《数学广角──》教学设计【汇编15篇】
作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教学设计,借助教学设计可以让教学工作更加有效地进行。那么教学设计应该怎么写才合适呢?下面是小编收集整理的《数学广角──》教学设计,希望能够帮助到大家。
《数学广角──》教学设计1
教学内容:
新人教版二年级下册第109页的内容。
教学目标:
1.通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义,初步获得一些简单推理的经验。
2.能借助连线、列表等方式整理信息,并按一定的方法进行推理。
3.在简单推理的过程中,培养学生初步的观察、分析、推理和有条理地进行数学表达的能力。
4.使学生感受推理在生活中的广泛应用,初步培养学生有顺序地、全面思考问题的意识。
教学重点:
理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单推理的经验。
教学难点:
初步培养学生有序地、全面思考问题及数学表达的能力。
教学过程:
一、创设情境,激趣导入
师:同学们,你们喜欢玩游戏吗?好,咱们一起来玩一个猜一猜的游戏。
师:老师一只手拿着橡皮,一只手拿着硬币,你能一次就能猜出那只手拿着橡皮,那只手拿着硬币吗?(生:不能)。
师:现在给大家一个提示:老师右手拿的不是橡皮
师:现在你能猜出结果吗?说说你的理由。(学生回答。)
小结:像这样根据已经知道的条件,逐步推出结论的过程,在数学上称为推理。今天这节课老师就和大家一起进行一些简单的推理。
教师板书课题:数学广角----简单的推理
师:说到推理,可不得不提到一位高手,你们知道是谁吗?(名侦探柯南)。对了他就是我们的神秘嘉宾柯南,他给大家带来了一些推理题,你们敢接受挑战吗?先让我们一起走进柯南基础训练营,准备好了吗?出示课件。
师:比比谁反应快,并说出你是如何判断的。
师:同学们刚才思维真敏捷,一下子就说答案了,看来基础训练营的题对你们来说太简单了,老师要提高难度了,准备好了吗?
二、师生互动,探究新知
1.通过情景短剧,呈现问题。
师:现在让我们一起走进柯南提高训练营。
课件出示例1.
2.理解题意,分析问题。
师:从题目中你能知道写什么?要我们解决的我们问题?“有语文、数学和品德与生活三本书,下面三人各拿一本”这句话什么意思?
师:到底他们三人分别拿的是什么书呢?请同学们先独立思考,把解决这个问题的过程用你喜欢的方式记录下来,再把你的想法和同组的同学交流一下。
3.学生记录,集体展示
师巡视并收集学生方法,展示学生做法时由繁到简。
同学们的办法真不少,咱们先来一起看一看这几位同学的记录方法。
预设1:描述法
(投影)生1:小红拿语文书,小丽拿品德与生活书,小刚拿数学书。
让生说理由,师适时追问“你为什么这么肯定?”等。
生:因为小红说她拿的是语文书,所以就可以确定小红拿的是语文书,剩下数学和品德与生活书。而小丽又说她拿的.不是数学书,就可以把数学书排除掉,只剩下品德与生活书,就是小丽拿的了。那么小刚拿的就是数学书。
预设2:一一对应(列表法)
小红
小丽
小刚
语文
数学
品德与生活
(投影)生2:我是边思考边在人名下面写上他们拿的是什么书。
预设3:连线法
(投影)生3:我是这样做的。先将三个人的名字和三本书名写成两行,然后根据每一个条件进行连线:小红说她拿的是语文书,就直接把小红和语文书连上线;剩下的小丽和小刚就只能和数学书和品德与生活书连线了。又因为小丽说她拿的不是数学书,所以小丽拿的就是品德与生活书了,再连上线;最后把小刚就和剩下的数学书连线。(教师配合学生的想法在黑板上原先的板书基础上进行连线。)
师:同学们,这位同学用的是什么方法呀?(连线法,师及时在黑板上用红色粉笔板书)这个方法你们觉得怎么样?
4.总结时求同引思
师:上面三种方法都是先确定谁?然后呢?最后剩下谁?
生:先确定小红拿语文书,再排除小丽拿数学书,最后剩下小刚拿数学书。
师:其实在推理过程中有一些小窍门,柯南还把他们编成了推理儿歌,想一起来读一读吗?比比谁的声音最响亮。
生齐读:我是一名小侦探,抓住线索认真想,能确定的先确定,能排除的再排除,剩下越少越好猜。你认为哪两句最重要?生说师板书:能确定的先确定,能排除的先排除。
学习了这些推理小窍门门后,现在请同学们把你们的推理过程给你的同桌再说说,好吗?
三、闯关练习,巩固知识
师:刚才同学们成功地将柯南提高训练营里完成训练,接下来柯南决定带你们一起到推理城堡里去闯关了!有信心吗?
1.第一关:猜一猜
小伟、小雨,小东三人分别在一、二、三班。小伟是三班的,小雨下课后去一班找小冬玩儿。小冬和小雨各是几班的?
师:谁来说说你是推理的?你先确定谁的班级?为什么?
师:还想猜吗?看谁反应快,说说你的理由。
2.第二关:连一连
下面三位同学各拿着什么动物卡片?
师:先独立思考,在练习单上完成第2题,然后再和自己的同桌说说你是怎么推理的。
师:先确定什么?再确定什么?生回答,汇报自己的做法。
3.第三关:说一说
(课件出示三只小狗的图片)图中什么动物?他们身上挂的拿牌至师什么意思你们知道吗?(是的,就是他们的重量)欢欢、乐乐和小小师三只可爱的小狗。乐乐比欢欢中,笑笑师最轻的。你能写出他们的名字吗?
师:请同学们先独立思考,然后在练习单上完成第1题。然后在和自己的同桌说说你是怎么推理的。
师:谁来说说你的推理方法?
师:恭喜同学们闯关成功,你们可真厉害,一个个都是小侦探。
四、全课总结,
师:那这节课你们有什么收获吗?
师:在我们的学习和生活中可能会遇到很多难题,希望你也能够简单推理,先确定,再排除,使问题更简单,做一个生活中的有心人。
板书设计:
简单的推理
语文 数学 品德与生活
小红 小刚 小丽
《数学广角──》教学设计2
教学目标:
1、使学生借助具体内容,初步体会集合的数学思想方法。
2、运用集合的思想方法解决一些简单的数学问题或实际问题。
3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。
教学重、难点:
1、初步体会集合的思想方法。
2、运用集合图来表示事物。
教具准备:展示题
教学过程:
一、激趣引入
师:同学们喜欢参加什么课外兴趣小组?
