《数学广角──》教学设计

时间:2025-08-08 07:01:43 教学设计 我要投稿

(合集)《数学广角──》教学设计

  作为一位杰出的老师,时常需要准备好教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编收集整理的《数学广角──》教学设计,仅供参考,大家一起来看看吧。

(合集)《数学广角──》教学设计

《数学广角──》教学设计1

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的次品有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。

  新课程标准中指出:培养学生良好的数学思维能力是数学教学要达到的重要目标之一。因而新课标教材系统而有步骤地渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。通过教学使学生受到数学思想方法的熏陶,形成探索数学问题的兴趣与欲望,逐步发展数学思维能力。

  找次品的教学,旨在通过找次品渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,运用它可有效地分析和解决问题。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的沏茶、田忌赛马、打电话等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中会涉及到的 可能、一定、可能性的大小、分数的通分等知识点学生在此之前都已学过的。

  本节课学生的探究活动中要用到天平,在以往学习等式的性质等知识时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。

  新课程实施已有几年的时间,几年来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

  教学目标

  知识技能目标:让学生初步认识找次品这类问题的基本解决手段和方法。

  过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  教学方法

  1.加强学生的试验、操作活动。本节课内容的活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。活动完成后再让学生分组汇报结果。

  2.重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  教学过程

  课前谈话

  出示3瓶钙片,说明:在这3瓶钙片中有一瓶少装了几颗,你能帮我找出是哪一瓶少装了吗?

  学生自由发言。

  在同学们说的这些方法中,你认为哪一种方法最好?为什么?

  [设计意图:在这一环节中,要引导学生根据次品的特点发现用天平称的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

  出示天平。说说怎样利用天平来找出这瓶钙片呢?

  学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

  揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做找次品,这节课我们就一起来研究如何利用天平找次品。板书课题:找次品

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

  设疑:如果老师有2187瓶钙片,其中一瓶少了一颗,用天平几次保证能找到次品?请你猜一猜。

  找次品的解决方法

  小组合作:从5瓶钙片中找出少装了的'那瓶次品。

  (合作要求:用手模拟天平,用5个学具当钙片。你们是怎样称的?称了几次?组长负责作好记录。)

  指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

  平衡:11次

  5(2,2,1)

  不平衡:2(1,1) 2次

  5(1,1,1,1,1) 1次或2次

  从这儿我们可以看出,用天平找次品的方法是多种多样的。

  [设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。但考虑到学生用天平来称在操作上会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,为了便于学生操作和节省时间,所以让学生用手模拟天平来进行实践探究。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

  观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

  [设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解至少称几次就一定能找到这个次品 的含义,在此基础上让学生明白:当我们选用一种方法来分析的研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

  探索最优策略

  在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

  小组分工合作:用学具摆一摆并尝试画图表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,2名同学用图示法作记录,2名同学分析填表。)

  零件个数

  分成的份数

  每份的个数

  至少称几次就一定能找到这个次品

  [设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生摆学具而不再使用天平,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

  指名汇报,根据学生的回答填表并板书:

  平衡 3(1,1,1)

  9(3,3,3)

  不平衡3(1,1,1) 2次

  平衡1

  9(4,4,1) 平衡2(1,1) 3次

  不平衡4(1,1,2)

  不平衡1

  平衡1

  平衡(2,2,1)

  9(2,2,2,2,1) 不平衡2(1,1)3次

  不平衡2(1,1)

  9(1,1,1,1,1,1,1,1,1) 4次

  引导观察:用哪一种方法保证能找出次品需要称的次数最少?

  小结:平均分成3份去称,保证能找出次品所需的次数最少。

  [设计意图:小组汇报时将学生的操作过程用图示法板书,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

  解决课始提出的问题,只需7次,让学生从强烈的对比中感受数学的魅力。

  不能平均分成3份的应该怎样分呢?

  全班合作:用图示法从10个和11个零件中找出一个次品。

  (合作要求:将全班所有的小组分成2部分,一部分小组分析从10个零件中找出一个次品,另一部分小组分析从11个零件中找出一个次品。小组内先共同讨论出几种不同的分法,再2人合作选一种(组内不重复)用图示法分析。)

  指名汇报,投影展示学生的分析过程。

  引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

  [设计意图:设计待测物品数量为10个和11个,带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡,但考虑到学生独立用图示法分析仍有难度,因而采用两个合作的方式进行。把学生分成2部分分别分析10个和11个,并要求小组内选方法时组内不重复,这样能提高探究的效率,在较短的时间内把几种情况都分析到。]

  你知道这是为什么吗?你能不能对这个规律作出解释?

  [设计意图:4-6年级学段目标中指出:在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明,能表达解决问题的过程,并尝试解释所得的结果。学生通过合作探索、归纳总结出了找次品的最优策略,解释这个规律能使学生对得出结论从感性认识上升为理性认识。要想用比较少的次数找到次品,那么每称一次都应该将次品锁定在一个尽可能小的范围内,因为天平有2个托盘,每称一次不但能对放上去的2份进行推理判断,还能对没放上去的1份进行推理判断,所以每称一次保证能锁定范围的最小值是待测物品的三分之一左右。]

  拓展提高

  猜测:这种方法在待测物品的数量更大时是否也成立呢?

  第135页做一做:

  有( )瓶水,除1瓶是盐水略重一些外,其他几瓶水质量相同。至少称几次能保证找出这瓶盐水?

  请你选择一个合适的数来解这道题,独立用图示法分析,验证你的猜测是否正确。

  [设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,再将做一做进行适当的改编,设计成较为开放的问题,既能满足不同层次学生的需求,又可以用更多的数据对总结的规律进行验证。如果课堂时间不允许,这一环节也可以作为课堂的延伸让学生课后完成。]

  《找次品》教学反思

  著名的心理学家布鲁纳说过这样一句话:学习的最好刺激是对学习材料的兴趣。学生有了兴趣,学习活动对他们来说不是一种负担,而是一种享受、一种愉悦的体验。因此,上课开始,我首先拿出学生们喜欢的口香糖调动学生的兴趣,并与学生交流:老师这里有3瓶口香糖,要送给今天表现得最出色的同学,不过其中有一瓶已经被我吃过了两片,送给你们肯定不行,你能用什么办法把它找出来吗?随着学生的回答揭示本节课的教学内容找次品:在生活中常常有这样一些情况,在一些看似完全相同的物品中混着一个重量不同的,轻一点或是重一点,利用天平能够快速准确的把它找出来,我们把这类问题叫做找次品。

  从3瓶口香糖中找次品的方法是本节课的基础。在这一环节中,我让学生用手做天平的托盘,感知从3瓶口香糖中找次品,只要称一次就足够了。接着

  让学生用五个圆片代替5瓶口香糖,通过自己动手操作,体验从五件物品中找出一件次品的基本方法。随后,师生小结出方案。第一种方案:每份分一个,至少需要称两次就一定能找出来。第二种方案:有2份分2个,1份分1个,至少需要称两次就能找出来。

  然后通过从9个零件中找出一个轻一些的次品,归纳出找次品的最优方法。《数学课程标准》强调:教师是学习的组织者、引导者和合作者。教师的引导能让学生对学习的程序、方式、方法、策略等有更进一步的了解。所以,本环节我把主动权交给学生,让学生小组合作,在试验、研讨的过程中自主探索解决问题的最优方法。接下来,在学生汇报、交流时引导学生归纳出找次品的最优策略,一是把待测物品平均分成3份,这样次数最少。

  接着呼应课前的猜想,从9到27到81到243到729到2187,只需7次就能保证找到次品,学生从强烈的反差中感受到数学的魅力。

  为了知识体系的完整,我让学生继续自主分析8瓶的找法,当数字不能被平均分成3份时,怎样分更合理,从均分2份需3次,而分成3、3、2时只需2次,从而更加清楚均分3份的好处,及尽量均分3份的策略。但因时间仓促,过程太简单,效果受到影响。

