。

  师:那你认为做这样的题目首先要注意什么?

  生:搞清重复的人数。

  生:在画图时要确定相交的部分应该是几人。

  生:考虑问题要全面些。

  师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?

  生:重复的部分越多,参加两项活动的人数就越少。

  生:要想参加两项活动的人数多最好互不交叉。

  生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。

  师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。

  五、全课总结

  师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策

  略?这一策略以前你用过吗?

《数学广角──》教学设计2

  教材简析:

  本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

  学情分析:

  1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

  2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。

  3、学生认知障碍点:“优化”的理解。

  教学目标:

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的`简单问题,初步培养学生的应用意识和解决问题的实际能力。

  4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

  教学重点:

  体会优化思想。教学难点:探究解决问题的最佳方案。

  教学过程:

  一、 教学环节:

  1、 谈话引入;2、情境引入,学习新知;3、实践应用;4、全课总结,寻找规律。

  二、 教师活动:

  1、 制作课件(妈妈为家人烙饼);2、三张圆纸片。

  三、 预设学生行为:

  1、 可能见过烙饼,可能没见过;2、学生演示烙饼(怎样快));3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。

  四、 设计意图:

  从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。

  板书设计:

  烙饼问题

  快速烙饼法

  饼速X3=所需最少的时间

  学生学习活动评价设计:

  充分利用学生在实际生活中亲身经历的事情(烙饼)调动学生学习积极性、激发学生学习数学的兴趣,教师在此只是彰显学生动手操作、实验、推理、交流寻找答案、得出最佳答案,达到本课之目的。

《数学广角──》教学设计3

  教材说明

  “数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生的抽象、概括能力。《标准》中指出,第二学段要让学生“进一步体会数在日常生活中的作用,会运用数表示事物,并能进行交流”。在日常生活中,数有着非常广泛的应用,在第一学段学生已经有了初步体会,特别是在一年级上册认数的时候,教材在“生活中的数”版块中就已经出现了像邮政编码、门牌号、车牌号这样的数在生活中的应用实例。数不仅可以用来表示数量和顺序,还可以用来编码,本单元就是在学生的生活经验和已有知识的基础上,进一步体会数字编码在日常生活中的应用,并通过实践活动进行简单的数字编码,培养学生的数学思维能力。

  数字编码和我们的生活紧密相关,比如邮政编码、身份证号码、电话号码等,在这些号码中都蕴含着数字编码的思想,同时也为我们的生活提供了很多便利。运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。

  在这一单元我们主要是通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。教材首先从老师点名的情境引入,说明我们可以用数字编码来区分班上的每个学生。接下来,例1和例2通过邮政编码和身份证号码等生活实例让学生体会数字编码在生活中的应用,初步了解邮政编码的结构与含义,了解身份证号码中蕴含的一些简单信息和编码的含义,探索数字编码的简单方法。例3和例4是在此基础上,让学生通过两个实践活动来运用数字或字母进行编码,加深对数字编码思想的理解。例3是让学生给学校的每一个学生编一个学号,例4是让学生给班里或学校图书角的书籍编一个书号,和例3相比,更复杂一些,是用符号和数字的组合进行编码,这种编码在生活中也是处处可见,比如汽车的车牌号、火车的车次、飞机的航班号以及商品的型号等,从而体会到数学应用的广泛性,提高学生学习数学的兴趣和积极性。

  教学建议

  1. 恰当把握教学要求。

  数字编码是一种抽象的数学思想方法,在这里只是让学生通过日常生活中的一些实例,初步体会数字编码在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,学会运用数进行编码,初步培养学生的抽象、概括能力。学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,并不要求学生掌握编码中每个数字的信息和含义。另外学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。

  2.本单元内容可用3课时进行教学。

  1.情境图。

  教材首先由学生非常熟悉的老师点名的生活情境来引入,然后小精灵提出问题:“如果不叫姓名,还能怎样来区分班上的学生呢?”从而引起学生的讨论:还可以用编号的形式给每个学生编个号码。接下来,教材说明数不仅可以用来表示数量和顺序,还可以用来编码。

  教学时,教师可以创设这样的情境,让学生探讨用编号的方法来区分班上的学生。这样引出数不仅可以用来表示数量和顺序,还可以用来编码。这部分内容也可以结合后面的例1来教学,教师课前可以让学生先收集一些由数字组成的号码,如车牌号、邮政编码、电话号码等,然后在班上交流和汇报,教师在学生汇报的.基础上,通过多媒体课件再来展示生活中经常见到的这些数字编码现象,比如邮政编码、身份证号码、电话号码等,通过这些生活中广泛存在、学生熟悉的素材来引出数字编码,使数字编码这个看似抽象的问题变得直观和有趣,这样也更能激发学生的学习兴趣,并且当老师提出学生能发现这些数字编码中的“秘密”时,也就更加激发了学生的探索欲望。

  2.例1。

  例1是通过了解邮政编码的结构和含义来初步体会数字编码的方法,同时通过邮政编码在信件传递中的功能初步体会数字编码在我们日常生活中的作用。教材首先由编辑室经常收到全国各地读者的来信这个生活中的情境来引出,让学生思考:你知道这些信件是怎样传递的呢?接下来,教材用一组连续的示意图展示了信件传递的过程:先是一个小女孩把信件投入邮筒中,然后邮局(所)把收集起来的信件通过机器分拣,机器能根据每封信上面的邮政编码进行分类,再把信件传递到收信人所在地的邮局,最后由邮递员根据具体的地址来投递信件。了解了信件传递的过程后,小精灵给同学们提出了问题:你知道本地的邮政编码吗?你想知道这些数字是怎样编排的吗?引导学生来探索邮政编码中数字编排的结构和含义。

  邮政编码是代表投送邮件的邮局的一种专用代号,也是这个局(所)投送范围内的居民与单位的通信代号。教材这里呈现了一个标准信封的正面,并向同学们介绍了邮政编码的结构:邮政编码由6位阿拉伯数字组成,如448268。它的前两位数表示省、自治区、直辖市,如44表示湖北省;第三位数表示邮区代号,如448表示湖北省荆门邮区;第四位数表示县(市)的编号,如4482代表湖北省荆门市沙洋县邮局;最后两位代表邮件投递局(所),所以448268表示的就是——湖北省荆门市沙洋县五里邮电支局的投递局。同样,邮政编码100009表示的是——北京市东城区地安门邮电局的投递局。了解了邮政编码的组成,接下来介绍邮政编码作为我们国家的邮政代号在信件传递的过程中所起的作用。教材通过小精灵揭示:有了邮政编码,机器就能对信件进行分拣,这样就大大提高了信件传递的速度,从而让学生体会数字编码在生活中的重要作用。

  教学时,教师要充分调动学生学习的积极性,可以结合例1后面的“做一做”,让学生利用课外时间调查、收集一些邮政编码,如学校所在地的邮政编码、父母单位所在地的邮政编码、爷爷奶奶住址所在地的邮政编码等。并要求学生设法了解邮政编码的结构与含义,如向邮局工作人员或邮递员咨询、查阅邮政编码书籍等。在学生汇报了收集的邮政编码后,老师提出问题:你们知道这些信件是怎样传递的吗?让学生在调查的基础上展开讨论,等学生发表完意见后,老师再进行补充或总结。这里可以利用教材的示意图来介绍,也可以设计多媒体课件或动画动态地展现信件传递的流程。

  学生了解信件的传递过程后,老师接着提出问题:我们收集了这么多邮政编码,你们发现它们有什么相同的地方?机器怎么能根据邮政编码的数字进行分拣呢?这些数字又是怎样编排的呢?让学生先通过观察、比较找出收集来的邮政编码的相同点:同一个省、市的邮政编码前面有几位是相同的。在此基础上,再让学生根据查阅的资料或是调查的结果来讨论邮政编码的数字编排的结构和含义,如果大部分学生课前已经了解了邮政编码的组成,老师可以让学生结合自己手中的一个邮政编码来进行说明,比如学校的邮政编码的组成。如果学生有困难,老师可以在学生交流汇报自己的看法后,结合教材给出的邮政编码的结构图具体说明它的组成,也就是每个数字代表的含义。然后再让学生结合某个邮政编码给出它的组成,在小组中相互说一说。

  如果学生课前没有调查,可以先让学生在小组中讨论,说说自己的猜想,然后老师再在学生猜想的基础上说明邮政编码的结构和组成(可配合多媒体课件),最后再结合邮政编码的结构图具体说明。了解它的组成后,再让学生试着就某个具体的邮政编码给出具体的说明,比如结合例1下面的“做一做”,再让学生说一说学校的邮政编码是怎样组成的。

  了解了邮政编码的组成后,让学生思考一下邮政编码在信件传递中所起的作用。可以让学生先互相交流讨论一下,在学生讨论的基础上再进行总结。

《数学广角──》教学设计4

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

  新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

  找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。

  本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

  新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

  教学目标

  知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。

  过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学方法

  1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

  2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  教学过程

  课前谈话

  出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?