1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢
师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)
二、互动探究
1、出示例题
三(1)班参加语文、数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
师:同学们从例题当中得到了那些信息?
师:参加语文和数学兴趣小组的.一共有多少人?
1、教师根据学生的回答相机板书人数。
17人、16人、15人、14人……
师:这么简单的一个问题为什么会出现好几个答案?
师:我们一起来演示了看看你能发现什么。
2、教师请学生把名字条放到相应的小组里。出现了多余的三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。
语文小组数学小组
杨明、李芳、刘红
3、师生一起互动解决问题后,把得到的信息板书在黑板上。
4、介绍韦恩图。
5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。
喜欢语文
喜欢数学
只喜欢语文
只喜欢数学
既喜欢语文又喜欢数学
6、根据这些板书信息尝试列式。
7、学生汇报列式教师相机板书。
8+9-3=14(人)
5+3+6=14(人)
……
8、同学们现在知道参加两个兴趣小组的共多少人了吗?
9、学生选择自己喜欢的计算方法相互说算理。
10、回看学生最初汇报的语文和数学兴趣小组的人数并评价。
11、对比韦恩图和统计表请学生评价。
三(1)班参加语文、数学课外小组的学生名单
语文杨明李芳刘红陈东王爱华张伟丁旭赵军
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东
语文小组数学小组
教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学
而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。
师:我们打开108页,刚才咱们学习的就是108页的内容,请同学们再看一遍还有什么不懂的吗?
三、运用知识解决问题
1、完成书上110页练习二十四第一题和第二题。
四、总结
师:今天上了这节课你有什么收获?
五、课外延伸
师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。
作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。
板书设计:
数学广角
《数学广角──》教学设计3
教学内容:
义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。
教学目标:
1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。
2.数学思考目标:
能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。
3.问题解决目标:
(1).能借助直观图,利用集合的思想方法解决简单的实际问题。
(2).渗透多种方法解决重叠问题的意识。
4.情感态度目标:
(1)培养学生善于观察、善于思考的能力。
(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。
教学重难点:
1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。
2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。
教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。
学法指导:
1.借图观察、分析、讨论、交流、操作。
2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。
教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。
学具准备:常规学具、彩笔、作业本。
教学过程:
一、创设情境,引入新课
1.激情导入,引出例题
师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)
师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)
师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?
设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。
三一班某小组同学“献爱心”的情况:
生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。
生2:我发现捐款的有5人,捐物的有6人。
师:你能提出一个数学问题吗?
生1:捐款的比捐物的少几人?
生2:捐物的比捐款的多几人?
生3:捐款的和捐物的一共多少人?
2.设问质疑,引发冲突
师:参加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
师:这么一个简单的问题怎么会有这么多不同的答案呢?
生:里面的同学重复了。
师:哪里重复了?(李彤和任一,课件闪动。)
看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)
师:下面请同学们分组讨论,如何去调整表格?
二、小组交流,探究新知
1.分组讨论、调整表格。(各组代表汇报、操作、展示)方案一:
师:你觉得你们组这样摆有什么好处?
生:把重复的两个同学摆在前面,能引人注意。
师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?
(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)方案二:
师:哇!你们的摆法很独特,说说你们这样摆有什么好处?
生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。
师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。
设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。
(课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)
2.圈一圈。
师:请同学们观察这张调整后的表格,捐款的.都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?
设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。
3.探究韦恩图
师:为了让大家看的更清楚、更直观,请看大屏幕:
(1)取消表格。
表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。
(2)捐款的移到左边,捐物的移到右边。
(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)
设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。
(4)介绍韦恩图。
师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)
设计意图:介绍课外知识,拓宽知识视野。
师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。
4.列式计算。
(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。
师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。
(2)计算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)
讨论:为什么要减2?(因为有2个人既捐款又捐物)
方法二:3+2+4=9(口答) 方法三:5+4=9(口答) 方法四:3+6=9(口答)
设计意图:发展学生思维,体现方法多样化。
三、实践应用,巩固内化
师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:
1.举一反三(4道抢答题)
2.把下面的动物填在合适的位置。
3.看图填空。
4.思维训练
三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。
(1)既参加数学竞赛又参加作文竞赛的有几人?
(2)只参加数学竞赛的有几人?
(3)只参加作文竞赛的有几人?
设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。
四、总结质疑,自我提高
1.学生说这节课的收获并质疑
2.互相评价、共同提高(自评 互评 生评师 师评生)
师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。
引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:
1.获得红花奖励的指哪些同学?
2.获得红星奖励的指哪些同学?
3.既获得红花奖励又获得红星奖励的指哪些同学?
4.只获得红花奖励的指哪些同学?
5.只获得红星奖励的指哪些同学?
6.获得红花奖励和红星奖励的一共有多少人?
设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。
五、作业布置,知识升华
我是小小设计师。(课后作业)
请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!
设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。
六、板书设计,凸显重点(体现学生的主体地位)
数学广角——集合
(1)活动表格(移动过程让学生经历韦恩图的产生过程)
捐款
(2)计算板演(体现方法的多样性)
方法一:5+6-2=9(人)
方法二:3+2+4=9(人)
方法三:5+4=9(人)
方法四:3+6=9(人)
答:捐款和捐物的一共有9人。
《数学广角──》教学设计4
教学内容:简单的排列和组合
教学目标:
1.知识能力目标:
①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。
②初步培养有序地全面地思考问题的能力。
③培养初步的观察、分析、及推理能力。
2.情感态度目标:
①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。
②初步培养有顺序地、全面地思考问题的意识。
③使学生在数学活动中养成与人合作的良好习惯。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。
教学准备:
多媒体课件、数字卡片、1角、2角、5角的人民币。
教学过程:
一、创设情境,引发探究
师:今天老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。
二、操作探究,学习新知。
(一)组合问题
l、看一看,说一说
师:今天老师给大家带来了几件漂亮的衣服,你们来挑选吧。(课件出示主题图)
师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)
2、想一想,摆一摆
(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?
①学生小组讨论交流,老师参与小组讨论。
②学生汇报
(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在纸板上。(要求:小组长拿出学具衣服图片、纸板。)
①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:
第一种方案(按上装搭配下装)有几种穿法? (4种)
第二种方案(按下装搭配上装)有几种穿法? (4种)
师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的.思考方法来解决它们。、操作探究,学习新知。
(二)排列问题
1、初步感知排列
(1)、师:我们穿上漂亮的衣服,来到了数学广角,可是这有一扇密码门,(出示课件:密码门)我们只要说对密码,就可以到数学广角游玩了。看小精灵给了我们提示(点小精灵)你们猜密码是什么?