《数学广角──》教学设计2

  教学内容:

  人教版义务教育课程标准实验教科书小学数学二年级上册第八单元数学广角—搭配(一)

  教学目标:

  知识与技能:使学生通过观察、猜测、操作、比较等活动,找出最简单的事物的排列数和组合数。

  过程与方法:经历探索简单事物排列与组合规律的过程,初步理解简单事物排列与组合的不同,初步感悟简单的排列、组合的数学思想方法。

  情感态度与价值观:培养学生有顺序地全面思考问题的意识和感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:

  经历探索简单事物排列与组合规律的过程。

  教学难点:

  让学生初步感悟简单的排列、组合的数学思想方法

  教学准备:

  每人4、5、6数字卡片各一张

  教学过程:

  一、创设情境,导入新课

  师:同学们,你们好!今天非常高兴来到神灵寺小学和大家共同上一节课。首先自我介绍一下:我是来自于西安市莲湖区机场小学的李老师,大家猜猜看我的年龄,学生自由说。

  师:我的年龄是用数字3和4组成的两位数,我有可能是多少岁?(34岁或43岁)

  二、小组合作,探究新知

  1、感知排列:

  我在机场小学带的二年级的两个班,这两个班的人数恰好一样多,人数是由4、5、6其中的两个数字组成的两位数,每个两位数的十位和个位数字不能一样,想想一共有多少种可能性?

  1)引导学生用数字卡片摆一摆,摆出的结果写在练习纸上。(摆一个写一个)

  2)教师巡视,收集信息。

  3)展示反馈:

  预设:

  方法一:无序的。

  方法二:先写出4在十位上的有45、46;再写出5在十位上的'有54、56;再写出6在十位上的有64、65。

  方法三:交换数字的位置,用数字4、5能写出45、54;用数字4、6能写出46、64;用数字5、6能写出56、65。

  4)引导学生评价每一种方法。

  师:今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。

  同学们,现在自己梳理一下自己的思路,把方法记录下来。

  【设计意图]让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。】

  2、感知组合:

  1)师:我们的学生都非常喜欢学校,因为学校开展了丰富的社团活动,有足球、合唱、美术,如果每人参加其中的两项,一共能搭配出多少种组合?

  2)引导学生在练习纸上尝试写出搭配结果。

  3)师:有几种搭配方案?生答(预设:6种、3种等)

  4)师生共同演示分析,得出正确结果:3种。(足球+合唱跟合唱+美术属于一种)

  5)小结:我们在解决这样的搭配问题时也要按照一定的顺序,这样就不会重复也不会遗漏。

  【设计意图:引导学生思考,进而梳理知识,总结归纳】

  3、感知排列和组合的不同:

  1)师:老师现在有一个疑问,排数字卡片时用3个数字可以摆出6个不同的数,3个社团搭配不同的组合却只有3种,同样是3个元素,为什么搭配的结果会不一样呢?

  2)学生思考、小组讨论。

  师生共同总结:摆数与顺序有关,搭配社团活动与顺序无关,交换位置没有意义。

  【设计意图】借助排列数的活动经验,让学生亲身经历画一画、写一写、议一议、比一比等活动的过程,感受有序思考的价值,同时在方法的交流中体会到排列数和组合数的相同之处和不同之处,培养学生的动手操作能力、合作意识和交流能力。】

  三、巩固练习升华体验

  1、握手问题:

  1)师:同学们的表现真不错,老师很想跟你们握一下手。(教师不自主的一边走一边伸手和同学握手)。刚才老师和几个同学握了手(3个):如果我们四个人每两个人握一次,一共要握多少次呢?

  2)师:小组为单位,看看每两个人握一次手,四个人一共要握手多少次?(学生活动)然后把结果记录下来。

  3)师生共评、总结。

  2、照相问题:

  1)师:上完课之后,我要跟何校长、你们的班主任合影留念,我们三个人之间能照几张不同的三人照呢?

  生思考

  2)师:所谓不同是什么不同?

  生:站的位置不同。

  3)师引导学生画图排列出结果。

  【设计意图:通过解决不同类型的搭配问题,让学生进一步巩固排列和组合问题的解决策略和方法,感受有序思考问题的价值,让学生亲身体会到数学知识和现实生活的密切联系。】

  四、全课小结,感悟内化

  谁能说说这节课你学到了什么?你的感受是什么?

《数学广角──》教学设计3

  【课例名称】:

  《数学广角——合理安排时间》(1课时)

  【执教教师】

  【指导教师】

  【课型】

  新授

  【学段(年级)】

  小学四年级

  【教材版本】

  人教版四年级上册

  【教学内容】

  人教版《义务教育课程标准实验教科书数学》四年级上册p113例2

  【教材分析及教学建议】

  例2以家里来客人要沏茶的实际素材为背景,提出“怎样安排才能尽快让客人喝上茶?”问题,继续讨论如何用优化的思想选择合理、快捷的解决问题的方法。让学生分小组来设计方案,要让学生首先思考并讨论清楚:这些工序中哪些事情要先做?哪些事情可以同时做?看看每一种方案中,沏茶的顺序对不对,所需的时间各是多少,从中选出最佳的方案。

  【教学目标】:

  1、使学生通过简单的事例,认识到解决问题策略的多样性,学会选择合理、快捷的方法解决问题。

  2、让学生初步体会到优化思想在解决实际问题中的应用,形成寻找最优方案的意识。

  3、使学生逐渐养成合理安排时间的良好习惯,提高解决实际问题的能力。

  【教学重点】体会优化的思想。

  【教学难点】学会选择合理、快捷的方法解决问题,形成寻找最优方案的意识。

  【教学具准备】多媒体课件、沏茶工序卡片。

  【教学过程】

  一、课前活动,引出话题。

  1、师生谈话。你在家里帮父母做家务吗?你会做什么呢?你能用“一边(干什么)一边(干什么)”的句式来说一句话吗?。

  2、刚才造句中说的几件事都是可以同时做的,不仅在文字里有这样的表述,在数学领域也有关于这方面的知识。我们今天就来学习数学广角(出示课题)——合理安排时间。

  [设计意图:简单而平实的导入把课堂和生活融合在一起,让学生体会到我们要学的',正是我们生活中要用到的,这样的学有所用,才会使学生更有积极性。与此同时,这样的设计又是语文和数学学科的整合,“一边……一边……”正说明可以同时做不同的事,这两件事之间即有内部联系又有不同的方式,而这其间的合理安排,正是这节课里要学习的统筹方法。]

  二、创设情境,探究方法。(学习例2)

  1、提出问题

  师:星期天的上午,小明家的门铃响了。原来是李阿姨到小明家做客。(出示例2画面)从图上你能得到哪些信息?

  想一想:你平时沏茶的时候都需要做哪些事?

  师:我们来看看小明沏茶都需要做哪些事?分别需要多长时间?(出示各项工序图片)谁能说给大家听?

  师:小明要做这么多事,请你帮小明想一想,他应该先做什么,再做什么?

  师:(在学生回答后提问)小明先烧水行吗?看来,合理安排时,要考虑好各项事情的先后顺序。(板书:先后顺序)

  师:那什么事情可以同时做呢?

  2、学生自主设计方案。

  师:同学们都挺善于开动脑筋的。那小明要怎样安排这些事情才能让客人尽快喝上茶呢?请同学们以小组为单位,帮小明设计一种能尽快让客人喝上茶的方案。现在,请拿出你们准备好的工序图片摆一摆,然后算一算,你们设计的方案需要多长时间?(生分小组合作学习,师参与学生的小组活动)

  3、展示学生不同的方案

  师:谁来给大家说一说,你们是怎样安排的?(请学生上台摆工序图片,师引导学生叙述设计的过程:你们先干什么?一共需要多少分钟?)