  学生自由发言。

  在同学们说的这些方法中,你认为哪一种方法最好?为什么?

  [设计意图:在这一环节中,要引导学生根据次品的特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的'平衡原理对托盘两边的物品进行比较就可以了。]

  出示天平。说说怎样利用天平来找出这瓶钙片呢?

  学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

  揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

  设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。

  找次品的解决方法

  小组合作:从5瓶钙片中找出少装了的那瓶次品。

  (合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)

  指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

  平衡:11次

  5(2,2,1)

  不平衡:2(1,1) 2次

  5(1,1,1,1,1) 1次或2次

  从这儿我们可以看出,用天平找次品的方法是多种多样的。

  [设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

  观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

  [设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

  探索最优策略

  在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

  小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)

  零件个数

  分成的份数

  每份的个数

  至少称几次就一定能找到这个次品

  [设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

  指名汇报,根据学生的回答填表并板书:

  平衡 3(1,1,1)

  9(3,3,3)

  不平衡3(1,1,1) 2次

  平衡1

  9(4,4,1) 平衡2(1,1) 3次

  不平衡4(1,1,2)

  不平衡1

  平衡1

  平衡(2,2,1)

  9(2,2,2,2,1) 不平衡2(1,1)3次

  不平衡2(1,1)

  9(1,1,1,1,1,1,1,1,1) 4次

  引导观察:用哪一种方法保证能找出次品需要称的次数最少?

  小结:平均分成3份去称,保证能找出次品所需的次数最少。

  [设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

  解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

  不能平均分成3份的应该怎样分呢?

  全班合作:用图示法从10个和11个零件中找出一个次品。

  (合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

  指名汇报,投影展示学生的分析过程。

  引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

  [设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

  你知道这是为什么吗?你能不能对这个规律作出解释?

  [设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

  拓展提高

  猜测:这种方法在待测物品的数量更大时是否也成立呢?

  第135页做一做:

  有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

  请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

  [设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]

  《找次品》教学反思

  著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。

  从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着

  让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。

  然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。

  接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。

  为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。

《数学广角──》教学设计5

  教学目标:

  1、使学生借助具体内容,初步体会集合的数学思想方法。

  2、运用集合的思想方法解决一些简单的数学问题或实际问题。

  3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。

  教学重、难点:

  1、初步体会集合的思想方法。

  2、运用集合图来表示事物。

  教具准备:展示题

  教学过程:

  一、激趣引入

  师:同学们喜欢参加什么课外兴趣小组?

  1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢

  师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)

  二、互动探究

  1、出示例题

  三(1)班参加语文、数学课外小组的学生名单

  语文杨明李芳刘红陈东王爱华张伟丁旭赵军

  数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东

  师:同学们从例题当中得到了那些信息?

  师:参加语文和数学兴趣小组的.一共有多少人?

  1、教师根据学生的回答相机板书人数。

  17人、16人、15人、14人……

  师:这么简单的一个问题为什么会出现好几个答案?

  师:我们一起来演示了看看你能发现什么。

  2、教师请学生把名字条放到相应的小组里。出现了多余的三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。

  语文小组数学小组

  杨明、李芳、刘红

  3、师生一起互动解决问题后,把得到的信息板书在黑板上。

  4、介绍韦恩图。

  5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。

  喜欢语文

  喜欢数学

  只喜欢语文

  只喜欢数学

  既喜欢语文又喜欢数学

  6、根据这些板书信息尝试列式。

  7、学生汇报列式教师相机板书。

  8+9-3=14(人)

  5+3+6=14(人)

  ……

  8、同学们现在知道参加两个兴趣小组的共多少人了吗?

  9、学生选择自己喜欢的计算方法相互说算理。

  10、回看学生最初汇报的语文和数学兴趣小组的人数并评价。

  11、对比韦恩图和统计表请学生评价。

  三(1)班参加语文、数学课外小组的学生名单

  语文杨明李芳刘红陈东王爱华张伟丁旭赵军

  数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东

  语文小组数学小组

  教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学

  而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。

  师:我们打开108页,刚才咱们学习的就是108页的内容,请同学们再看一遍还有什么不懂的吗?

  三、运用知识解决问题

  1、完成书上110页练习二十四第一题和第二题。

  四、总结

  师:今天上了这节课你有什么收获?

  五、课外延伸

  师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。

  作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。

  板书设计:

  数学广角

《数学广角──》教学设计6

  (一)知识与技能

  1、在具体情境中,让学生感受集合的思想,亲历集合圈的产生过程。

  2、让学生借助直观图理解集合圈中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。

  (二)过程与方法

  通过观察、思考、交流等活动,让学生在合作学习中感知集合圈的形成过程,体会集合圈的优点,能直观看出重复部分,解决生活中的问题。

  (三)情感态度与价值观

  体验个体与小组合作探究相结合的学习过程,养成善于观察、勤于思考的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。教学重点:

  让学生感知集合的思想,了解集合圈的产生过程,并能初步用集合的思想解决简单的实际问题。教学难点:

  理解集合圈的意义,会解决简单的重复问题。教学过程:

  一、问题导入,揭示课题

  1、提出问题:

  脑筋急转弯的游戏(出示情景图:堂堂网的导入环节)师:对面走来二个妈妈,二个女儿,一共有几人?生:4人或3人。(答案不一)

  师:可咱一数,

  1、3,咦,只有3人,怎么回事?生:……

  2、学生思考,回答想法

  (课件出示)中间这个人是小女孩的妈妈,外婆又是妈妈的妈妈。二个女儿呢?小女孩是妈妈的女儿,妈妈是外婆的女儿。

  提问:你发现了什么?教师引导学生突出:(1)“重复”一词;

  (2)能用“既……又……”来表达;

  (3)师生小结,得出:中间这个人既是妈妈,又是女儿,她的身份重复了。

  3、揭示课题:

  生活中像这样重复的现象有很多,今天我们就一起走进数学广角,来研究有趣的重复现象。(板书课题:数学广角——集合)【设计意图】上课伊始,我结合学生的兴趣爱好,巧妙利用堂堂网的导入环节及课件创设新颖有趣的导课情境,设置了一个脑筋急转弯的问题。既是生活中的问题又是数学中的重复问题,激发学生的认知兴趣,活跃课堂气氛,调动积极情绪和探究欲望,使学生积极主动地进入学习状态,也为下一环节的教学作好铺垫。

  二、创设情景,探究新知

  1、巧妙设疑,直观感悟,初步感知重复现象(1)情境引入(课件出示统计表)

  1 下面是三(4)班喜欢跳绳、踢毽的学生名单。

  喜欢跳绳李子瑄蔡丹向汇成

  喜欢踢毽刘亦麒田思源李子瑄何倩倩

  (2)了解信息,提出问题

  喜欢跳绳的有几人?喜欢踢毽的有几人?老师一共调查了多少名同学呢?让学生尝试回答出总人数。 (3)游戏:引发认知冲突

  喜欢跳绳、踢毽比赛的学生分别站在红、蓝两个呼啦圈里。问题:仔细观察统计表,你有什么发现?

  让学生根据自己的理解分析,发现有两项运动都喜欢的同学,从而得出“重复”的意思。引发问题矛盾冲突:当有同学既喜欢跳绳又喜欢踢毽时怎么站?学生想办法解决。(把红圈和蓝圈同时套住李子瑄)师:为什么你们要把红圈和蓝圈同时套住李子瑄?生:……

  【设计意图】根据学生熟悉情境引入,通过具体情况引发学生矛盾冲突,提出问题,“当有同学既喜欢跳绳又喜欢踢毽时怎么站?”,找准教学的起点,调动学生探索的积极性,也让学生初识重复问题的基本含义。

  2、逐步整理出简洁明了的直观图(韦恩图)。 (1)引入韦恩图。

  师:李子宣到这里一站,就这个位置,她站出了接下来值得我们去研究的很多数学知识。我们可不可以把他们的位置关系用什么方法表示出来?你们猜一猜,现在这二个圈,会是什么样子的?伸出你们的小手比划比划,这二个圈,是这样吗?现在我们把这二个圈抽起来,看看你们的猜想,对不对。

  师:哇,好能干的孩子,和你们的猜想是一样的。

  师:我把你们创造出来的二个圈搬到黑板上来,用一个圈表示喜欢跳绳的学生,再用一个圈表示喜欢踢毽的学生。(边说边用红笔和蓝笔在黑板上画了两个交叉的椭圆)中间的部分是表示喜欢什么意思?