(2)、学生猜密码(情景预设:有的学生说是12,有的学生说是21。)
(3)、试密码,打开密码门,进入数学广角乐园。
2、合作探究排列
(1)、师问:数学广角乐园美不美呀?(学生回答)它虽然很美,可处处充满着挑战,你们愿意接受吗?(学生回答)那么我们先到数学乐园里去看一看吧!(点数学乐园)
(2)、 师:同学们,我们到了数学乐园里 看到了什么呀?(回答)现在我们每个人都当一个小魔术师看谁的本领大?谁能把1、2、3这三个数字变成两位数,看谁变得最多?
(3)、学生活动,师巡视指导
(4)、学生汇报摆法,师板书。。
方法一:每次拿出两张数字卡片能摆出不同的两位数;
方法二:固定十位上的数字,交换个位数字得到不同的两位数;
方法三:固定个位上的数字,交换十位数字得到不同的两位
(5)、小结。
三、课堂实践,巩固新知
1、握手游戏:
师:同学们真棒!都能把数字1、2、3组成不同的两位数,而且不重复、不遗漏。下面老师带大家到运动乐园去看一看。(出示课件)看小朋友们在干什么?(生回答)
师:看到他们握手,老师有一个问题需要大家帮助解决一下。
(1)、出示问题
(2)、小组活动:握手
(3)、抽生上台表演
(4)、小结。
2、乒乓球比赛
三个人进行乒乓球比赛要举行几场?
(1)、小组讨论
(2)、学生汇报
(3)、小结
3、生活乐园
看来数学广角处处充满挑战一点不假,你们愿不愿意接受新的挑战?(生)那我们一起到生活乐园去看一看吧!出示《生活乐园》课件。
(1)看课件
(2)学生活动
(3)学生汇报,师相机演示课件。
四、全课总结
今天我们到数学乐园玩的开不开心?看到了什么?你有什么收获?
《数学广角──》教学设计5
教学内容:
人教版义务教育课程标准实验教科书小学数学二年级上册第八单元数学广角—搭配(一)
教学目标:
知识与技能:使学生通过观察、猜测、操作、比较等活动,找出最简单的事物的排列数和组合数。
过程与方法:经历探索简单事物排列与组合规律的过程,初步理解简单事物排列与组合的不同,初步感悟简单的排列、组合的数学思想方法。
情感态度与价值观:培养学生有顺序地全面思考问题的意识和感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
让学生初步感悟简单的排列、组合的数学思想方法
教学准备:
每人4、5、6数字卡片各一张
教学过程:
一、创设情境,导入新课
师:同学们,你们好!今天非常高兴来到神灵寺小学和大家共同上一节课。首先自我介绍一下:我是来自于西安市莲湖区机场小学的李老师,大家猜猜看我的年龄,学生自由说。
师:我的年龄是用数字3和4组成的两位数,我有可能是多少岁?(34岁或43岁)
二、小组合作,探究新知
1、感知排列:
我在机场小学带的二年级的两个班,这两个班的人数恰好一样多,人数是由4、5、6其中的两个数字组成的两位数,每个两位数的十位和个位数字不能一样,想想一共有多少种可能性?
1)引导学生用数字卡片摆一摆,摆出的结果写在练习纸上。(摆一个写一个)
2)教师巡视,收集信息。
3)展示反馈:
预设:
方法一:无序的'。
方法二:先写出4在十位上的有45、46;再写出5在十位上的有54、56;再写出6在十位上的有64、65。
方法三:交换数字的位置,用数字4、5能写出45、54;用数字4、6能写出46、64;用数字5、6能写出56、65。
4)引导学生评价每一种方法。
师:今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律进行。
同学们,现在自己梳理一下自己的思路,把方法记录下来。
【设计意图]让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。】
2、感知组合:
1)师:我们的学生都非常喜欢学校,因为学校开展了丰富的社团活动,有足球、合唱、美术,如果每人参加其中的两项,一共能搭配出多少种组合?
2)引导学生在练习纸上尝试写出搭配结果。
3)师:有几种搭配方案?生答(预设:6种、3种等)
4)师生共同演示分析,得出正确结果:3种。(足球+合唱跟合唱+美术属于一种)
5)小结:我们在解决这样的搭配问题时也要按照一定的顺序,这样就不会重复也不会遗漏。
【设计意图:引导学生思考,进而梳理知识,总结归纳】
3、感知排列和组合的不同:
1)师:老师现在有一个疑问,排数字卡片时用3个数字可以摆出6个不同的数,3个社团搭配不同的组合却只有3种,同样是3个元素,为什么搭配的结果会不一样呢?
2)学生思考、小组讨论。
师生共同总结:摆数与顺序有关,搭配社团活动与顺序无关,交换位置没有意义。
【设计意图】借助排列数的活动经验,让学生亲身经历画一画、写一写、议一议、比一比等活动的过程,感受有序思考的价值,同时在方法的交流中体会到排列数和组合数的相同之处和不同之处,培养学生的动手操作能力、合作意识和交流能力。】
三、巩固练习升华体验
1、握手问题:
1)师:同学们的表现真不错,老师很想跟你们握一下手。(教师不自主的一边走一边伸手和同学握手)。刚才老师和几个同学握了手(3个):如果我们四个人每两个人握一次,一共要握多少次呢?
2)师:小组为单位,看看每两个人握一次手,四个人一共要握手多少次?(学生活动)然后把结果记录下来。
3)师生共评、总结。
2、照相问题:
1)师:上完课之后,我要跟何校长、你们的班主任合影留念,我们三个人之间能照几张不同的三人照呢?
生思考
2)师:所谓不同是什么不同?
生:站的位置不同。
3)师引导学生画图排列出结果。
【设计意图:通过解决不同类型的搭配问题,让学生进一步巩固排列和组合问题的解决策略和方法,感受有序思考问题的价值,让学生亲身体会到数学知识和现实生活的密切联系。】
四、全课小结,感悟内化
谁能说说这节课你学到了什么?你的感受是什么?