  师;还有谁有更快的方法?(请另一组学生上台摆工序图片)

  ①洗水壶→接水→烧水→沏茶(11分钟)

  洗茶杯

  找茶叶

  ②洗水壶→接水→烧水→洗茶杯→找茶叶→沏茶(14分钟)

  ③洗水壶→接水→烧水→找茶叶→沏茶(12分钟)

  洗茶杯

  4、学生比较,选择最合理的安排方法。

  师:比较上面的方案,你认为哪一种能尽快让客人喝上茶?为什么?

  生:第一种,因为用的时间少。

  师:在哪节省了时间?

  生:烧水的同时洗茶杯。找茶叶,同时做了3件事,所以更节省时间。

  师:说得真好!看来,合理安排时,不仅要考虑哪些事应该先做,而且还要考虑能同时做的事情要安排同时进行,这样就能节省时间。(板书:同时进行)那么,像这种能让客人最快喝上茶的方案,我们把它称为“最优方案”。我们来看看电脑老师为我们呈现的这种最优方案的流程图。(出示流程图)

  5、小结:上面①③这两种方案都是通过同时做几件事才节省时间的。③的方法是同时做了两件事,而①的方法是同时做了三件事,所以最节省时间。看来,我们在做一些事情的时候,能同时做的事情越多所用的时间就越短。在生活中,不仅仅是沏茶,还有很多事情都可以用同样的理念去解决。请和老师一起去看看一些生活小问题吧。

  [设计意图:本着从学生的生活经验和知识基础出发的原则,我首先创设了生活中熟知的情境----为客人沏茶,这样浓郁的生活气息,很容易吸引学生的注意力,激发学生的学习兴趣。接着让学生先想一想,自己沏茶的时候需要做什么事,再看小明需要做哪些事,这样设计能巧妙地拉近学生和小明之间的距离,使问题层层递进,使教学过程衔接自然。通过观察知道,小明做的事很多,请同学们帮助小明想一想,该先做什么,再做什么。有了这样的基础之后,才让同学们小组合作交流,动手操作,摆一摆,算一算,这样就为设计出最优化的方案提供了素材,让学生自主设计方案,体现了学生才真正是学习的主人。最后通过学生的汇报,共同总结出最优化方案。让学生真正地在亲自动手实践的过程中,设计出了合理安排时间的最优化方案。]

  三、实践应用(我是小小设计家)

  1、师:小红也遇到了一个问题,你们愿不愿意帮帮她呀?好,让我们一起去看看。(出示吃药画面)

  师:你能从图上得到什么信息?吃药的过程包括几件事?分别需要多长的时间?小红又遇到了什么难题呢?请你和同桌讨论一下,应怎样安排事情,才能让小红吃完药后能尽快休息?(学生汇报,老师出示最佳流程图)

  [设计意图:数学源于生活,还要服务于生活。基于这样的理念,我又设计了“我是设计小行家”的生活小问题。让学生能运用新掌握的设计理念来设计最优化的方案,解决生活中的实际问题。]

  2、师:通过刚才的设计,我们对设计优化方案、合理安排事情有了更进一步的了解。下面,对于他们的安排,请你说说看法。(出示课件:(1)、为了提高学习质量,强强在乘车时认真看书。(2)、为了节省时间,红红边吃饭边看电视动画片《蜘蛛侠》。)

  (生:乘车看书时,车子在行驶中会使车内的光线忽明忽暗,车子在行驶中摇晃,会使眼睛与书的距离时近时远,所以会影响视力,损害眼睛健康;看电视,是大脑在进行活动,大脑活动需要有大量的血液供应,而人在吃饭时,也需要有大量的血液和消化液帮助胃肠消化食物,两者相互争着血液的供应,结果两者都得不到充分的血液。因此,既妨碍了食物消化,影响了健康,也看不好电视。所以说这样的安排都是不科学的。)

  师小结:通过分析上面的事情,我们明白了,合理安排事情,不但要考虑节省时间,还要考虑人身的健康和安全,更要讲究科学。

  [设计意图:对合理安排事情有了初步认识后,再来对这部分内容进行提升。让学生更加深刻的认识科学并合理安排事情的真谛。]

  3、师:同学们,在我们的身边还有许许多多需要合理安排的事情,聪明的人总是把事情进行最优的安排来提高效率。请想一想,生活中还有哪些事情可以通过合理安排来提高效率的?(生说)

  [设计意图:请学生们说一说生活中例子,让同学们再一次的感悟生活与数学的密不可分的关系。]

  四、课堂总结。

  1、师:今天我们不仅帮助小明和小红解决了问题,同时也有了自己的收获。谁能说说自己的收获和体会呢?

  2、师:这节课我们学习了合理安排事情,在生活中可以提高效率,节省时间。伟大的文学家鲁迅有这样的一句话:(课件出示)“时间,每天得到的都是24小时,可是,一天的时间给勤勉的人带来智慧和力量,给懒散的人只能留下一片悔恨。”把这句话送给大家,希望大家能够运用今天所学的知识合理安排自己的学习和生活,做一个珍惜时间的人。

  [设计意图:在设计“课堂总结”这一环节中,首先让学生畅谈了自己的收获和体会,再一次体现学生是学习的主体。然后再用名人名言结束了本节课,能给学生留下深刻的铬印,给学生以启迪。]

  五、课后作业:设计一张时间表,合理地安排星期天的学习和生活时间。

  六、板书设计:

  合理安排时间

  ①洗水壶→接水→烧水→沏茶(11分钟)

  洗茶杯

  找茶叶

  ②洗水壶→接水→烧水→找茶叶→沏茶(12分钟)

  洗茶杯

  ③洗水壶→接水→烧水→洗茶杯→找茶叶→沏茶(14分钟)

《数学广角──》教学设计4

  一、教材分析

  说课的内容是:是人教版三年级下册第九单元“数学广角”的第一课时“简单的集合”。

  《数学广角》内容的增设,它主要是介绍和渗透一些数学思想方法,涉及的重叠问题是日常生活中应用比较广泛的数学知识。是小学阶段集合思想教学。

  二、学情分析

  集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的`认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。

  二、教学目标的制定

  (一)知识与技能

  1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。

  2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。

  (二)过程与方法

  通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。

  (三)情感态度与价值观

  体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。

  三、教学重难点

  教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。

  教学难点:理解集合图的意义,会解决简单重复问题。

  四、教学准备

  多媒体课件、小白板、练习题卡

《数学广角──》教学设计5

  《数学广角》是义务教育教科书二年级上册的第一课时。教材以学生熟悉而又感兴趣的生活场景为依托,重在向学生渗透数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数字和学习概率统计奠定基础。

  根据对教材的分析,我确立了以下教学目标:

  ①通过观察、比较、实验等活动,找出最简单的事物的排列数和组合数。

  ②引导学生发现和应用排列组合的规律,做到不重复也不遗漏地找出事物的排列数和组合数。

  ③培养初步的观察、分析、及推理能力和有序地全面地思考问题的能力。

  ④感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。

  ⑤使学生在数学活动中养成与人合作交流的良好习惯。

  我确定本节课教学重点是掌握求简单事物的排列和组合的方法,难点是引导学生发现规律,做到不重复也不遗漏地找出事物的排列数和组合数。

  在日常生活中,有很多需要用排列组合来解决的知识。如搭配衣服、搭配早餐,密码箱中密码的排列数等等,作为二年级的学生,已有了一定的生活经验,因此在数学学习中注意安排生动有趣的活动,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力

  课程标准确立了“为了每一位学生的发展”的理念,基于这样的认识,这节课我主要采用的教学方法有:

  1、从生活情景出发,为学生创设探究学习的情境。这节课,我力求从学生的生活情境出发,为学生学习创设“三个小朋友带我们游数学广角”这样一个探究的情境。

  2、联系生活实际,让学生体会数学与生活的密切联系。

  3、改变学生的学习方式,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

  4.采用灵活的教学方法,鼓励学生独立思考、自主探索与合作交流。

  5.电子白板的使用。 本节课我完全利用了电子白板自带功能去满足整节课堂的需要!电子白板的最大特色就是编辑和展示共存交互性!教学中我运用了书写、标注…多媒体展示和传统黑板书写相结合的功能,直接在图片和课件展示中去记录、标注和批阅;在生动直观的教学过程中巩固和强化我们学习的内容。