  生:表示既喜欢跳绳又喜欢踢毽的。

  师:我想用三角形把他们在圈中表示出来,你们能在圈中找到她们的位置吗?师生共同合作整理出集合圈。(课件出示)

  【设计意图】此环节将学生的姓名用三角形代替,向学生渗透符号思想,也为进一步优化韦恩图(直接用数字表示)起到了重要的桥梁作用。

  (2)介绍韦恩,拓宽视野

  课件出示:你们知道吗,在一百多年前,英国有一个伟大的数学家,他叫韦恩。他是世界上第一个用这样的图形来表示集合的,他的这个发明为集合的研究带来了极大的方便,人们为了纪念他,就把他的名字用来命名这种图,所以,集合圈也叫韦恩图,(板书:韦恩图)我们班的同学真了不起,和这个数学家的想法是一样的,相信你们将来也和数学家韦恩一样有属于自己的创造。

  【设计意图】让学生相信我们每个人都可以有自己的创造,从而激发学生强烈的创造意识。

  (3)小游戏:看谁的反应最快

  课件演示各部分,让学生根据涂色区域用准确的语言正确描述各部分的意义。生:红色的圆圈部分表示喜欢跳绳的学生。生:蓝色的月牙部分表示只喜欢踢毽的学生。……

  【设计意图】学生通过合作、思考、交流等活动,以及形象生动的动画亲历集合圈的形成过程,充分发掘学生的创造潜能,让学生大胆地用自己的方式解决实际问题,为学生提供了自主探究的空间和平台,让每个学生都参与其中,从中获得成功的学习体验和感悟。

  3、观察韦恩图,算法探究。

  (1)提出问题:老师一共调查了几人呢?你能不能根据韦恩图来解决?

  (2)学生尝试解决问题,并交流分享自己的解题方法。(鼓励学生用多种方法解决)预设:可能会出现:

  3+4-1=6(人)或2+3+1=6(人)或3+3=6(人)或2+4=6(人)

  【设计意图】让学生通过自身的观察、理解,尝试用多种方法来解决问题,体会胜利的喜悦。 (3)引导学生理解各算式的意义

  课件出示集合圈,指导学生观察直观图,理解各算式中每个数字表示的意义。尤其是算式3+4-1=6(人)中,引导学生弄明白为什么要减1。

  (4)教师小结。刚才我们用不同的想法却得到了相同的结果,我们只要弄明白这个圈里各部分表示的意思,就可以灵活列式计算解决问题,但无论怎样列式,重复出现的人数只能算1次。

  【设计意图】集合问题比较抽象,看不见,摸不着,即使老师反复讲,学生也难真正理解。本环节中,学生在探究解法时,我出示课件,让学生借助直观图,理解韦恩图的`意义,并利用集合的思想方法解决简单的实际问题,在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。同时使教学难点分解,化难为易,缩短了学生从形象思维到抽象思维的发展,从而突破教学重难点。

  4、比较图与表格,突出韦恩图的优点。

  师:平时我们是用表格和文字的方式来呈现的,今天我们学习了韦恩图,比较一下,你觉得哪

  3种方式更简洁?

  生:韦恩图

  师:对,用韦恩图不仅能清晰的表示出各部分之间的关系,还便于我们计算。师:你认为在什么样情况下使用韦恩图来解决问题呢?生:有重复关系的。

  师:怎样才能在表格中清楚地看出哪些同学重复了呢?

  师:把重复的名字用线条连起来,通过连线,我们就可以清楚地看到哪些同学重复了。【设计意图】让学生感悟集合圈能直观地看出各部分之间的关系,尤其是重复的部分看得很清楚。

  三、练习巩固,内化新知

  师:通过刚才的学习,我发现同学们不仅会解决问题,还能讲清思路和道理,已经具备了学好数学的很重要的品质。现在,让我们带着这个集合圈的知识,带着这个数学家的气质,一起走进生活去解决一些实际问题好吗?

  课件出示:

  1、引导学生看图理解各部分的意义,弄清题目信息。

  2、学生用自己喜欢的方法独立完成。

  3、展示优秀作业,并请学生讲清各种方法的理由。

  4、教育学生养成良好的进餐习惯,做到不偏食,不挑食。

  【设计意图】让学生感受到生活中处处有数学,数学和我们的生活密切联系。同时,将思想教育、养成教育与知识传授融为一体,“随风潜入,育人无声,让学生在自然轻松的氛围中接受思想教育,养成良好的习惯。

  四、实践运用,拓展提高

  课件出示思考题:三(4)班参加美术特长班的有4人,参加舞蹈特长班的有5人,参加美术与舞蹈特长班的总人数可能是多少人?最少是多少人?

  1、小组合作讨论:

  2、交流汇报:参加美术班和舞蹈班的同学可能会重复,也可能没有重复。生:我觉得有可能参加美术班的4人与参加舞蹈班的5人不重复,共9人。生:有可能有一个同学既参加了美术班又参加了舞蹈班,这样就只有8人。

  4根据学生回答,课件动态演示从不重复,依次重复1人到4人参加两个班学习的几种情况。

  3、全班分析,得出:

  师:根据刚才的演示,你能概括说说,参加美术班与舞蹈班的总人数可能是多少人?最少是多少人?

  参加美术班和舞蹈班的同学有可能是9人—5人,最多是9人,没有人重复;最少有5人,其中4人重复,即这4人二个班都参加了。

  【设计意图】数学学习应源于生活,用于生活,同时还要高于生活,此环节借助多媒体的功能,设计了一个开放性与实践性相结合的素材练习,既链接了所学知识资源,又为学生搭建了开放与拓展的平台,在巩固所学知识的同时,又用活了知识,实现了提升。

  五、联系实际,总结升华

  师:这节课,你有什么收获?还有什么问题和想法?学生畅所欲言

  师:今天我们认识了集合圈,学会了用韦恩图来解决生活中有重复关系的数学问题。我从你们的身上学到了在探究知识时你们机灵的活动,在总结经验时你们静心的思考,在解决难题时你们灵活的运用,这些都是学习数学的好方法,希望你们在学习上能多观察、勤思考,探寻更多的数学奥秘。

  【设计意图】在学生回顾本节课知识的同时,给学生质疑和表达的机会,逐渐使其形成反思的意识。激发学生的学习欲望,使知识的学习引申到课外。

《数学广角──》教学设计7

  教学内容:

  人教版《义务教育课程标准实验教科书》数学三年级上册P113页例2及P116页4-6题。

  教学目标:

  1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数。

  2、培养学生有顺序地、全面地思考问题的意识。

  3、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的过程。

  4、培养学生的合作意识和交际能力。

  5、感受数学与生活紧密联系,激发学生学好数学的信心。

  教学重点:

  自主探究,掌握有序排列的方法,并用所学知识解决实际生活的问题。

  教学难点:

  怎样排列可以不重复,不遗漏。

  教具准备:

  课件、数字卡片、头饰。

  教学过程:

  一、创设情境,复习迁移

  师:同学们,你们喜欢看表演吗?(喜欢)今天聪聪、明明要跟我们到影剧院看表演,我们大声地喊他们出来啊!

  师:好朋友见面,握握手。(聪聪、明明跟大家握手)如果全班36个同学分别跟聪聪、明明握手,一共要握多少次?为什么?(不管谁先跟谁握手,都是同是两个人)

  师:对,这是我们上节课学的知识,这节课我们继续学习数学广角。(板书课题)

  师:那我们赶紧进影剧院吧!(课件出示影剧院门口)

  二、合作学习,探究新知。

  1、情景激趣

  师:(课件出现密码二字)密码?哎呀!我把密码给忘了,是379?还是739呢?我只记得这个密码是由7、3、9组成的其中一个三位数,同学们,怎么办呢?没密码可进不去啊!