《数学广角──》教学设计6
《数学广角》是义务教育教科书二年级上册的第一课时。教材以学生熟悉而又感兴趣的生活场景为依托,重在向学生渗透数学思想方法,将学习活动置于模拟情景中,给学生提供操作和活动的机会,初步培养学生有顺序地、全面地思考问题的意识,为学生今后学习组合数字和学习概率统计奠定基础。
根据对教材的分析,我确立了以下教学目标:
①通过观察、比较、实验等活动,找出最简单的事物的排列数和组合数。
②引导学生发现和应用排列组合的规律,做到不重复也不遗漏地找出事物的排列数和组合数。
③培养初步的观察、分析、及推理能力和有序地全面地思考问题的能力。
④感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。
⑤使学生在数学活动中养成与人合作交流的良好习惯。
我确定本节课教学重点是掌握求简单事物的排列和组合的方法,难点是引导学生发现规律,做到不重复也不遗漏地找出事物的排列数和组合数。
在日常生活中,有很多需要用排列组合来解决的知识。如搭配衣服、搭配早餐,密码箱中密码的排列数等等,作为二年级的学生,已有了一定的生活经验,因此在数学学习中注意安排生动有趣的活动,让学生通过这些活动来进行学习,经历简单的排列组合规律的数学知识探索过程,让学生在活动中探究新知,发现规律,从而培养学生的数学能力
课程标准确立了“为了每一位学生的发展”的理念,基于这样的认识,这节课我主要采用的教学方法有:
1、从生活情景出发,为学生创设探究学习的情境。这节课,我力求从学生的生活情境出发,为学生学习创设“三个小朋友带我们游数学广角”这样一个探究的情境。
2、联系生活实际,让学生体会数学与生活的密切联系。
3、改变学生的学习方式,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。
4.采用灵活的教学方法,鼓励学生独立思考、自主探索与合作交流。
5.电子白板的使用。 本节课我完全利用了电子白板自带功能去满足整节课堂的需要!电子白板的最大特色就是编辑和展示共存交互性!教学中我运用了书写、标注…多媒体展示和传统黑板书写相结合的功能,直接在图片和课件展示中去记录、标注和批阅;在生动直观的教学过程中巩固和强化我们学习的内容。
学生是学习的主人,《数学课程标准》提出了重视学生学习过程的全新理念,要求遵循学生学习数学的'心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。在以往的教学中,我更多关注的是学生获取“知识与技能”的结果。教学不能为了快速获得结果,而大大缩短知识的形成过程。因此我在设计这节课时,尝试采取多种手段引导每一个学生积极主动地参与学习过程,无论是探索新知的过程还是练习的设计都注重生活与数学的结合。本节课在学生学习方法上力求体现:
1、联系生活实际解决身边问题,体验学数学、用数学的乐趣。
2、在具体的生活情景中让学生亲身经历发现问题,提出问题、解决问题的过程,体验探索成功的快乐。
3、通过动手操作、独立思考和开展同桌合作交流活动,完善自己的想法,构建自己独特的学习方法。
4、通过灵活、有趣的练习,提高学生解决问题的能力,同时寻求解决问题的多种办法。
本节课我还试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例,让学生运用操作、演示等直观手段解决问题,让学生“读——理解”、“疑——提问”、“做——解决问题”、“说——表达交流”,并在其中获得对基本数学思想方法的感悟在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。
《数学广角──》教学设计7
教学内容:人教版三年级下册第九单元P108例1
教学目标:
1、结合具体情境体会用“韦恩图”解决重叠问题的价值,掌握用“韦恩图”解决一些简单的重叠问题题目的方法,培养学生的思维能力。
2、进一步渗透集合的思想,在解决实际问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,提高学习数学的兴趣。
教学重难点:理解集合图的各部分意义及解决简单问题的计算方法。
教具、学具:课件、带有学生姓名的小贴片。
教学过程:
一、问题情境,导入新课
师:出示下面统计表
师:朝阳小学三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人?
生:8+9=17人,
师:同意吗?一定吗?
生:齐说同意、一定。
师:出示图1集合圈,
语文组 数学组
师:你能把参加语文组和数学组人的姓名图片贴在下面两个圈里吗?
师:相机出示带有17个同学姓名的图片。
【评析:尊重学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。】
二、探究新知
1、问题的引出
师:出示例题中的统计表
师:仔细观察这张表格提供的信息与前面的表格提供的.信息有什么不同?
生:有几个同学重复了。
生:有三个同学既参加参加了语文小组又参加了数学小组。
师:刚才这位同学说“重复”是什么意思?
生:重复,就是一个人参加了两项活动。
师:在实际生活中你们遇到过这种情况了吗?
生:遇到过,比如我既参加了象棋小组又参加了绘画小组。
生:我参加了三个兴趣组。
师:如果还用两个圈来表示参加语文组和数学组的人数你认为下面那幅图能代表你们的意思?
生:图2。因为图2有重复的部分。
师:只能用图2来表示来表示重复的关系吗?
生:两个长方形(正方形、三角形)交叉在一起也行。
师:谁来说说重复的部分是什么意思?
生:重复部分就是两项活动都参加人。
师:同意吗?
生:同意。
师:参加语文组的有几个人?参加数学组的呢?
生:语文组有8人,数学组有9人。
师:根据表中提供的信息,你觉得用哪副图来表示参加两个小组人数之间的关系比较合适?请同学们贴一贴。
【评析:把学生探究“集合图”的过程,变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。】
2、交流汇报
师:展示学生的作品并强调不管圆圈中学生姓名怎么放,但这三个重复的同学都放在重叠的部分上。
师:怎样计算参加两个小组的人数一共有多少人?
生:一共是14人,我是数出来的。
生:8+9=17 17-3=14
师:第一个表格为什么直接用8+9=17就算出参加两个小组的人数,而这一次8+9后还要再减去3呢?
生:因为如果还是17的话就把杨明、李芳、刘云多算了一次,因此要减去3。
生:第一个表格没有重复参加的,第二个表格有重复参加的。
师:不管用数的方法还是用算式计算都要注意什么?
生:不能把重复的三个人多算了一次。
【评析:在展示学生的作品时,对圆圈中学生的姓名位置不同的贴放,教师引导学生及时归纳、小结,这既能让学生体会出集合图本身各部分之间所存在的关系又能让学生直观地感知各个数据与集合图之间的关系。同时让学生反思、比较由前后两个表格所出现的不同的计算方法,这既沟通了已有的知识经验与新知间的联系,又彰显出解决新问题的关键点。】
3、明确“韦恩图”各部分表示的意思,感受其的价值。
师:刚才我们通过数一数,算一算的方法,得出了参加两个小组的人数。现在谁来说说这个集合图有几部分组成?每部分各表示什么意思?