  学生是学习的主人,《数学课程标准》提出了重视学生学习过程的全新理念,要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。在以往的教学中,我更多关注的是学生获取“知识与技能”的结果。教学不能为了快速获得结果,而大大缩短知识的形成过程。因此我在设计这节课时,尝试采取多种手段引导每一个学生积极主动地参与学习过程,无论是探索新知的过程还是练习的设计都注重生活与数学的`结合。本节课在学生学习方法上力求体现:

  1、联系生活实际解决身边问题,体验学数学、用数学的乐趣。

  2、在具体的生活情景中让学生亲身经历发现问题,提出问题、解决问题的过程,体验探索成功的快乐。

  3、通过动手操作、独立思考和开展同桌合作交流活动,完善自己的想法,构建自己独特的学习方法。

  4、通过灵活、有趣的练习,提高学生解决问题的能力,同时寻求解决问题的多种办法。

  本节课我还试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例,让学生运用操作、演示等直观手段解决问题,让学生“读——理解”、“疑——提问”、“做——解决问题”、“说——表达交流”,并在其中获得对基本数学思想方法的感悟在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。

《数学广角──》教学设计6

  一、教学目标

  1、通过对生活优化问题的合作探究,感悟合理、快捷解决问题的策略,提高学生解决问题的能力。

  2、初步感受统筹思想在日常生活中的应用,尝试用统筹的方法来解决实际问题。

  3、使学生在自主探索、合作交流中积累数学活动的经验,逐渐养成科学合理安排时间的良好习惯。

  二、教学重点、难点

  主题:合理安排时间

  重点:尝试合理安排时间的过程,体会合理安排时间的重要性。

  难点:掌握合理安排时间的方法。

  三、教具准备

  多媒体课件、教具

  四、教学过程

  1、联系生活,谈话导入。

  师:同学们,平常在家你们会帮爸爸妈妈做家务吗?谁来说说你在家都会做哪些家务?(学生发言)

  (课件出示)周末小强和妹妹主动轮流帮妈妈做家务:

  拖地:8分钟 烧开水:10分钟

  师:勤劳的小强和妹妹每个周末主动帮助妈妈做家务,一天,妈妈问:你俩都帮妈妈做了家务,你们分别用了多长时间呀?小明说用了18分钟。妹妹却只用了10分钟。小明摸摸了头感到很奇怪。做的是完全一样的'两件事,为什么时间会不一样呢?

  请同学们帮助分析,小明是怎样完成这几件事,妹妹是怎样完成这几件事的?

  反馈:

  生1:小明一件件做,妹妹是同时做。

  (学生中可能说出同时一词,师相继出示课件)

  师:不错,说的很好。我们知道有的事情可以同时进行,而有的事情有先后顺序。今天,就让我们一起到数学广角里通过学习沏茶问题,学会合理安排时间吧!

  关键:要考虑到同时做的几件事,不能互相影响,点出合理。

  2、创设情境,探究新知。

  a沏茶问题

  (1)又是一个星期天,小明家来客人了(出示课件),你从图中得到哪些信息?

  生:小明要沏茶、妈妈在陪客人聊天、李阿姨来家做客、小明想怎样让客人尽快喝上茶?

  师:哦,那在我们生活里,父母要陪客人的时候,我们也得做些力所能及的事哟!

  师:想一想,你平时沏茶的时候都需要做哪些事?估一估,做这些事情各需多少时间?(指名说)

  (2)看一看,小明沏茶做了哪些事情?分别需要多长时间?(出示课件)(齐说)

  师:①沏茶的工序这么多,小明应该先做什么?再做什么?哪些又可以同时做,我们一起来设计沏茶方案,尽快让客人喝上茶,好吗?(可用序号标出)

  ②在练习纸上设计出沏茶的过程,环节间可借助箭头连接,并计算出一共用了多少时间?

  ③设计后,同桌交流合作,比比谁的设计方案即合理又省时。

  (3)学生展示、解说设计方案,学生集体观察。

  方案A:洗水壶1分钟→接水1分钟→烧水8分钟(洗茶杯2分钟找茶叶1分钟)→沏茶1分钟

  1+1+8+1=11(分钟)

  方案B:洗水壶分钟→接水1分钟→烧水8分钟→找茶叶1分钟→洗茶杯2分钟→沏茶1分钟

  1+1+8+1+2+1=14(分钟)

  师:(出示课件,老师设计的方案)比小明节省了多少时间?

  对这些方案,你认为哪种方案最合理,又省时间?为什么(同时)?合理安排就是节省时间,考虑做哪件事有空闲时,同时做哪些事,这样才能做到合理安排时间,节省时间。

  三、运用知识,解决问题。

  1、引导学生完成教材第114页“做一做”第2题。

  (1)师:帮完小明,我们再来帮助小红,小红感冒了,她想吃完药赶快休息,小红在休息之前要做这些事:(出示图表后,理解水变温的意思),应如何安排才能让她尽快休息呢?请同学们独立思考,设计出流程图,并算出至少需要多长时间?(要求书写格式规范)

  (2)展示学生的流程图,生评议。(课件显示结果)

  找被子倒水1分钟→等开水变温6分钟(同时量体温5分钟找感冒药1分钟)

  1+6=7分钟

  师:单独完成需要几分钟?看经过我们合理安排顺序,比单独完成节省了6分钟,这样小红就可以尽快的休息了。

  五、畅谈收获,全课小结。

《数学广角──》教学设计7

  教学目标:

  1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。

  2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的'过程中,进一步体会集合的思想,进而形成策略。

  3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。

  教学重难点:

  1.重点: 让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。

  2.难点:对重叠部分的理解。

  教学准备:课件,名单卡片

  教学流程:

  (一)创设情景,激趣导入。

  (二)探究新知

  1. 情景引入,课件出示通知

  通知

  学校定于下周五举行趣味运动会,请三年级各班选拔

  9名同学参加跳绳比赛,8名同学参加踢毽比赛。

  校体育组

  (1)了解信息。

  (2)师:你觉得三(1)班选拔多少人参加这两项比赛?学生尝试回答参加比赛总人数。

  2.出示名单,引发认知冲突

  (1)课件出示三(1)班学生参加跳绳、踢毽比赛学生名单。

  (2)学生观察,你有什么发现?总人数是17人吗?

  (3)有没有什么办法能让大家很快看出哪些人两项比赛都参加了?

  3.合作探究,体验过程

  (1)学生小组内讨论交流,可以借助图、表或其他方式。

  (2)汇报交流。

  4.介绍韦恩图

  (1)介绍韦恩图的来历。

  (2)结合例题明确每一部分表示的含义。指生说一说。

  5.想一想,可以怎样列式解答?

  生尝试列式,全班交流。讲清算式的含义。

  6.估计:咱们班可能选拔多少人参加这两项比赛?

  (三)巩固练习

  (四)全课小结 这节课你有什么收获?

  板书设计:

《数学广角──》教学设计8

  一、教学内容:

  数学广角“田忌赛马”。

  二、教学目标:

  1、通过田忌赛马的故事,让学生体会对策论的方法在实际中的运应用。

  2.认识到解决同一个问题有不同的策略,能够找到解决问题的最优方案。

  3、初步培养学生的应用意识和解决问题的能力,初步感知对策论的思想方法。

  三、教学重难点:

  重点:通过列举田忌所有可以采用的策略,来找出并体会田忌赢齐王的.策略方法。

  难点:学生能够把所学知识和实际生活联系起来,有效地运用到实际生活中去。

  四、教学准备:

  多媒体课件 、 表格

  五、教学过程:

  一、故事导入

  同学们,今天,让我们一起走进数学广角,学习田忌赛马。(板书课题:数学广角-田忌赛马)

  你们听过田忌赛马的故事吗?老师非常喜欢这个充满智慧的故事。田忌赛马是一个非常有名的历史故事,其中蕴含着一个非常重要的对策,这节课,我们就要从数学的角度来分析这个故事,找到这个对策,而且我们还要学会应用这种对策来解决一些实际问题。

  今天让我们一起来重温这个故事。

  教师讲述田忌赛马的故事。

  二、探索新知

  田忌是怎样赢了齐王的?