  2、合作交流,探讨方法

  师:那么7、3、9可以组成多少个不同的三位数呢?请大家拿出数字卡片,小组合作摆一摆,摆的时候注意:

  ①要小组合作,共同完成。

  ②你用什么方法做到不重复、不遗漏。

  ③比一比哪组最快。

  学生活动、汇报。

  师:你们找出来多少个不同的三位数?谁愿意那上来给大家介绍他们组的摆法。(可多拿几个不同顺序的,然后让学生说。)

  引导学生说:排列的时候,先确定百位上是3,分别交换十位和个位上的数7、9就有两种不同的排法;再确定百位上是9,分别交换十位和个位上的数3、7又有两种不同的排法,最后确定百位上是7,分别交换十位和个位上的数3、9又有两种不同的排法,合起来一共摆出6个不同的三位数,这6个三位数分别是379、397、739、793、973、937,这样按顺序排列,既不会重复也不会遗漏。

  师:同学们刚才听了几位同学的方法介绍,你觉得谁的更好些?(比较发现重复、或遗漏或无顺序排列,从而引出按一定顺序排列较好)

  学生发言。

  3、引导学生小结:

  排列时,先确定一个数位上的数,然后交换其他两个数位上的数,各有两种不同的排法,合起来都能组成不同的三位数,这样做到既不重复也不遗漏。

  4、指导看书质疑

  师:请大家打开书本P113页例2,边看书边自己说说书本上是怎么摆的?

  学生活动

  师:谁看懂书本上的想法,给大家讲一讲。(强调方法)

  师:密码到底是哪一个呢?你认为是几?好,那请大家把自己心中的密码大声地喊出来吧!(课件演示密码转动过程)

  是:739,猜对的举手,yes!我们可以进去了,向前冲,嘿、嘿、嘿!

  三、实践应用,开放练习

  1、创设情境,完成P113页“做一做”

  师:哇!这影剧院真漂亮!同学们赶快找座位坐好。看看第一场表演什么?(西游记)嘿!很熟悉。谁来说说你对“西游记”的认识有多少?

  学生发言

  师:同学们知道的真多,那图中的四师徒在干什么?谁来说说。(学生说大意,注意说完整)

  师:你觉得××同学说得怎样?师傅说:“交换位置,再来一张”(课件出示)那交换三个徒弟的位置可以有多少种不同的排法?

  师:那请大家在小组里面排一排,照一照,并说说你是怎么排的。

  小组活动

  小结:引导学生说出先确定一个人的位置,再交换两个人的位置,各有两种排法,合起来一共照出6张不同的照片。

  2、完成P116页第5题

  师:“西游记”好看吗?下一场表演什么呢?(课件出示小红帽)这个故事你们听过吗?好,谁上来给大家讲讲。

  学生上台讲故事。

  师:××同学讲故事真好听,你们有留意到屏幕出现故事中的哪些人物呢?(小红帽,猎人,大灰狼)同学们观察得真仔细。这时,扮演过猎人的小朋友说:“该让我演大灰狼了吧?”你知道他想干什么?(想变换角色,他不想演猎人,想演大灰狼了。)他们的角色还可以怎么变化?你们能帮助他们排一排吗?

  学生活动

  师:哪组愿意上台演一演。

  学生上台表演。

  师:刚才表演的.同学真棒,一下子就把6种不同的角色变化都找出来了。

  3、完成书本P116页第4题。

  师:表演结束了,老师觉得有点饿,这样的天气去吃点什么好呢?你们想吃什么?

  学生发言

  师:你们的介绍也不错,不过天气越来越冷,我想吃点辣的来暖暖身子,你们怕辣吗?哦!有的怕辣,有的不怕辣,那不、怕、辣这三个字共有几种不同的排法呢?请大家用练习本排一排,再读一读看一共有几种读法。

  学生活动,学生汇报。

  师:不怕辣的同学,放学后可以建议你的父母去吃一顿麻辣火锅。

  四、拓展延伸,提高能力

  师:在回来的路上聪聪、明明要考一考我们。我们看题目。(课件出示题目)请拿出数字卡片动手摆一摆,要注意可以随意摆放的,看一共能摆出几个不同的三位数。

  师:谁来说说你找出几种不同的三位数。

  学生活动、汇报,师板书。

  五、全课总结

  师:这节课你有什么收获?还有不明白的地方吗?

  师:你觉得自己、同学和老师表现得怎样?

  六、板书设计

  数学广角

  379397

  739793

  937973

《数学广角──》教学设计8

  教学目标:

  1.知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

  2.过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

  3.情感态度:通过对鸽巢原理的灵活运用,感受数学的`魅力,体会数学的价值,提高学生解决相关问题的能力和兴趣。

  教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

  教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。

  教学准备:多媒体课件、扑克牌、3个笔筒。

  教学过程:

  一、魔术游戏激趣导入:

  1、老师这个魔术需要请1名同学来配合,谁愿意?

  向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。(学生打开牌让大家看)

  课件出示:至少有2张是同一花色。“至少”表示什么意思?

  引导:老师为什么能作出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。

  板演:鸽巢问题

  二、合作探究

  (一)列举法:

  课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?

  找一组学生上前实物模拟操作摆放情况。

  师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?

  概括得出:总有1个笔筒至少放2支笔。(及时肯定学生们的回答:你的逻辑思维能力真强)

  课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:

  1.分组探究,教师巡视指导。

  预设学生会出现以下几种情况:(1)实物模拟(2)图示(3)数的分解

  2.学生汇报,讲台展示。

  3.学生概括得出:总有1个笔筒至少放2支笔。

  4.小结:刚才我们通过以上方法列举出所有情况验证了结论,这种方法叫“列举法”。

  (二)假设法

  师问:同学们,将100支笔放99个笔筒,总有1个笔筒至少放进几支笔呢?

  追问有勇气列举吗?预设:没有勇气列举

  我们能不能找到一种更为直接的方法,找到“至少数”呢?

  课件出示:4支笔放3个笔筒,总有1个笔筒至少放2支笔。这句话能快速得到验证吗?

  1.引导学生思考:回顾下“至少”的意思,为保障每个笔筒都尽量少,不能出现某个笔筒特别多的情况,我们要把怎样分?学生尝试作答:

  生:如果每个笔筒里放1支笔,放了3支,剩下的1支不管放进哪一个笔筒里,总有一个笔筒里至少有2支笔。既而教师图示。(及时肯定学生的探究能力)

  2.引伸拓展:

  (1) 5支笔放进4个笔筒,总有一个笔筒中至少放进( )支笔。

  (2) 6支笔放进5个笔筒,总有一个笔筒中至少放进( )支笔。

  (3) 100支笔放进99个笔筒,总有一个笔筒至少放进( )支笔。

  也就是说:有n+1支笔放进n个笔筒中,总有一个笔筒至少放进2支笔。

  3.小结:这种先假设按平均分,然后再分配剩余量的方法叫做“假设法”。

  教师追问:列举法和假设法的优缺点是什么?

  学生总结出:

  列举法优点:能够做到不重复,不遗漏,结果一目了然。缺点:局限性,摆放更多笔浪费时间,效率低。

  假设法的优点是:简洁、迅速解决问题,更具有一般性。

  三、练习巩固,解决问题

  1.5只鸽子飞进3个鸽笼,总有1个鸽笼至少飞进了几只鸽子?为什么?

  2.同学们理解上面扑克牌的原理了吗?

  四、鸽巢原理的由来

  最早指出这个数学原理的是19世纪的德国数学家狄利克雷,这个原理被称为“狄利克雷原理”,又因为在讲述这个原理是,人们经常以鸽巢、抽屉为例,所以它往往也被称为“鸽巢原理”和“抽屉原理”。

  五:板书设计

  鸽巢问题

  “总是”“至少”

  列举法

  假设法平均分

《数学广角──》教学设计9

  教学目标:

  1.知识能力目标:

  ①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数

  ②初步培养有序地全面地思考问题的能力。

  ③培养初步的观察、分析、及推理能力。

  2.情感态度目标:

  ① 感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣

  初步培养有顺序地、全面地思考问题的意识。

  使学生在数学活动中养成与人合作的良好习惯。

  教学重点:

  经历探索简单事物排列与组合规律的过程

  教学难点:

  初步理解简单事物排列与组合的不同

  教学准备:

  多媒体课件、数字卡片、

  教学过程:

  一、创设情境,引发探究

  同学们都说喜欢去郊游,今天老师就带同学们去数学广角逛逛(揭示课题:数学广角)

  师:让我们唱着歌一起出发吧!(课件播放歌曲,教师带着同学一块做动作)

  二、动手操作、探究新知

  1、初步感知排列

  师:数学广角到了,我们先去数字宫瞧瞧,同学们看见了什么?

  生:数字1和2

  师:你看到这两个数字宝宝你想到了什么呢?

  生1:我想到1+2=3

  师:还有吗?