生:三部分,左边一小部分表示只参加语文组的人数,中间一部分表示两个小组都参加的人数,右边一小部分表示只参加数学组的人数。
师:相机在集合图上标示出“只参加语文组”、“既参加语文组又参加数学组”、“只参加数学组”的字样。
师:简单介绍“韦恩图”来历。
师:在实际生活中,往往提供的信息不会像表格中那样的。
师:相机把例题呈现在统计表中的学生姓名打乱。
师:如果给的是现在这样的信息,你觉得“韦恩图”和文字所提供给的信息,哪一个更能清晰地表示出只参加“语文人的”、“只参加数学的”、“两项都参加的”这三者中间的关系呢?
生:用“韦恩图”来表示。
师:用“韦恩图”不仅能清晰的表示出各部分之间的关系,还便于我们计算。
师:你认为在什么样情况下使用“韦恩图”来解决问题呢?
生:有重复关系的,
师:相机板示课题:数学广角——重叠问题。
【评析:让学生表述“韦恩图”各部分之间的关系,给了学生一个完整的认知,同时使学生对“韦恩图”中的认知更趋于明朗化。而把例题中提供的信息打乱,让学生在反思中比较,就为学生体会“韦恩图”的价值提供了更具有说服力的素材。】
三、巩固应用,落实“双基”
1、教材p110练习二十四第1题
2、教材P110练习二十四第2题
四、拓展延伸,发展能力
师:改动教材例题中提供的信息方式为:三(1)班由8人参加语文活动小组,有9人参加数学活动小组,参加两个小组的一共有多少人?
师:请同学读题,并与原例题进行比较
师:请同学拿出第二组供贴图用的学具片
师:结合生活实际,展开想象,在教师提供的集合圈中摆一摆,之后再在小组里交流一下,并算出每一种情况下,参加两个小组的人数共多少人?
交流回报:
生:8+9=17人,我是把两个圆圈分开摆的
生:8+9=17人 17-2=15,我是把两个圆圈交叉在一起的,并且交叉的部分是2人。
生:参加两个小组的一共只有9人,我是把参加语文组的人数全部圈在数学组里面的。
师:结合学生的口述,相机展示学生的作品
师:重点引导学生交流结果是9人的集合图各部分之间的关系。
师:为什么同样是8人参加语文组、9人参加数学组结果会出现不同的情况呢?
生:因为上一道题告诉我们有几人重复的,而这道题没有告诉有几人重复的,结果就有几种可能性。
生:这个题目没有前面两个题目讲的清楚,不知道会有什么情况。
师:也就是说这道题没有确定语文组和数学组之间的具体关系。
师:那你认为做这样的题目首先要注意什么?
生:搞清重复的人数。
生:在画图时要确定相交的部分应该是几人。
生:考虑问题要全面些。
师:通过刚才我们解决的这个题目,比较一下结果,你有什么发现?
生:重复的部分越多,参加两项活动的人数就越少。
生:要想参加两项活动的人数多最好互不交叉。
生:当参加两项活动的人数最少时,这个数就是其中一个较大的数。
师:配合学生的讲解,相机用课件动态演示两个集合图变化的过程。
五、全课总结
师生交流:这节课我们解决了什么问题?在解决这一问题的过程中用到了什么策
略?这一策略以前你用过吗?
《数学广角──》教学设计8
教学目的:
1、使学生通过简单的事例,初步体会运筹思想和对策论方法在解决问题中的运用。
2、是学生认识到解决问题策略的多样性,形成寻找解决问题的最优方案的意思。
3、让学生感受到数学在日常生活中的广泛运用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意思和解决问题的的能力。
4、是学生逐渐养成合理安排时间的良好习惯。
教学重点:
合理安排最节省时间的操作,体会在解决问题中的最优化思想的应用。
教学关键:
合理利用时间烙三张饼的方法。
教具准备:
多媒体课件、扑克牌。
教学过程:
一、情境导入:
1、同学们喜欢吃烙饼吗?谁烙过饼,或看家长烙过?能给大家说说烙烙饼的过程吗?
2、烙饼中有许多数学知识,这节课我们就去探寻有关烙饼的知识。
板书课题:烙饼中的数学问题
二、探究新知
1、出示主题图
师:“从图上你能得到哪些信息?”师:“妈妈烙一张饼最少需要几分钟?”
师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
小结:我们烙两张饼时,可以先同时烙饼的正面,用了3分钟再同时烙饼的反面,用了3分钟这样烙两张饼就需要6分钟。
师:“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “要烙3张饼,锅里每次最多只能烙2张饼,那3张饼怎样烙时间最短呢?
2、学生操作,探究烙3张饼的`方法。
让学生用发的扑克牌烙一烙,同桌说说用了几分钟,是怎样烙的。 【设计意图】在引导学生烙一张饼、2张饼的基础上,留给学生具有探索价值的“3张饼烙法”进行自主探究、合作交流,遵循学生认知的发展规律,有利于学生体验与理解、思考与探索;恰当地处理了直接经验与间接经验的关系,符合《课标》对课程内容的要求。
3、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(学生上台动手烙,边烙边说)
让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?”
4、师生演示小结烙饼三张饼的方法:速烙饼法
师:观察思考:你发现了什么?
(
1、使用快速烙饼法,锅里面必须同时放2张饼。
2、用的时间短。)让学生用烙3张饼的快速烙饼法再烙一次,边烙边说给你的同桌听。 【设计意图】烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。
5、迁移运用
师:(出示表格)刚才烙2张饼时可以2张2张烙,所需时间是6分钟,烙3张饼时可以用烙3张饼的最佳方法,所需时间是9分钟。想一想,如果烙4张饼,怎样烙时间最短?
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?需几分钟”
小组活动,通过小组交流,使学生找到最佳方法。 教师小结后提问:“如果要是烙6张饼,怎样才能让大家尽快地吃上饼?需几分钟”
学生发言。班内交流,并比较哪个小组的方法最好。
教师小结后提问“如果要是烙7张饼、8张饼10张饼最少需几分钟?”
5、探究规律。
让学生仔细观察表格、小组讨论交流,说一说自己的发现。
(1)仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?
(2)仔细观察烙饼的张数不同烙饼的方法有什么不同?
学生在充分交流探讨的基础上,得出结论:
1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。
【设计意图】通过拓展性的设问,既是对前面所学知识进行巩固和运用,也是为了让学生找到最优方法,一方面为学生思维能力的培养提供了时间和空间,另一方面让学生在实践中体会了优化思想在解决实际问题中的应用。
二、拓展延伸
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流
三、全课总结
1、这节课你学到了什么?