  田忌采用的策略

  提问设疑。

  (1)田忌到底有多少种可以采用的应对策略呢?田忌所用的这种策略是不是唯一能赢齐王的方法呢?

  学生小组讨论交流,填写下面表格,集体汇报。

  我们一起来看看田忌一共有多少种可采用的策略。

  (2)你有什么发现?(田忌只有一种可以取胜齐王的方法。)

  小结:像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的策略,这是数学中的一种很重要的方法。

  三、学以致用

  1、完成教材第106页“做一做”。

  学生独立完成,然后集体汇报。

  2、数学游戏:108页两人轮流报数,每次只能报1或2,把两人所报的数加起来,谁报数后和是10,谁就获胜。想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报

  四、课堂总结

  通过今天的学习,你有什么收获?

《数学广角──》教学设计9

  第二课时教学内容:

  教科书第120页的内容

  知识目标:

  通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;

  能力目标:

  让学生自己动手,自己实验,得出规律,解决生活中的实际问题。

  情感目标:

  通过小组合作、交流,培养学生的协作精神。

  教(学)具准备:

  长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。

  教学过程:

  一、复习铺垫

  同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?

  指名回答,引导学生说出棵数与段数的关系:

  两端都种只种一端两端都不种

  棵数=段数+1棵数=段数棵数=段数-1

  请你把这个规律跟同桌说一遍;教师在黑板上贴示。

  二、引入新课:

  前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花

  这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律

  1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。

  1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?

  2)、学生以小组为单位操作;

  3)、交流:你们小组种了几棵,把圆分成了几段?

  4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)

  2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。

  1)、出示长方形空地题目

  我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?

  2)、四人小组讨论,并把种的方法在练习纸的'长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);

  教师巡视指导;

  3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?

  得出:种植路线是长方形的,种植棵数与种植段数是相等的。

  4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。

  5)、展示不同的解决问题的方法,集体讨论判断正误

  3、研究在其他封闭图形上种树:

  A、你还想在什么封闭路线上种树?(指名回答)

  B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?

  C、小组交流。

  4、得出规律:在封闭路线上植树:棵数=段数(板书)

  5、联系:它和非封闭路线上的哪种情况相同?

  (告诉学生事物就是这样相互联系的!

  6、质疑问难:大家还有什么疑问吗?

  如果在不规则的封闭路线上植树,棵数和段数是否相同?

  三、尝试练习:

  练习第121页的做一做上的习题

  学生尝试练习,交流,指名板书解题方法。

  四、课堂小结。

  这节课你最大的收获是什么?

  第三课时课题:围棋中的数学问题

  教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。

  教学目标:

  1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

  3.让学生感受数学在日常生活中的广泛应用。

  教学重点:从封闭曲线(方阵)中探讨植树问题。

  教学难点:用数学的方法解决实际生活中的简单问题。

  情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。

  教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。

  课前准备:课桌围成回字形。

  教学过程:

  一、情境导入(课件出示)

  猜谜:十九乘十九,

  黑白两对手,

  有眼看不见,

  无眼难活久。(打一棋类名称)

  [设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]

  二、探索新知

  1.教学每边摆放3粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?

  (2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)

  (3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。

  (4)汇报交流(着重请学生说出方法。)

  可能会出现以下方法:

  32+2=824=8

  33-1=834-4=8直接点数。

  教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)

  2.教学每边摆放4粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?

  (2)动手操作:请学生分小组按要求摆放棋子,写出算式。

  (3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。

  [设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]

  (4)汇报交流(着重请学生说出方法)

  教师随学生回答,用课件出示摆放方法。

  (5)你们最喜欢哪种方法?为什么?

  3.教学每边摆放5粒棋子的方法。

  (1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?

  (2)动手操作:请学生分小组按要求摆放棋子,写出算式。

  (3)汇报交流。(教师随学生回答,用课件出示摆放方法。)

  (4)你们最喜欢哪种方法?和同桌说一说。

  [设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]

  三、总结规律

  (1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)

  每边放的个数最外层总数

  3

  4

  5

  6

  18

  你发现了什么规律:_____________________________________

  (2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?

  (2)总结规律::教师随着学生的回答板书:

  间隔数边数=最外层的总数

  (3)学生根据规律,独立完成例3。

  三、运用规律

  1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

  如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

  如果最外层每边能放300个,最外层一共可以摆放多少个棋子?

  拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)

  2.做第121页第三题

《数学广角──》教学设计10

  教材简析:

  本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在经济问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

  学情分析:

  1:教师主观分析:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理交流等活动寻找解决问题的方法,从不同的方法中选择最佳方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

  2:学生认识发展分析:学生对优化问题可能在生活、学习中只是一点朦胧的了解,根本说不上什么是优化,因此在教学过程中尽可能地从实际出发,从学生原有的生活出发,让学生感受优化的价值,从而培养学习数学的兴趣。

  3、学生认知障碍点:“优化”的理解。

  教学目标:

  1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

  2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的`意识。

  3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

  4、使学生能积极地参与数学学习活动,体会到学习数学的乐趣。

  教学重点:

  体会优化思想。教学难点:探究解决问题的最佳方案。

  教学过程:

  一、 教学环节:

  1、 谈话引入;2、情境引入,学习新知;3、实践应用;4、全课总结,寻找规律。

  二、 教师活动:

  1、 制作课件(妈妈为家人烙饼);2、三张圆纸片。

  三、 预设学生行为:

  1、 可能见过烙饼,可能没见过;2、学生演示烙饼(怎样快));3、学生讨论小结,怎样烙饼快,最佳方法是什么(在学生解决问题中得出);4、探究规律(可能学生不可能一下总结出规律,可在老师帮助下得出)。

  四、 设计意图:

  从学生亲眼看到或亲身经历的问题入手,创设情境,让学生进一步通过观察、操作、推理、交流等寻找解决问题,在解决问题中体会数学在实际生活中的价值,初步体会优化思想。

  板书设计:

  烙饼问题

  快速烙饼法

  饼速X3=所需最少的时间

  学生学习活动评价设计:

  充分利用学生在实际生活中亲身经历的事情(烙饼)调动学生学习积极性、激发学生学习数学的兴趣,教师在此只是彰显学生动手操作、实验、推理、交流寻找答案、得出最佳答案,达到本课之目的。

《数学广角──》教学设计11

  教学内容:

  新人教版二年级下册第109页的内容。

  教学目标:

  1.通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义,初步获得一些简单推理的经验。

  2.能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  3.在简单推理的过程中,培养学生初步的观察、分析、推理和有条理地进行数学表达的能力。

  4.使学生感受推理在生活中的广泛应用,初步培养学生有顺序地、全面思考问题的意识。

  教学重点:

  理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单推理的经验。

  教学难点:

  初步培养学生有序地、全面思考问题及数学表达的能力。

  教学过程:

  一、创设情境,激趣导入

  师:同学们,你们喜欢玩游戏吗?好,咱们一起来玩一个猜一猜的游戏。

  师:老师一只手拿着橡皮,一只手拿着硬币,你能一次就能猜出那只手拿着橡皮,那只手拿着硬币吗?(生:不能)。

  师:现在给大家一个提示:老师右手拿的不是橡皮

  师:现在你能猜出结果吗?说说你的理由。(学生回答。)

  小结:像这样根据已经知道的条件,逐步推出结论的过程,在数学上称为推理。今天这节课老师就和大家一起进行一些简单的推理。

  教师板书课题:数学广角----简单的推理

  师:说到推理,可不得不提到一位高手,你们知道是谁吗?(名侦探柯南)。对了他就是我们的神秘嘉宾柯南,他给大家带来了一些推理题,你们敢接受挑战吗?先让我们一起走进柯南基础训练营,准备好了吗?出示课件。

  师:比比谁反应快,并说出你是如何判断的。

  师:同学们刚才思维真敏捷,一下子就说答案了,看来基础训练营的题对你们来说太简单了,老师要提高难度了,准备好了吗?