  生2:2-1=1

  师:其他同学有没有别的想法?

  生3:我想到了12和21

  师:有的想到加法计算、有的想到减法计算、有的还想到1和2还可以组成新的数,小朋友们真棒,说说这是一个几位数是怎样得到的?

  生:有个位和十位。

  师:说得很好(教师在黑板上边写)我们在十位上写上1,个位就剩下2;我们在十位上写上2,个位就剩下1,所以1和2可以组成两个两位数。这时数字3也来凑热闹了,数字3问:“我们三个数字能组成几个两位数呢?请同学们仔细的想一想,想好了把小手举好,悄悄地告诉老师。(学生想,老师走下去听意见。有说3个的,4个的,6个的)

  师:说3个的你说说到底是哪三个?

  生:13、32、21

  师:你说是4个,你来告诉大家是哪四个?

  生:13、12、23、31、32

  师:说6个的来说说你找到的。

  生:13、31、23、32、12、21

  师(故作疑惑状):那到底谁的答案是正确的呢?老师请来了好帮手(举起数字卡片)来帮忙,请你们摆一摆,看看摆出几个两位数。比比哪组合作得又好又快。

  (学生操作)

  师:谁愿意起来告诉我们你们摆了那几个两位数?

  有4种情况:

  情况一:只摆了4个的。

  情况二:摆了6个,但是杂乱无章的摆的

  情况三:先选两个数字组成一个两位,然后交换位置得到另一个两位数,也摆了6个。

  情况四:先把一个数字放在十位,再把剩下的两个数字放在个位。摆出6个两位数。

  2、合作探究排列

  师:为什么有的摆的数多,而有的却摆的少呢?有什么好办法能保证既不漏数、也不重复呢?

  师:哪个小组愿意来汇报?

  生1:我摆出12,再交换两个数的位置就是21,再摆23,交换后是32,最后摆13,交换后就是31,这样就不会漏也不会重复了。(生汇报,师板书)

  生2:我先把数字1放在十位,再把数字2和3分别放在个位,分别组成12和13,我接着把数字2放在十位,数字1和3分别放在个位,又分别组成了21和23,最后把数字3放在十位,数字1和2分别放在个位,分别组成了31和32,这样也不会漏也不会重复了!(生汇报,师板书)

  生3:我先把数字1放在个位,再把数字2和3分别放在十个位,分别组成21和31,我接着把数字2放在个位,数字1和3分别放在十位,又分别组成了12和32,最后把数字3放在个位,数字1和2分别放在十位,分别组成了13和23,这样也不会漏也不会重复了!(这种方法能想到的可能比较少)

  学生汇报,老师板书

  师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,如果能按照一定的顺序排列,就能做到不重复,不遗漏。 (板书:有序的,不重复,不遗漏)

  3.感知组合

  师:同学们刚才排数排得很好。老师祝贺你们(教师不自主的一边走一边伸手和同学握手)。老师和××握了几次手?

  生:一次。

  师:我和××也握了几次手?

  生:一次。

  师:如果我们三个人握手,每两个人握一次,三人一共要握多少次呢?

  生1:6次。生2:3次。生3:4次

  师:到底几次,四人小组为单位,看看每两个人握一次手,三个人一共要握手多少次?(学生活动)

  (请2组小朋友汇报)

  (请这2组上台表演握手)

  师:两个人握一次手,三人一共要握3次手。老师现在有一个疑问,排数时用3个数字可以摆出6个数,握手时3个同学却只能握3次,都是3,为什么出现的结果会不一样呢?

  结论:两个数字交换位置可以组成新的两位数,两个人握手交换位置还是这两个人,只能算一次,所以三个不同的数字组合成两位数,能组成六个不同的'两位数,而三个人,每两个人握手只能握三次。

  三、拓展应用,深化探究(过渡,同学们真棒,用自己的智慧解决了问题,现在老师让大家进行一次免费抽奖你们愿意参加吗?)

  1、抽奖

  师:好,现在我们来抽奖了,同学们都想中奖吗?(想) 我给你们透露点信息:中奖号码就是从这2、5、7、8四个数中选出的两个数组成的两位数。猜猜,什么号码可能中奖?每个同学都有中奖的机会哦。

  生:猜25,28,78

  师:看来,可能中奖的号码有很多个。(把你认为能中奖的号码都写出来吧)(把用这四个数能组成的所有两位数都写出来,教师巡视,“有同学写出来8个两位数,她还在继续写,看来不止8个”“你是先固定最前面一位数?”)

  师:写好了吗?(请一位同学汇报)

  把你认为最有可能中奖的一个号码圈起来。(学生圈)

  老师选最认真的一个同学来抽奖。学生先按键一下(课件)中奖号码的最前面一位数出来了,是2,那中奖号码可能是? 25、27、28。再按以一下。中奖号码是?

  师:你中奖了吗?如果你中奖了,请到老师这领奖品。

  2、付钱

  师:现在我们去游艺宫看看!(课件:欢迎到游艺宫,门票每人5元)

  同学们带钱了吗?

  生:没有

  师:没关系,老师帮你们先垫上。假如你身上有这么多钱(课件显示:5个一元硬币,2张2元纸币,1张5元纸币。)你会怎样付门票的钱呢?

  学生小组讨论后,说不同的拿法:

  生1:我拿的是1张5元的纸币。

  生2:我是这样拿的,2张2元1个1元硬币。

  生3:也可以这样拿,1张2元3个1元硬币。

  生4:还可以这样拿,5个1元的硬币。

  师:真了不起!想出了这么多种方法,(课件显示四种拿法)有重复或遗漏的吗?

  生:(观察后)没有

  3、搭配衣服

  师:好,那我们就进游艺宫观看时装表演了。

  (出示课件:欢迎到游艺宫观看时装表演,这四件衣服有几种不同的穿法呢?)

  师:谁愿意起来告诉我们大家究竟有几种不同的穿法呢?

  生1:一件上衣可以配两条不同的裤子,这样有2种,另一件上衣又可以配两条不同的裤子,又有两种,这样一共有4种。

  师:刚才这位小朋友用衣服配裤子,有4种不同的搭配方法,你还有其他方法吗?

  生:可以用裤子配衣服,每条裤子连两件上衣。也有4种搭配方法。

  师:对,是四种配法(课件显示四种配法)

  四、总结延伸,畅谈感受

  师:同学们,由于时间关系,我们该回家了!刚才,我们去哪里玩了!数学广角。数学广角好玩吗,有趣吗,你都看到了什么?有什么收获吗?

  生1:我学得真高兴啊,我学到了怎样排列数字。

  生2:我也很高兴,我学到了排列时有好的方法能让我们既不漏掉也不重复。

  ……

  师:原来生活中有这么多数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题。老师马上就要和同学们分开了,你们舍得老师吗?如果你们以后想老师了,就可以打电话给,老师电话号码是8606???

  生:怎么后面3个数字没有啊?

  师:那就要同学们动动脑筋了,可以给你们个小提示:

  (课件显示:后面的三个数是由1、2、4组成的)

  猜猜看,猜对了老师的电话就会响哦!

《数学广角──》教学设计10

  教学内容:义务教育课程标准实验教科书四年级上册112页内容

  教学目标:

  知识与技能:

  1、通过生活中的简单事例,使学生初步体会到

  优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,

  初步形成寻找解决问题最优化方案的意识。

  过程与方法:使学生理解优化的思想,形成从多种方案中寻找

  最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。 教学难点:探究解决问题的最优方案。

  教具准备:硬币、若干张圆纸片(涂上正反不同颜色)、多媒体课件。

  教学时间:一课时

  教学过程:

  一、创设情境,谈话导入,学习新知

  同学们早上你们的家人给你们做了什么好吃的?老师的家人给老师烙的饼。你们知道吗厨房里也有数学问题。想知道是什么吗?(课件出示例1图)小华妈妈正在为全家人做自己的拿手绝活——烙饼。(板书课题:数学广角——烙饼问题)

  (一)师:从图上你能得到哪些信息?学生观察、理解图中的内容。(目的让学生了解一个锅可以烙两张,每面都需要烙。)

  师:妈妈烙饼的一面需要几分钟?一张饼最少需要几分钟?

  生:3分钟、6分钟(学生对饼需要烙两面有直接的了解)

  师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”

  生:12分钟、6分钟(让学生讨论出6分钟是对的)

  让学生用圆纸片在黑板演示。(其他学生用硬币操作)

  师:那么烙4张饼那?