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
《数学广角──》教学设计9
教学内容:义务教育课程标准实验教科书四年级上册112页内容
教学目标:
知识与技能:
1、通过生活中的简单事例,使学生初步体会到
优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,
初步形成寻找解决问题最优化方案的意识。
过程与方法:使学生理解优化的思想,形成从多种方案中寻找
最优方案的意识,提高学生解决问题的能力。
情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。 教学难点:探究解决问题的最优方案。
教具准备:硬币、若干张圆纸片(涂上正反不同颜色)、多媒体课件。
教学时间:一课时
教学过程:
一、创设情境,谈话导入,学习新知
同学们早上你们的家人给你们做了什么好吃的?老师的家人给老师烙的饼。你们知道吗厨房里也有数学问题。想知道是什么吗?(课件出示例1图)小华妈妈正在为全家人做自己的拿手绝活——烙饼。(板书课题:数学广角——烙饼问题)
(一)师:从图上你能得到哪些信息?学生观察、理解图中的`内容。(目的让学生了解一个锅可以烙两张,每面都需要烙。)
师:妈妈烙饼的一面需要几分钟?一张饼最少需要几分钟?
生:3分钟、6分钟(学生对饼需要烙两面有直接的了解)
师:“如果妈妈要烙2张饼最少需要几分钟,怎样烙?”
生:12分钟、6分钟(让学生讨论出6分钟是对的)
让学生用圆纸片在黑板演示。(其他学生用硬币操作)
师:那么烙4张饼那?
生讨论并让同学黑板演示。(其他同学用硬币操作)
师引导6张饼、8张饼、10张饼需要多少分钟。(将上述张数和总用时对应板书黑板上)
师:同学们看黑板上的这些张数和总用时,你们发现了什么?
生讨论总结出双张数×3=总用时
(二)师:爸爸、妈妈和小丽各吃一张饼,一共要烙3张饼呢,烙3张饼需要多少时间,看看谁用的时间最短,能最早让他们吃上饼。(提示学生每次锅里同时能烙两张饼)
1、学生操作,探究烙3张饼的方法。(让学生用发的硬币烙一烙,同桌之间、小组之间说说用了几分钟,是怎样烙的。)
2、学生演示烙饼法。
师:谁愿意把你烙饼的方法介绍给大家。(几位不同意见的学生上黑板动手烙,边烙边解说)让大家来比较:“这些烙法,哪一种能让大家尽快地吃上饼?” 生得出结论:9分钟是烙3张饼所用的时间最短的。
师:谁能再把如何9分钟就能烙好饼的方法再和同学们分享一下。(学生黑板边演示边解说)
师:使用这种方法时,你发现了什么?(使用快速烙饼法,锅里面必须同时放2张饼。)
让学生用烙3张饼的快速烙饼法再烙一次,边烙边给同桌解说(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
师引导:那么烙5张饼需要多少分钟那?7张、9张那?
学生自己动手并同桌间讨论,得出结论。教师板书张数与总用时。(生得出5张饼可以先烙2张,再烙3张。7张、9张同理)
师提问:同学们发现黑板上单数饼与总用时存在怎样的关系?
生总结出单张数×3=总用时
引导出双张数、单张数与总用时的关系都是一样的进而总结出烙饼问题的一个规律:张数×3=总用时
(由3是单面时间)进一步总结出张数×单面时间=总用时。
二、实践应用
课件出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?”
1、引领理解题意。
2、全班交流(一般会从等待时间考虑,可以提示中间桌子是一位老伯伯。)
三、全课总结
1、这节课你学到了什么?(让学生自己总结)
2、师:同学们回家后可以找一找生活中还有哪些问题可以用今天所学的知识来解决。
《数学广角──》教学设计10
【教学对象】三年级学生
【授课教师】xx
【教材分析】重叠问题是人教版小学数学三年级下册数学广角的内容。教材的编排顺序是首先用统计表列出参加语文小组和数学小组的学生名单,从中可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际参加这两个课外小组的总人数却不是17人,由此引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系表示出来。从图中清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。这里对学生渗透了集合的思想。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。
【学情分析】:集合思想是数学中最基本的思想,集合理论可以说是数学的基础。从学生一开始学习数学,其实就已经在运用集合的思想了。例如,学生在学习数数时,就常常把1个人、2朵花、3枝铅笔等用一条封闭的曲线圈起来表示,在学习认识三角形等图形时,也常常把各种不同的三角形用一个圈圈起来表示。又如,学生学习过的分类思想和方法实际上就是集合理论的基础。但是,这些都只是单独的一个个集合图,而本节课所要用到的含有重叠部分的集合图,学生并没有接触过。基于此,我把知识的原点定位于两个独立的集合圈,没有采用教材例1统计表的呈现方式,从两个并列的集合圈引发学生的探究,更符合学生的学情。
【教学目标】
知识与技能
(1)使学生能借助集合直观图,初步体会集合的思想方法。
(2)利用集合的思想方法解决简单的实际问题。并能用数学语言进行描述。
过程与方法
(1)掌握解决重叠问题的一些基本策略。体验解决问题的多样性
情感态度价值观
(1)丰富学生对直观图的认识,发展形象思维。
(2)使学生在主动参与数学活动过程中获得成功的体验,提高学生学习数学的兴趣。
【教学重点】使学生掌握解决集合问题的一些基本策略,体验解决问题策略多样性。
【教学难点、关键】体会集合的思想方法,利用集合的思想方法解决简单的实际问题。
【教学方法】引导探究、讨论交流。【教学手段】多媒体课件、实物投影
【教学过程设计】
一、教学流程设计
复习铺垫,导入新课设计意图:通过复习两个都是求一共有多少人的解决实际问题,能更好的为学生引入本课的学习有一个铺垫和生活体验。
创设情景,探究新知设计意图:让学生通过情景感受,理解题意.激发兴趣.