  二、师生互动,探究新知

  1.通过情景短剧,呈现问题。

  师:现在让我们一起走进柯南提高训练营。

  课件出示例1.

  2.理解题意,分析问题。

  师:从题目中你能知道写什么?要我们解决的我们问题?“有语文、数学和品德与生活三本书,下面三人各拿一本”这句话什么意思?

  师:到底他们三人分别拿的是什么书呢?请同学们先独立思考,把解决这个问题的过程用你喜欢的方式记录下来,再把你的想法和同组的同学交流一下。

  3.学生记录,集体展示

  师巡视并收集学生方法,展示学生做法时由繁到简。

  同学们的办法真不少,咱们先来一起看一看这几位同学的记录方法。

  预设1:描述法

  (投影)生1:小红拿语文书,小丽拿品德与生活书,小刚拿数学书。

  让生说理由,师适时追问“你为什么这么肯定?”等。

  生:因为小红说她拿的是语文书,所以就可以确定小红拿的是语文书,剩下数学和品德与生活书。而小丽又说她拿的.不是数学书,就可以把数学书排除掉,只剩下品德与生活书,就是小丽拿的了。那么小刚拿的就是数学书。

  预设2:一一对应(列表法)

  小红

  小丽

  小刚

  语文

  数学

  品德与生活

  (投影)生2:我是边思考边在人名下面写上他们拿的是什么书。

  预设3:连线法

  (投影)生3:我是这样做的。先将三个人的名字和三本书名写成两行,然后根据每一个条件进行连线:小红说她拿的是语文书,就直接把小红和语文书连上线;剩下的小丽和小刚就只能和数学书和品德与生活书连线了。又因为小丽说她拿的不是数学书,所以小丽拿的就是品德与生活书了,再连上线;最后把小刚就和剩下的数学书连线。(教师配合学生的想法在黑板上原先的板书基础上进行连线。)

  师:同学们,这位同学用的是什么方法呀?(连线法,师及时在黑板上用红色粉笔板书)这个方法你们觉得怎么样?

  4.总结时求同引思

  师:上面三种方法都是先确定谁?然后呢?最后剩下谁?

  生:先确定小红拿语文书,再排除小丽拿数学书,最后剩下小刚拿数学书。

  师:其实在推理过程中有一些小窍门,柯南还把他们编成了推理儿歌,想一起来读一读吗?比比谁的声音最响亮。

  生齐读:我是一名小侦探,抓住线索认真想,能确定的先确定,能排除的再排除,剩下越少越好猜。你认为哪两句最重要?生说师板书:能确定的先确定,能排除的先排除。

  学习了这些推理小窍门门后,现在请同学们把你们的推理过程给你的同桌再说说,好吗?

  三、闯关练习,巩固知识

  师:刚才同学们成功地将柯南提高训练营里完成训练,接下来柯南决定带你们一起到推理城堡里去闯关了!有信心吗?

  1.第一关:猜一猜

  小伟、小雨,小东三人分别在一、二、三班。小伟是三班的,小雨下课后去一班找小冬玩儿。小冬和小雨各是几班的?

  师:谁来说说你是推理的?你先确定谁的班级?为什么?

  师:还想猜吗?看谁反应快,说说你的理由。

  2.第二关:连一连

  下面三位同学各拿着什么动物卡片?

  师:先独立思考,在练习单上完成第2题,然后再和自己的同桌说说你是怎么推理的。

  师:先确定什么?再确定什么?生回答,汇报自己的做法。

  3.第三关:说一说

  (课件出示三只小狗的图片)图中什么动物?他们身上挂的拿牌至师什么意思你们知道吗?(是的,就是他们的重量)欢欢、乐乐和小小师三只可爱的小狗。乐乐比欢欢中,笑笑师最轻的。你能写出他们的名字吗?

  师:请同学们先独立思考,然后在练习单上完成第1题。然后在和自己的同桌说说你是怎么推理的。

  师:谁来说说你的推理方法?

  师:恭喜同学们闯关成功,你们可真厉害,一个个都是小侦探。

  四、全课总结,

  师:那这节课你们有什么收获吗?

  师:在我们的学习和生活中可能会遇到很多难题,希望你也能够简单推理,先确定,再排除,使问题更简单,做一个生活中的有心人。

  板书设计:

  简单的推理

  语文 数学 品德与生活

  小红 小刚 小丽

《数学广角──》教学设计12

  教学目的:

  1、使学生通过简单的事例,初步体会运筹思想和对策论方法在解决问题中的运用。

  2、是学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意思。

  3、让学生感受到数学在日常生活中的广泛运用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意思和解决问题的的能力。

  4、是学生逐渐养成合理安排时间的良好习惯。

  教学重点:

  合理安排最节省时间的操作,体会在解决问题中的最优化思想的应用。

  教学关键:

  合理利用时间烙三张饼的方法。

  教具准备:

  多媒体课件、扑克牌。

  教学过程:

  一、情境导入:

  1、同学们喜欢吃烙饼吗?谁烙过饼,或看家长烙过?能给大家说说烙烙饼的过程吗?

  2、烙饼中有许多数学知识,这节课我们就去探寻有关烙饼的知识。

  板书课题:烙饼中的数学问题

  二、探究新知

  1、出示主题图

  师:“从图上你能得到哪些信息?”师:“妈妈烙一张饼最少需要几分钟?”

  师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”

  小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。

  师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?

  2、学生操作,探究烙3张饼的方法。

  让学生用发的扑克牌烙一烙,同桌说说用了几分钟,是怎样烙的.。 【设计意图】在引导学生烙一张饼、2张饼的基础上,留给学生具有探索价值的“3张饼烙法”进行自主探究、合作交流,遵循学生认知的发展规律,有利于学生体验与理解、思考与探索;恰当地处理了直接经验与间接经验的关系,符合《课标》对课程内容的要求。

  3、学生演示烙饼法。

  师:谁愿意把你烙饼的方法介绍给大家。(学生上台动手烙,边烙边说)

  让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”

  4、师生演示小结烙饼三张饼的方法:速烙饼法

  师:观察思考:你发现了什么?

  (

  1、使用快速烙饼法,锅里面必须同时放2张饼。

  2、用的时间短。)让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。 【设计意图】烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。

  5、迁移运用

  师:(出示表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  小组活动,通过小组交流,使学生找到最佳方法。 教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”

  学生发言。班内交流,并比较哪个小组的方法最好。

  教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”

  5、探究规律。

  让学生仔细观察表格、小组讨论交流,说一说自己的发现。

  (1)仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?

  (2)仔细观察烙饼的张数不同烙饼的方法有什么不同?

  学生在充分交流探讨的基础上,得出结论:

  1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。

  【设计意图】通过拓展性的设问,既是对前面所学知识进行巩固和运用,也是为了让学生找到最优方法,一方面为学生思维能力的培养提供了时间和空间,另一方面让学生在实践中体会了优化思想在解决实际问题中的应用。

  二、拓展延伸

  课件出示114页做一做第1题。

  教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”

  1、引领理解题意。

  2、全班交流

  三、全课总结

  1、这节课你学到了什么?

  2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。

《数学广角──》教学设计13

  一、教学目标

  (一)知识与技能

  1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。

  2.让学生借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。

  (二)过程与方法

  通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。

  (三)情感态度与价值观

  体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。

  二、教学诊断

  “集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。

  三、教学重难点

  教学重点:了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。

  教学难点:理解集合图的意义,会解决简单重复问题。

  四、教学准备

  多媒体课件、小白板、练习题卡

  五、教学过程

  (一)巧用对比,初悟“重复”

  1.观察与比较(课件出示图片)

  第一组;父与子

  (1)提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?