  生讨论并让同学黑板演示。(其他同学用硬币操作)

  师引导6张饼、8张饼、10张饼需要多少分钟。(将上述张数和总用时对应板书黑板上)

  师:同学们看黑板上的这些张数和总用时,你们发现了什么?

  生讨论总结出双张数×3=总用时

  (二)师:爸爸、妈妈和小丽各吃一张饼,一共要烙3张饼呢,烙3张饼需要多少时间,看看谁用的时间最短,能最早让他们吃上饼。(提示学生每次锅里同时能烙两张饼)

  1、学生操作,探究烙3张饼的.方法。(让学生用发的硬币烙一烙,同桌之间、小组之间说说用了几分钟,是怎样烙的。)

  2、学生演示烙饼法。

  师:谁愿意把你烙饼的方法介绍给大家。(几位不同意见的学生上黑板动手烙,边烙边解说)让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?” 生得出结论:9分钟是烙3张饼所用的时间最短的。

  师:谁能再把如何9分钟就能烙好饼的方法再和同学们分享一下。(学生黑板边演示边解说)

  师:使用这种方法时,你发现了什么?(使用快速烙饼法,锅里面必须同时放2张饼。)

  让学生用烙3张饼的快速烙饼法再烙一次,边烙边给同桌解说(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)

  师引导:那么烙5张饼需要多少分钟那?7张、9张那?

  学生自己动手并同桌间讨论,得出结论。教师板书张数与总用时。(生得出5张饼可以先烙2张,再烙3张。7张、9张同理)

  师提问:同学们发现黑板上单数饼与总用时存在怎样的关系?

  生总结出单张数×3=总用时

  引导出双张数、单张数与总用时的关系都是一样的进而总结出烙饼问题的一个规律:张数×3=总用时

  (由3是单面时间)进一步总结出张数×单面时间=总用时。

  二、实践应用

  课件出示114页做一做第1题。

  教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”

  1、引领理解题意。

  2、全班交流(一般会从等待时间考虑,可以提示中间桌子是一位老伯伯。)

  三、全课总结

  1、这节课你学到了什么?(让学生自己总结)

  2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。

《数学广角──》教学设计11

  教学目标:

  1、在具体情境中,使学生感受集合的思想,感知维恩图的产生过程。

  2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。

  3、培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题,体验解决问题策略的多样性

  教学重点:借助直观图初步体会集合的思想方法。

  教学难点:对重叠部分的理解

  教学准备:课件、课前小研究、姓名卡片

  教学过程:

  一、激趣导入

  今天我们先一起来看一看一道有趣的数学题,请同学们拿出课前小研究,仔细看研究一,回顾下你的想法。(课前小研究第1题)

  研究一:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?(先画图再列式)

  这道趣味数学题有什么特点?今天我们就一起走进数学广角,来研究有重复现象的数学问题。

  二、探究新知

  (1)小组讨论汇报方法(课前小研究第2题)

  研究二:新的学期已经过了一个多月,这段时间同学们进步特别大,像个大孩子了,又懂事又听话,上学期的暑期作业就有很多同学完成的特别好,老师要提出表扬其中语文完成优秀的同学和数学完成优秀的`同学。(语9人,数8人,重复3人)一起看研究二的第1小题,小组内说一说你的想法。

  你们知道老师一共表扬了多少名同学吗?你是怎么想的?能不能用图、表或其他方式清楚的展示出来?(可以先制作名字卡片,试着摆一摆,再画出来)

  根据学生的汇报适时引导,提出:

  语文表扬9人,数学表扬8人,为什么一共表扬的不是17人呢?怎么看出来的?

  如何表示出语文、数学都表扬的同学?

  (2)全班游戏验证方法

  现在我们就一起来验证刚才大家的方法哪种最清楚、最直观?请老师表扬作业完成好的同学到前面来,语文表扬的站在左边,数学表扬的站在右边,你们看看应该怎么站?

  3个重复的,你们站在哪?站语文那边吗?还是站在数学这边?大家帮帮他们,想一想应该站在哪儿最合适?(中间)为什么?

  那左边、右边、中间分别表示什么?(左边是语文表扬的,右边是数学表扬的,中间是语文和数学都表扬的)

  (3)引导出用维恩图表示

  如果把我们刚才站的队伍表示在黑板上,是什么样的?谁有好方法帮忙加工一下,试图可以更清楚地看出来他们之间的关系?(指定学生黑板画)都谁是这样想的?(给予肯定和表扬)

  在数学上我们把所有语文表扬的同学看成一个整体,叫做一个集合;把所有数学表扬的同学看成一个整体,也是一个集合。这就是今天大家一起研究的集合。(板书:集合)

  我们一起把集合中的具体内容用这个图更清楚、直观的展示了出来,你们知道吗?像这样的图早在很多年前就有人发明了,他就是英国的数学家维恩,所以就以“维恩”来命名,叫维恩图,也可以叫集合图。你们刚才也像科学家一样,把这个图创造出来了,真了不起!

  (4)认识维恩图

  我们既然能自己创造出维恩图,那你们知道图中每一部分都表示什么意思吗?(小组内先说一说,再指名汇报)

  左边表示什么?右边表示什么?中间重叠部分表示的是什么?整个图表示的是什么?(左边集合表示什么?右边集合表示什么?)

  (5)运用图解决问题

  能不能根据你的图一眼就看出来应该怎么计算出一共表扬了多少名同学?(列式计算)独立解决,汇报交流,方法不唯一。

  (9+8—3=14,6+3+5=14,9—3+8=14,8—3+9=14等,让学生在维恩图上边指边写)通过课件演示:9+8—3=14巩固重合问题的解决方法。

  三、巩固练习

  1、书105页做一做1

  2、书107页5

  3、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。

  (1)既参加数学竞赛又参加作文竞赛的有几人?

  (2)只参加数学竞赛的有几人?

  (3)只参加作文竞赛的有几人?

  四、总结提升

  同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?

《数学广角──》教学设计12

  教学内容:

  新人教版二年级下册第109页的内容。

  教学目标:

  1.通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义,初步获得一些简单推理的经验。

  2.能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  3.在简单推理的过程中,培养学生初步的观察、分析、推理和有条理地进行数学表达的能力。

  4.使学生感受推理在生活中的广泛应用,初步培养学生有顺序地、全面思考问题的意识。

  教学重点:

  理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单推理的经验。

  教学难点:

  初步培养学生有序地、全面思考问题及数学表达的能力。

  教学过程:

  一、创设情境,激趣导入

  师:同学们,你们喜欢玩游戏吗?好,咱们一起来玩一个猜一猜的游戏。

  师:老师一只手拿着橡皮,一只手拿着硬币,你能一次就能猜出那只手拿着橡皮,那只手拿着硬币吗?(生:不能)。

  师:现在给大家一个提示:老师右手拿的不是橡皮

  师:现在你能猜出结果吗?说说你的理由。(学生回答。)

  小结:像这样根据已经知道的条件,逐步推出结论的过程,在数学上称为推理。今天这节课老师就和大家一起进行一些简单的推理。

  教师板书课题:数学广角----简单的推理

  师:说到推理,可不得不提到一位高手,你们知道是谁吗?(名侦探柯南)。对了他就是我们的神秘嘉宾柯南,他给大家带来了一些推理题,你们敢接受挑战吗?先让我们一起走进柯南基础训练营,准备好了吗?出示课件。

  师:比比谁反应快,并说出你是如何判断的。

  师:同学们刚才思维真敏捷,一下子就说答案了,看来基础训练营的题对你们来说太简单了,老师要提高难度了,准备好了吗?

  二、师生互动,探究新知

  1.通过情景短剧,呈现问题。

  师:现在让我们一起走进柯南提高训练营。

  课件出示例1.

  2.理解题意,分析问题。

  师:从题目中你能知道写什么?要我们解决的我们问题?“有语文、数学和品德与生活三本书,下面三人各拿一本”这句话什么意思?