发现方法,交流成果设计意图:通过小组合作学习,同学之间会有交流的欲望,正好为学生搭建交流的平台,促进学生的直观思维上升为逻辑思维。
练习巩固扩展提升设计意图:
相应的练习是为了让学生对新知的巩固,从而提升能力。
总结评价设计意图:
1.小结意在学生对新知的一个提升和强化。并是一个总结归纳的过程。利于学生形成一个解题的方法和能力。
二、教学过程设计
教学设计的反思
1、教学能有效的与学生的经验联系起来。
在设计本节课时,能从学生的认知经验出发,从复习两道紧密相连的习题入手让学生在思维上引起认知冲突。所以一开始学生就已知本课学习的内容。尊重了学生的认知基础,唤醒学生已有的知识经验,找准了学生已有的知识经验与新知的衔接点,为新知的学习巧搭“脚手架”,也使问题的引出顺理成章。本节课从问题的`引入到问题的拓展都紧紧围绕例题所提供的素材来合理的进行问题的设计,至使问题的设计才层层递进,一环扣一环。在设计学生探究“集合图”的过程中。因为集合图的产生比较抽象。所以变为教师直接给出两幅“集合图”,并让学生结合自己的生活经验,说说两个集合图所表示的实际意义,同时又拓展了学生对集合图的认知,为建构抽象的数学模型搭建了平台,也体现了基于学生认知基础出发的教学理念。学生在解决问题的过程中既让学生感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。
2、在问题的解决过程中,注重集合图与算式的有效结合。
本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。
3、注重学生的及时练习反馈,为随时调控教师的教学方式方法提供依据。
课堂练习巩固是学生巩固知识方法、提高能力的必要环节,新课程改革以来,许多教师在情境创设、探究性学习和互动生成上下功夫,但在习题设计上却有所松懈。实践表明,小学生的学习很容易受环境的影响,当堂解答习题的质量要明显好于课后解答的质量。本节课正是从以学生发展为本、保证学生学有所得的观念出发,精心为学生设计有针对性的练习。基本练习能确保学生应用当堂所学到的知识和方法解决实际问题,体验和感受学习成功的滋味,增强学习数学的信心。为了让学生感受解答方法的多样化和最优化。还设计了有针对性的练习。目的是为了要打破学生的思维定势,不让学生以为所有的习题都国用这种方法来解答。学生应该养成认真审题的习惯,根据问题的实质选择合适的方法来解决。其次,鼓励学生采用多种方法解决实际问题,发散学生的思维,培养学生的良好品质,提升学生的创新能力。实际教学证明,这样的习题很受学生欢迎,学生始终处于积极的思考、交流和感悟之中,从而实现了课堂教学的高效。
4、智力游戏的出现为本节课起到了烘托和提升的效果。
有趣的智力游戏培养了学生学习数学的兴趣。因为学以致用是学习的最终目的。在解决这样的问题中让学生体验到的学习的用处。让学生感悟到学习是能解决生活中的问题的。激发学生学习的内在动力。
不足之处:在实际的教学中教师还不够放手让学生去充分表达自己的想法。在方法的优化的指导上也没有让学生有充分的认知。
《数学广角──》教学设计11
教学内容:教材99页
教学目标:
1、通过观察、猜测、实验等活动,使学生找出最简单的事物的排列数和组合数,初步经历简单的排列和组合规律的探索过程。
2、学生初步学习排列组合的简单方法,锻炼学生观察、分析、和推理能力。
3、培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。
教学重点:使学生找出最简单的事物的排列数和组合数
教学难点:培养学生有序地全面地思考问题
教学用具:多媒体课件,数字卡片。
教学过程
一、导入新课
同学们请问你们去过公园吗?公园好玩吗?老师今天要带你们去一个比公园更好玩的地方,它就是数学广角。
二、动手操作、新授知识
1、首先进入数学广角大门,圣诞老人提示大门密码是由1和2这两个数字组成的,这道门的密码可能是那些数?
12 21 (两个数字交换位置)
2、数学广角大门打开了,又出现了第二关密码锁,圣诞老人提示这把锁的密码是由1、2、3三个数字中的其中两个组成,密码可能会是哪些数呢?
(1)两人一组,分工合作,一人摆数字卡,一人做记录。
(2)学生汇报。
(3)补充遗漏的。
想:要想使排列的`数不重复又不遗漏,你有什么好办法?(学生回答)
总结方法:①先确定高位②先确定低位
三、深化知识,巩固练习
1、我们进来了,三个初次见面的小朋友相互用握手的方式问好。那么如果每两个人握一次手,三个人一共握几次手?(三个学生上台演示)
2、里面这么漂亮我们开始逛逛吧!咦!这些衣服真漂亮,请看有2件衣服,两条裤子,小华想买一套衣服,最多有几种购买方法?
3、数学广角我们逛完了,我们也该回学校了,那么我们该怎样回学校呢?有几种回校的路径?(多媒体课件展示题目)
4、小华想到校园商店买个数学本做家庭作业,可以怎样付钱?(多媒体课件展示题目)
四、小结
小朋友,通过这节课的学习我们发现数学广角中还有好多有趣的数学问题,等着我们去发现,去探索。同学们努力吧!下节课我们接着讲。
《数学广角──》教学设计12
教学目标:
1、通过观察、讨论、操作等活动,找出最简单的数的排列的基本方法。
2、使学生经历探索简单事物排列规律的过程。
3、培养学生有顺序地、全面地思考问题的意识,感受数学与生活的紧密联系。
教学重点:自主探究,掌握有序排列、巧妙搭配的方法,并用所学知识解决实际生活的问题。
教学难点:怎样排列可以不重复、不遗漏。理解简单事物搭配中的有序、无序的不同。
教学准备:数字卡片,表格,彩笔,课件等。
教学过程:
一、引入
师:今天咱们班来了这么多的客人,他们都听说咱们班的`同学特别聪明,我也很高兴,所以想带你们去数学广角玩一玩,你们想去吗?
生:想(出示课件“数学广角”)
二、新授
1、师:想要进去必须先解锁(密码问题出示课件)
提示:锁的密码是由1、2两个数字组成的其中的一个两位数
生:12 21(教师板书)
门锁打开进入下一关
2、师:顺利打开第一把锁后,我们再来看看还有一个超级密码锁,密码是由1、2、3三个数中的两个数字组成的两位(小组讨论,自己动手摆一摆,写一写)?
提问学生讨论的结果,板书(1)12 23 13 32 31 21
(2)12 21 23 32 13 31
提问哪组方法比较好,怎样才能即不丢不漏也不重复的写出所有两位数?
生:先拿出数字1和2,组成12和21……观察6个数字找出规律
师小结:组成的两位数和数字的顺序有关
3.我们一起进入北城南城(出示课件)用红绿蓝3种颜色给两个城区涂上不同的颜色,一共有多少种涂色方法?
(1)先讨论交流再涂一涂
(2)展示学生作品
(3)教师小结:用颜色涂出的城区与颜色的顺序有关
4.进入数字乐园(课件展示)
5 7 9 三个数字,选任意2个求和,得数有几种可能?