  第一种:无重复情况。

  黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。

  预设:列式一:2+2=4(人)

  第二种:有重复情况。

  汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。

  列式二:2+2=4(人)4-1=3(人)

  师追问:为什么减1?

  第二组:小棒拼三角形

  (1)3根小棒拼成的一个三角形。

  (2)提出问题:摆2个这样的三角形需要几根小棒?

  预设:可能会说6根,表示3+3=6(根)

  还可能会说5根,表示3+3-1=5(根)

  图片出示有重复情况的2个三角形。

  教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?

  2.思考与发现

  (课件出示)把2组有重复情况的图片放在一起。

  (1)提问:你发现了什么?

  学生思考,回答想法。

  教师要引导学生突出:

  (1)“重叠”或“重复”一词;

  (2)列式中“减1”的意义;

  (3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;

  (4)师生小结,得出:图片1中有个人既是爸爸又是儿子,他的身份重复了;三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。

  教师揭示课题,今天我们研究有重复现象的数学问题。

  【设计意图】设计2组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。

  (二)善用例题,引入新课

  1.情境引入(课件出示“通知”)

  (1)了解信息,提出问题

  你认为三(1)班要选拔多少名同学参加这两项比赛?

  让学生尝试回答参加比赛的总人数。

  (2)出示名单,引发认知冲突

  课件出示三(1)班参赛学生的名单的统计表,让学生观察。

  2.观察名单,验证人数,初悟“重复”

  问题:仔细观察过这份报名表,你有什么发现?

  让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。

  【设计意图】根据学生熟悉情境引入,通过具体情况引发矛盾冲突,提出问题,“在参加人数数据较多的情况下,发现重复的人数”,找准教学的起点,调动学生探索的积极性。

  (三)合作探究,体验过程

  1.策略分析

  谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?

  让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。

  借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。

  【设计意图】通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。

  2.探究方法

  (1)选出几种不同作品展示,理解分析不同整理方法。

  预设:方法一

  方法二:

  方法三:

  (2)交流不同思想,比较各自的优缺点。

  (3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。

  课件出示:

  (4)介绍韦恩,拓宽视野

  课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家叫维恩发明创造的, 维恩图常用来研究表示数学中的“集合问题”,也叫集合图。

  【设计意图】让学生亲历整理过程,在这个过程中通过合作、思考、交流、比较等活动,让学生充分认识到,体现重复部分怎样做到既直观又美观,还能表示每部分的内容。结合各小组展示的优点,引出韦恩图,让学生了解韦恩图的同时,又体会到数学文化的底蕴。

  3.辩论感悟

  谈话:现在用维恩图来表示各项参赛的.人数,与之前的表格比较,它有哪些优点?

  让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。

  4.据图列式,运用集合图

  谈话:你了解图中各部分的意义吗?

  (1)课件演示各部分,让学生比较正确表述各部分的意义。

  (2)利用数据,列式计算出该班参加比赛的人数。

  指名学生计算,反馈交流,理解各算式的意义。

  可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)

  【设计意图】让学生借助直观图,理解集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。

  5.变式练习,内化集合思想课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。

  教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。

  请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。

  师生小结。【设计意图】变式练习是让学生从集合图中会看信息,到会填写集合图的一个数学思想的延伸,也是解决重复问题的关键,是为学生以后解决此类问题打好基础。

  (四)巩固应用,建构模型

  1.基础性练习

  (1)完成教材上105页“做一做”第1题.

  指导学生把动物的序号填进合适的图中,并请学生说说集合图中各部分的意义

  2.趣味性练习

  3.拓展性练习

  估计三(3)班可能有多少同学参加比赛。

  讨论:根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?

  判断:参赛的同学最多有17人。( )参赛的同学最少有 8人。( )

  小组讨论,全班分析,得出:参赛同学最多是17人,没有人重复;最少有9人,其中8人重复。

  【设计意图】设计一组由梯度的练习,从简单应用到开放,从正向思维到逆向思维,既链接所学知识资源,又实现对学生思维的拓展。这样的练习设计不仅能让学生结合集合思想进行分析,还能结合可能性的知识解决问题。

  (五)全课总结,呼应课题

  师:今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。

《数学广角──》教学设计14

  教学内容:人教版三年级下册第九单元P108例1

  教学目标:

  1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。

  2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。

  教学重难点:理解集合图的各部分意义及解决简单问题的计算方法。

  教具、学具:课件、带有学生姓名的小贴片。

  教学过程:

  一、问题情境,导入新课

  师:出示下面统计表

  师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?

  生:8+9=17人,

  师:同意吗?一定吗?

  生:齐说同意、一定。

  师:出示图1集合圈,

  语文组 数学组

  师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?

  师:相机出示带有17个同学姓名的图片。

  【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】

  二、探究新知

  1、问题的引出

  师:出示例题中的统计表

  师:仔细观察这张表格提供的信息与前面的表格提供的信息有什么不同?

  生:有几个同学重复了。

  生:有三个同学既参加参加了语文小组又参加了数学小组。

  师:刚才这位同学说“重复”是什么意思?

  生:重复,就是一个人参加了两项活动。

  师:在实际生活中你们遇到过这种情况了吗?

  生:遇到过,比如我既参加了象棋小组又参加了绘画小组。

  生:我参加了三个兴趣组。

  师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?

  生:图2。因为图2有重复的部分。

  师:只能用图2来表示来表示重复的关系吗?

  生:两个长方形(正方形、三角形)交叉在一起也行。

  师:谁来说说重复的部分是什么意思?

  生:重复部分就是两项活动都参加人。

  师:同意吗?

  生:同意。

  师:参加语文组的有几个人?参加数学组的呢?

  生:语文组有8人,数学组有9人。

  师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。

  【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】

  2、交流汇报

  师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。

  师:怎样计算参加两个小组的人数一共有多少人?

  生:一共是14人,我是数出来的。

  生:8+9=17 17-3=14

  师:第一个表格为什么直接用8+9=17就算出参加两个小组的人数,而这一次8+9后还要再减去3呢?

  生:因为如果还是17的`话就把杨明、李芳、刘云多算了一次,因此要减去3。

  生:第一个表格没有重复参加的,第二个表格有重复参加的。

  师:不管用数的方法还是用算式计算都要注意什么?

  生:不能把重复的三个人多算了一次。

  【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】

  3、明确“韦恩图”各部分表示的意思,感受其的价值。

  师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?

  生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。

  师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的字样。

  师:简单介绍“韦恩图”来历。

  师:在实际生活中,往往提供的信息不会像表格中那样的。

  师:相机把例题呈现在统计表中的学生姓名打乱。

  师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?

  生:用“韦恩图”来表示。

  师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。

  师:你认为在什么样情况下使用“韦恩图”来解决问题呢?

  生:有重复关系的,

  师:相机板示课题:数学广角——重叠问题。

  【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】

  三、巩固应用,落实“双基”

  1、教材p110练习二十四第1题

  2、教材P110练习二十四第2题

  四、拓展延伸,发展能力

  师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?

  师:请同学读题,并与原例题进行比较

  师:请同学拿出第二组供贴图用的学具片

  师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?

  交流回报:

  生:8+9=17人,我是把两个圆圈分开摆的

  生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的部分是2人。

  生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。

  师:结合学生的口述,相机展示学生的作品

  师:重点引导学生交流结果是9人的集合图各部分之间的关系。

  师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?

  生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。

  生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。

  师:也就是说这道题没有确定语文组和数学组之间的具体关系。

  师:那你认为做这样的题目首先要注意什么?

  生:搞清重复的人数。

  生:在画图时要确定相交的部分应该是几人。

  生:考虑问题要全面些。

  师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?