  师:到底他们三人分别拿的是什么书呢?请同学们先独立思考,把解决这个问题的过程用你喜欢的方式记录下来,再把你的想法和同组的同学交流一下。

  3.学生记录,集体展示

  师巡视并收集学生方法,展示学生做法时由繁到简。

  同学们的办法真不少,咱们先来一起看一看这几位同学的记录方法。

  预设1:描述法

  (投影)生1:小红拿语文书,小丽拿品德与生活书,小刚拿数学书。

  让生说理由,师适时追问“你为什么这么肯定?”等。

  生:因为小红说她拿的是语文书,所以就可以确定小红拿的是语文书,剩下数学和品德与生活书。而小丽又说她拿的不是数学书,就可以把数学书排除掉,只剩下品德与生活书,就是小丽拿的了。那么小刚拿的就是数学书。

  预设2:一一对应(列表法)

  小红

  小丽

  小刚

  语文

  数学

  品德与生活

  (投影)生2:我是边思考边在人名下面写上他们拿的是什么书。

  预设3:连线法

  (投影)生3:我是这样做的。先将三个人的名字和三本书名写成两行,然后根据每一个条件进行连线:小红说她拿的是语文书,就直接把小红和语文书连上线;剩下的小丽和小刚就只能和数学书和品德与生活书连线了。又因为小丽说她拿的不是数学书,所以小丽拿的就是品德与生活书了,再连上线;最后把小刚就和剩下的数学书连线。(教师配合学生的想法在黑板上原先的板书基础上进行连线。)

  师:同学们,这位同学用的`是什么方法呀?(连线法,师及时在黑板上用红色粉笔板书)这个方法你们觉得怎么样?

  4.总结时求同引思

  师:上面三种方法都是先确定谁?然后呢?最后剩下谁?

  生:先确定小红拿语文书,再排除小丽拿数学书,最后剩下小刚拿数学书。

  师:其实在推理过程中有一些小窍门,柯南还把他们编成了推理儿歌,想一起来读一读吗?比比谁的声音最响亮。

  生齐读:我是一名小侦探,抓住线索认真想,能确定的先确定,能排除的再排除,剩下越少越好猜。你认为哪两句最重要?生说师板书:能确定的先确定,能排除的先排除。

  学习了这些推理小窍门门后,现在请同学们把你们的推理过程给你的同桌再说说,好吗?

  三、闯关练习,巩固知识

  师:刚才同学们成功地将柯南提高训练营里完成训练,接下来柯南决定带你们一起到推理城堡里去闯关了!有信心吗?

  1.第一关:猜一猜

  小伟、小雨,小东三人分别在一、二、三班。小伟是三班的,小雨下课后去一班找小冬玩儿。小冬和小雨各是几班的?

  师:谁来说说你是推理的?你先确定谁的班级?为什么?

  师:还想猜吗?看谁反应快,说说你的理由。

  2.第二关:连一连

  下面三位同学各拿着什么动物卡片?

  师:先独立思考,在练习单上完成第2题,然后再和自己的同桌说说你是怎么推理的。

  师:先确定什么?再确定什么?生回答,汇报自己的做法。

  3.第三关:说一说

  (课件出示三只小狗的图片)图中什么动物?他们身上挂的拿牌至师什么意思你们知道吗?(是的,就是他们的重量)欢欢、乐乐和小小师三只可爱的小狗。乐乐比欢欢中,笑笑师最轻的。你能写出他们的名字吗?

  师:请同学们先独立思考,然后在练习单上完成第1题。然后在和自己的同桌说说你是怎么推理的。

  师:谁来说说你的推理方法?

  师:恭喜同学们闯关成功,你们可真厉害,一个个都是小侦探。

  四、全课总结,

  师:那这节课你们有什么收获吗?

  师:在我们的学习和生活中可能会遇到很多难题,希望你也能够简单推理,先确定,再排除,使问题更简单,做一个生活中的有心人。

  板书设计:

  简单的推理

  语文 数学 品德与生活

  小红 小刚 小丽

《数学广角──》教学设计13

  教学内容:《九年义务教育课程标准实验教科书数学》(人教版)二年级上册, 8单元“数学广角—搭配”。

  教学内容分析:

  搭配就是排列与组合,这样的思想方法不仅应用广泛,而且是以后学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。

  学情分析:

  二年级学生学习兴趣浓厚,喜欢思考,具有简单的分析、判断、推理能力。但是学生合作意识不强,胆子也较小,思考问题不够全面,有序性不强。本节内容,学生才开始接触,但在学习生活中,经常遇到,对学生来说,并不陌生,启发学生通过操作、观察、归纳以及合作交流,从而掌握搭配的方法。

  教学目标:

  1.学生在观察、猜测、操作的活动中,能够进行有序思考,做到不重复,不遗漏。

  2.感受数学与生活的密切联系,引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。

  3.在小组合作的数学活动中使学生养成与人合作的良好习惯。

  教学重点:

  自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活的问题。

  教学难点:怎样排列可以不重复、不遗漏。

  教具准备:数字卡片、给学生准备数位表格、课件等。

  学具准备:数字卡片、彩笔。

  教法学法选择:

  1、联系生活实际解决身边问题,体验学数学、用数学的乐趣。

  2、在具体的生活情景中让学生亲身经历发现问题,提出问题、解决问题的过程,体验探索成功的快乐。

  3、通过动手操作、独立思考和开展小组合作交流活动,完善自己的想法,构建自己独特的学习方法。

  4、通过灵活、有趣的练习,提高学生解决问题的能力,同时寻求解决问题的多种办法。

  教学过程:

  一、情景创设

  1、同学们,今天老师带大家到数学广角去逛一逛。好不好?

  2、数学广角的城堡可真漂亮,我们走近点吧!哎呀,大门上的星星钥匙怎么落到地上了?咱们帮忙安装上吧!注意,这门上的.两颗星星颜色可不一样哟。

  师:怎样装呢?

  生:红黄,黄红。

  师:我们装上试试(红黄,门没有反应)

  生: 黄红!

  师:会是黄红吗?(引导学生说出“一定是”)还有别的摆法吗?

  师:我们来交换一下它们的位置!

  师:你们可真聪明,大门打开了。

  二、探究新知

  1、哦,数学广角可真美,我们先到数字城堡看一看吧!

  师:有超级密码锁!

  狮子大王提醒我们:密码是由1、2、3其中的两个数拼成的两位数, 每个两位数的十位和个位上的数字不一样。你认为密码会是多少呢?

  生:随机说

  师:我听到了,21同学说重复了好几遍会不会有的数还没找出来呢?

  师:由数字1、2、3其中的两个数拼成的两位数有哪几种可能呢?我们思考下按顺序把他们列出来吧!

  老师给每个小组准备了一个资料袋,拿出里面的1号题和数字卡片,四人合作,两个同学思考摆一摆,一个同学读数,另一个同学对数据整理记录在答题纸上。操作的时候思考下排列的顺序,有多少组就写多少组。(提供9个格)

  师:谁愿意起来说说你们摆出了几个两位数?摆了哪几个两位数?

  2、汇报总结

  同桌两人汇报记录的结果,师找具有代表性的写法,在展示台上出示:如有学生遗漏的,帮助补上。

  ①有顺序的从这3个数字中选择2个数字,组成两位数,再把位置交换,又组成另外一个两位数。 12、 21 、23、32、13、31

  ②先确定十位,再将个位变动。 12、13、21、23、31、32

  ③先确定个位,再将十位变动。21、31、12、32、13、23

  生结:这些办法很有规律,他们的好处:不会重复,不会遗漏。

  师:超级密码现在有六种可能,到底是那个呢? 狮子大王又给我们新的提示:十位和个位相加是5(将答案缩小范围到32和23。提醒排列的顺序也很重要(板书:有序)),并且个位比十位小 揭晓答案:32 。

  师:你们真是细心的孩子,恭喜大家成为密码破解达人!

  三、巩固练习

  1、为感谢破解达人,狮子大王决定将百花园里最美的鲜花送给大家。

  这里有红、黄、蓝3种颜色的花,男生和女生只能分别选一种,都有哪些不同的选法呢?

  思考一下,把你选花的方案在2号答题纸上表示出来。设计之前,先思考下加粗的两个黑框里应该填什么。

  生汇报:

  师:能说说你是借鉴了黑板上的那种方法吗?

  小结:看来我们今天学习的搭配知识不仅仅是数字,也能在图形和色彩中运用啊!

  2、带上美丽的鲜花,我们到智慧屋瞧瞧吧!

  用0、2和5组成两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?

  生:口答。

  6种排列方法,但符合条件的只有4种。02和05不是两位数所以不在正确答案里。

  (告诫学生在有序排列的同时还要做到对答案进行恰当的筛选果。)

  四、应用拓展

  数学广角的风景如此美丽,我们一起合影留念吧!

  3名同学坐成一排合影,有多少种坐法?

  请坐的最端正的三名同学到讲台前演示一下。

  师:坐在位上的同学也别闲着,我们来当摄影师吧!摄影师除了拿相机照相还得干些什么?

  生:摆造型,摆位置……

  师:要照相了,笑一笑,1、2、3咔嚓!