  生:重复的部分越多,参加两项活动的人数就越少。

  生:要想参加两项活动的人数多最好互不交叉。

  生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。

  师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。

  五、全课总结

  师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策

  略?这一策略以前你用过吗?

《数学广角──》教学设计15

  教学目标

  1.通过观察、猜测、操作等活动,找出最简单的事物的组合数。

  2.经历探索简单事物组合规律的过程。

  3.培养学生有顺序地全面地思考问题的意识。

  4.感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:

  经历探索简单事物组合规律的过程。

  教学难点:

  能用不同的方法准确地计算出组合数。

  教学准备:

  准备主题图中相关的学具卡片或实物。

  教学过程:

  第一课时

  一、引入新课

  同学们,你们帮助老师选一套衣服,打扮打扮好吗?我最喜欢红色体恤和这三件下衣,到底怎样搭配最漂亮呢?请小朋友们给老师出出主意。小朋友们纷纷发表自己的意见,并说出了自己的理由。

  播放课件:数学广角――由北京国之源软件技术有限公司提供

  谢谢大家。你们的建议都不错。那我这一件上衣、三件下衣能有多少种不同的穿法呢?老师接着问:那我有两件上衣、三件下衣又有多少种不同的穿法呢?有说4种、有说5种、也有说6种的,到底有几种呢?

  二、新课学习

  1.搭配衣服

  课件:图T恤牛仔衣裙子牛仔裤长裙

  (1)几件上衣?几件下装?如果一件上衣和一件下装搭配在一起算一种穿法,你会选择哪一种?

  (2)你认为一共有多少种?

  (3)利用学具自己摆一摆,你摆了几种?怎样摆的?轻声和同桌交流。

  全班交流。

  你觉得她摆得怎么样?这样摆有什么好处?她按一定的顺序摆,不遗漏。

  板书:有序不遗漏

  谁还有不同的摆法?

  (4)比较两种搭配,一种是固定上衣,用下装搭配,一种是固定下装,用上衣去搭配。(课件同步演示衣服和裤子的搭配方式)

  (5)想想刚才怎么摆的,有什么简便的方法把它表示出来?四人小组合作完成。然后汇报。

  第二种:把圆和正方形当成衣服,长方形、菱形、三角形代表裤子

  用哪几种图形表示两件上衣的?

  用汉字表示的有哪些组?还有不同的方法吗?

  比较你喜欢哪一种?为什么?师板书图形表示的那种。(板书:简单,明确)

  2.生活中的应用

  (1)早点搭配。

  牛奶、豆浆

  蛋糕、油条、饼干

  饮料和点心只能各选一种,你能知道我的早餐有多少种不同的搭配?

  牛奶和蛋糕、油条、饼干搭配,豆浆和蛋糕、油条、饼干搭配。

  先是蛋糕和牛奶、豆浆搭配,油条和和牛奶、豆浆搭配,饼干和和牛奶、豆浆搭配。

  如果增加一种点心汉堡,一共有多少种搭配?

  8种,因为多了一种点心,再和两种饮料搭配,所以多了2种。

  (2)走路中的搭配

  从儿童乐园经过百鸟园到黄山,一共有多少条路线?

  请学生在书上数一数几条路线?

  课件出示:

  (3)从太原经过杭州到黄山一共有多少种不同的走法?

  图:

  ▲太原

  ▲杭州

  ▲黄山

  三种交通方式:火车、飞机、汽车

  三、拓展练习

  P112做一做

  四、总结

  通过这节课的学习,你有什么收获?

  第二课时

  教学目标:

  1.通过观察、猜测、操作等活动,找出最简单的事物的排列数。

  2.经历探索简单事物排列规律的过程。

  3.培养学生有顺序地全面地思考问题的意识。

  4.感受数学与生活的紧密联系,激发学生学好数学的信心。

  教学重点:经历探索简单事物排列规律的过程。

  教学难点:初步理解简单事物排列与组合的不同。

  教学过程:

  一、引入新课

  森林学校的数学课上,猴博士出了这样一道题:用数字1、2能写出几个两位数?问题刚说完小动物们都纷纷举手说能写成两个数:12、21。

  接着猴博士又加上了一个数字3,问:“用数字1、2、3能写出几个两位数呢?”

  小猪站起来说能写成3个,小熊说6个,小狗说7个,到底能写出几个呢?

  同学们说一说,“用数字1、2、3能写出几个三位数呢?”

  二、新课学习

  (一)例2

  1.合作探索

  请同学们也试着写一写,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。学生活动教师巡视。

  2.发现问题

  学生汇报所写个数,教师根据巡视的情况重点展示几份,引导学生发现问题:有的重复写了,有的.漏写了。

  3.小组讨论

  每个同学写出的个数不同,怎样才能很快写出所有的用数字1、2、3组成的三位数,并做到不重复不遗漏呢?

  学生以小组为单位交流讨论。

  4.小组汇报汇报时可能会出现下面几种情况:

  (1)无序的。

  (2)从高位到低位,数字由小到大。先写出1在百位上的有123、132;再写出2在百位上的有213、231;再写出3在百位上的有312、321。

  (3)从高位到低位,数字由大到小等方法。

  5.小结教师简单小结学生所想方法引出练习内容:课本113页例2,小组讨论完成。

  (二)例3

  小朋友们喜欢什么样的球类运动呢?让学生各抒已见。当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。

  世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。

  如果这四个队每两个队踢一场球,一共要踢多少场?

  课件演示主题图,继续播放课件:数学广角――由北京国之源软件技术有限公司提供

  让学生大胆说一说、猜一猜。四人小组用学具卡片摆一摆、讨论讨论。

  学生汇报时可让学生利用学具卡片在黑板上演示他们求组合数的方法。小组演示,其他同学认真观看。然后在相互探讨、补充。力求能准确算出比赛场数。方法允许多样。每种方法都放手让学生相互交流、学习。老师适当引导。

  A.用画“正”字数出要踢多少场。

  B.把巴西、土耳其、中国、哥斯达黎加四个国家摆成正方形用连线的方法求出场数。

  C.把巴西、土耳其、中国、哥斯达黎加四个国家摆在一条直线上,再用连线的方法求出场数。

  刚才同学们有的用了把所有的情况逐一罗列出来,有的同学是用图示法求出两两组合数的,用任意一种方法求都可以,只要这种方法是你喜欢的。

  比赛结束了。运动员相互握手告别。问题是:四个人每两人握手一共要握几次手呢?

  (1)进行礼仪教育。

  (2)四人小组进行实践。

  (3)请1-2个小组代表上台演示。

  三、拓展练习。

  1.如果是5个运动员每两人握一手,一共要握几次手呢?讨论、汇报。

  2.数字2、3、4、5写出不同的三位数?写完交流。

  四、总结

  通过今天的学习,你有什么收获?

  实践活动掷一掷

  教学目标

  1.使学生初步体验事件发生的确定性和不确定性。

  2.使学生学会列出简单试验所有可能发生的结果。

  3.使学生知道事件发生的可能性大小是不同的,能对一些简单事件发生的可能性大小进行比较。

  活动过程:

  以连环画的形式来展示活动的过程。

  (一)示范游戏

  1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些是不可能出现,哪些是可能出现。)

  2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。

  3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。

  (二)小组内游戏,探索结论。

  通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。

  (三)理论验证

  通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。

  活动小结

  本次活动通过让学生猜想、实验、验证等过程,让学生在问题情境中自主探索,解决问题,既发展了学生的动手实践能力,又充分调动了学生的学习兴趣。

【《数学广角──》教学设计】相关文章:

数学广角教学设计09-06

《数学广角──》教学设计08-07

《数学广角──集合》教学设计08-13

数学广角简单的排列组合教学设计04-05

数学广角教学反思10-17

三年级《数学广角》教学设计10-24

《数学广角—找次品》教学反思11-14

《数学广角》说课稿12-04

《数学广角——》说课稿06-20