  师:赶紧换一种坐法再照。

  引导学生第一个位置不动,后面两人交换位置。做出4种不同的排列方法,让学生发现规律。

  (透过这道题让学生体会固定位置与交换位置相结合的方法进行有序排列)

  师:同学们的办法真不错,我们这么快就就掌握了有序搭配的方法了。

  五、课后延伸

  师:小朋友们,握下手回到座位上吧!每两人握1次手,3人一共握几次手?哦,同学们有的说3次,有的说6次,其实这是下节课的内容,我们留到明天再来数学广角研究。

  六、回顾总结

  师:在今天的旅途途中你都有哪些收获?有什么想对大家说的?(生:真好玩,很有趣,学的很轻松。)

  师:原来生活中有这么多的数学问题,只要小朋友细心观察,就能发现更多有趣的数学问题,掌握了这些知识,我们就可以把生活装点的更加美丽!

  七、板书设计

  数学广角

  --有序搭配

  十位 个位 十位 个位 十位 个位

  1 2 1 2 2 1

  2 1 1 3 3 1

  1 3 2 1 1 2

  2 1 2 3 3 2

  3 2 √ 3 1 1 3

  2 3 3 2 2 3

  交换位置 固定十位 固定个位

《数学广角──》教学设计14

  【教学对象】三年级学生

  【授课教师】xx

  【教材分析】重叠问题是人教版小学数学三年级下册数学广角的内容。教材的编排顺序是首先用统计表列出参加语文小组和数学小组的学生名单,从中可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际参加这两个课外小组的总人数却不是17人,由此引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系表示出来。从图中清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。这里对学生渗透了集合的思想。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

  【学情分析】:集合思想是数学中最基本的思想,集合理论可以说是数学的基础。从学生一开始学习数学,其实就已经在运用集合的思想了。例如,学生在学习数数时,就常常把1个人、2朵花、3枝铅笔等用一条封闭的曲线圈起来表示,在学习认识三角形等图形时,也常常把各种不同的三角形用一个圈圈起来表示。又如,学生学习过的分类思想和方法实际上就是集合理论的基础。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重叠部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于两个独立的集合圈,没有采用教材例1统计表的呈现方式,从两个并列的集合圈引发学生的探究,更符合学生的学情。

  【教学目标】

  知识与技能

  (1)使学生能借助集合直观图,初步体会集合的思想方法。

  (2)利用集合的思想方法解决简单的实际问题。并能用数学语言进行描述。

  过程与方法

  (1)掌握解决重叠问题的一些基本策略。体验解决问题的多样性

  情感态度价值观

  (1)丰富学生对直观图的认识,发展形象思维。

  (2)使学生在主动参与数学活动过程中获得成功的体验,提高学生学习数学的兴趣。

  【教学重点】使学生掌握解决集合问题的一些基本策略,体验解决问题策略多样性。

  【教学难点、关键】体会集合的思想方法,利用集合的思想方法解决简单的实际问题。

  【教学方法】引导探究、讨论交流。【教学手段】多媒体课件、实物投影

  【教学过程设计】

  一、教学流程设计

  复习铺垫,导入新课设计意图:通过复习两个都是求一共有多少人的解决实际问题,能更好的为学生引入本课的学习有一个铺垫和生活体验。

  创设情景,探究新知设计意图:让学生通过情景感受,理解题意.激发兴趣.

  发现方法,交流成果设计意图:通过小组合作学习,同学之间会有交流的欲望,正好为学生搭建交流的平台,促进学生的直观思维上升为逻辑思维。

  练习巩固扩展提升设计意图:

  相应的练习是为了让学生对新知的巩固,从而提升能力。

  总结评价设计意图:

  1.小结意在学生对新知的一个提升和强化。并是一个总结归纳的过程。利于学生形成一个解题的方法和能力。

  二、教学过程设计

  教学设计的反思

  1、教学能有效的与学生的经验联系起来。

  在设计本节课时,能从学生的认知经验出发,从复习两道紧密相连的习题入手让学生在思维上引起认知冲突。所以一开始学生就已知本课学习的内容。尊重了学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。本节课从问题的引入到问题的拓展都紧紧围绕例题所提供的素材来合理的进行问题的设计,至使问题的设计才层层递进,一环扣一环。在设计学生探究“集合图”的过程中。因为集合图的产生比较抽象。所以变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。学生在解决问题的过程中既让学生感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。

  2、在问题的解决过程中,注重集合图与算式的有效结合。

  本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。

  3、注重学生的及时练习反馈,为随时调控教师的教学方式方法提供依据。

  课堂练习巩固是学生巩固知识方法、提高能力的必要环节,新课程改革以来,许多教师在情境创设、探究性学习和互动生成上下功夫,但在习题设计上却有所松懈。实践表明,小学生的学习很容易受环境的.影响,当堂解答习题的质量要明显好于课后解答的质量。本节课正是从以学生发展为本、保证学生学有所得的观念出发,精心为学生设计有针对性的练习。基本练习能确保学生应用当堂所学到的知识和方法解决实际问题,体验和感受学习成功的滋味,增强学习数学的信心。为了让学生感受解答方法的多样化和最优化。还设计了有针对性的练习。目的是为了要打破学生的思维定势,不让学生以为所有的习题都国用这种方法来解答。学生应该养成认真审题的习惯,根据问题的实质选择合适的方法来解决。其次,鼓励学生采用多种方法解决实际问题,发散学生的思维,培养学生的良好品质,提升学生的创新能力。实际教学证明,这样的习题很受学生欢迎,学生始终处于积极的思考、交流和感悟之中,从而实现了课堂教学的高效。

  4、智力游戏的出现为本节课起到了烘托和提升的效果。

  有趣的智力游戏培养了学生学习数学的兴趣。因为学以致用是学习的最终目的。在解决这样的问题中让学生体验到的学习的用处。让学生感悟到学习是能解决生活中的问题的。激发学生学习的内在动力。

  不足之处:在实际的教学中教师还不够放手让学生去充分表达自己的想法。在方法的优化的指导上也没有让学生有充分的认知。

《数学广角──》教学设计15

  一、教学内容:

  数学广角“田忌赛马”。

  二、教学目标:

  1、通过田忌赛马的故事,让学生体会对策论的方法在实际中的运应用。

  2.认识到解决同一个问题有不同的策略,能够找到解决问题的最优方案。

  3、初步培养学生的应用意识和解决问题的能力,初步感知对策论的思想方法。

  三、教学重难点:

  重点:通过列举田忌所有可以采用的策略,来找出并体会田忌赢齐王的策略方法。

  难点:学生能够把所学知识和实际生活联系起来,有效地运用到实际生活中去。

  四、教学准备:

  多媒体课件 、 表格

  五、教学过程:

  一、故事导入

  同学们,今天,让我们一起走进数学广角,学习田忌赛马。(板书课题:数学广角-田忌赛马)

  你们听过田忌赛马的故事吗?老师非常喜欢这个充满智慧的故事。田忌赛马是一个非常有名的.历史故事,其中蕴含着一个非常重要的对策,这节课,我们就要从数学的角度来分析这个故事,找到这个对策,而且我们还要学会应用这种对策来解决一些实际问题。

  今天让我们一起来重温这个故事。

  教师讲述田忌赛马的故事。

  二、探索新知

  田忌是怎样赢了齐王的?

  田忌采用的策略

  提问设疑。

  (1)田忌到底有多少种可以采用的应对策略呢?田忌所用的这种策略是不是唯一能赢齐王的方法呢?

  学生小组讨论交流,填写下面表格,集体汇报。

  我们一起来看看田忌一共有多少种可采用的策略。

  (2)你有什么发现?(田忌只有一种可以取胜齐王的方法。)

  小结:像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的策略,这是数学中的一种很重要的方法。

  三、学以致用

  1、完成教材第106页“做一做”。

  学生独立完成,然后集体汇报。

  2、数学游戏:108页两人轮流报数,每次只能报1或2,把两人所报的数加起来,谁报数后和是10,谁就获胜。想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报

  四、课堂总结

  通过今天的学习,你有什么收获?

【《数学广角──》教学设计】相关文章:

数学广角教学设计09-06

《数学广角──》教学设计08-07

《数学广角──集合》教学设计08-13

(合集)《数学广角──》教学设计08-08

《数学广角──》教学设计【汇编15篇】08-08

《数学广角──》教学设计15篇(精)09-18

[推荐]《数学广角──》教学设计15篇09-19

数学广角教学反思10-17

数学广角简单的排列组合教学设计04-05

三年级《数学广角》教学设计10-24