(1)小组讨论
(2)填写答题卡
(3)集体交流
(4)教师小结:求两个数的和与数字的顺序无关
5.师:刚刚我们一起闯过了很多关,数学广角里的小朋友都很着急想见我们,朋友见面要握握手,我们 3个人为一组,互相握握手,讨论一下一共可以握几次手。(出示握手图)
(1)小组讨论,亲自实践握手
(2)个别学生演示握手
(3)教师小结,3个人每2个人握一次手,可以握3次
6.总结:这次去数学广角你觉得有趣吗?你都学到了什么?
7.布置作业:找自己的2件上衣和2件裤子,搭配一下,看看有几种穿法?下节课我们再一起学习!
《数学广角──》教学设计13
[教学内容]
小学数学五年级下册教材第134页例1、例2
[教学目标]
1、以“找次品”为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
2、感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
[教学重点]
经历观察、猜测、试验、推理的思维过程,归纳出解决问题的最优策略。
[教学难点]
脱离实物,借助纸笔帮助分析“找次品”的问题。
[教、学具准备]
5瓶口香糖,每生9张卡片,多媒体课件
[教学过程]
一、初步认识“找次品”的基本原理
1、创设情境,自主探索。
(1)出示口香糖,提出问题:同学们请看老师手中有3瓶口香糖,其中有一瓶老师已吃了2片,不小心把它们混在一起了,你能帮我把它找出来吗?
(2)独立思考。教师鼓励大胆设想,积极发言。
(3)全班汇报。教师指导学生认真倾听并且积极评价各种方案。
回想一下用天平称物品会出现几种情况?
出示课件演示天平平衡,不平衡两种状态
2、自主探索用天平找次品的基本办法。
(1)引导学生探索利用天平找次品的方法。
(2)组织小组讨论,并进行汇报。
学生:分三份(左盘、右盘、天平之外)
老师小结:利用天平找到这瓶口香糖可以在天平两端各放一瓶,根据天平是否平衡来判断;如果天平平衡,说明剩下的`一瓶是少的;如果天平不平衡,说明上扬的一端应该是少的。
【设计意图】:通过生活实例一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳学习状态,同时让学生感受数学与生活的联系。
二、初步认识“找次品”的基本解决手段和方法。
1、出示问题,引导学生利用学具自主探索:如果这瓶吃过的混在5瓶口香糖中,你还能利用天平把它找出来吗?
2、组织小组交流,指导同学在交流中比较方法。
3、对几种方法的梳理、比较:“至少需要称几次就一定能找出?”请两位同学在黑板上演示(摆磁扣)。师把他们的操作过程记录在黑板上。要保证找出必须全面考虑平衡和不平衡两种情况。(板书)
4、教师小结:在天平的帮助下同学们用两种方法找到了这瓶口香糖。除了利用学具,同学们出可以像老师这样画示意图来帮助我们思考。
【设计意图】只让学生初步感知方法的多样性,为下一个环节的探究做好铺垫。
5、提示课题。
师:在日常生活中常常有类似情况,一些看似完全相同的物品中混着一个质量不同的,轻一点或是重一点,需要我们想办法把它们找出来,像这类问题我们把它叫做“找次品”。今天,这节课我们就研究如何利用天平找次品。(板书课题)
三、从多种方法中归纳出找次品的最优方法。
1、出示问题:有9个零件,其中有一个是次品(次品重一些),你用天平至少要几次就能保证找出次品?师:次品有什么不同?请你找出题中的关键词。
2、在小组内交流。教师提交流要求:同学说想法,组长记录。
4、全班汇报。(板书)
5、教师先引导学生观察、比较,引导学生找出规律:把9个零件分成3份,并且平均分,能够保证找出次品的次数最少。
【设计意图】:这一环节是重点也是难点,进行小组活动可发挥集体智慧,更易突破难点。
四、验证多个零件找次品的解决方法。
课件出示,猜想:当待测物品的数量是3的倍数时,平均分成3份,就一定能用最少的次数找到次品吗?
如果有12个零件,其中一个是次品(次品重一些)按刚才我们的猜想应该怎么分,称的次数就最少而且一定能找出次品?还有哪些分法?
学生分小组验证。汇报方法及称的次数。师:比较一下有没有比平均分成3份找到次品次数更少的?
全班汇报,引导学生小结:这样看来在利用天平找次品的时候,把待测物品平均分成3份,能保证找出次品而且称的次数一定最少。
【设计意图】这里之所以需要验证,是因为这种归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用需验证
五、运用知识解决问题
在数学学习中,解决问题的方法是多种多样的,但通常有一种最有效最简便的方法,我们把它叫做最优化的方法。我们就用这种优化的方法解决下面的问题:
1、有15盒饼干,其中的14盒质量相同,另有一盒少了几块,如果能用天平称,至少几次可以找出这盒饼干?
2、如果是27盒呢?81盒呢?
六、应用规律拓展延伸
刚才我们分析的9、12和15都是3的倍数,可以分成3份,假如遇到不能平均分成3份的数,例如10、11……又该怎么分呢?课后请同学们试一试,看看哪种分法能保证找出次品而且称的次数最少。我们下节课再来研究这个问题。
《数学广角──》教学设计14
一、谈话导入:
师:新学期开始班里来了一对双胞胎兄弟,哥哥叫大壮,弟弟叫小壮,(出示图片)你能分出谁是哥哥谁是弟弟么?为什么?(学生可能回答不能,因为他们长的一模一样)
二、探索新知
1、做出判断
师:现在其中的一个说:“我不是哥哥。”现在你能指出谁是哥哥,谁是弟弟吗?
2、说明理由
你为什么做出这样的判断?
先在小组内交流,然后班内汇报。
3、小结
师:(小结同学们推理的过程)刚才同学们根据双胞胎兄弟中一人的话,判断出了谁是哥哥,谁是弟弟。这就是我们今天要学习的简单推理(板书课题)。
4、找气球
师:推理在生活中有非常广泛的用途,生活中有许多事情需要我们根据已知的条件对事件进行推断。为了庆祝元旦小明、小红、小芳每人从家里带来了一个气球,(出示三位小朋友及红、黄、蓝三个气球)小明说我的气球是红色的,小红说我的气球不是蓝色的。根据他们的对话你能说出小明、小红、小芳各拿来了哪一个气球吗?
学生判断并说明理由。
三、拓展应用
1、可以在完成课本101页的第3、4题的基础上完成下列有趣的题目。
2、这三组影子分别是哪组积木的投影?请连线,并说明为什么?
3、红圈中的积木和哪块积木拼合,才能成为一个和左图一样的正方体?
4、小熊、小狗、小兔的箱子分别装有相同大小的.铁块、木块、棉花。你在看过跷跷板之后,能说出每人的箱子里都装有什么吗?为什么?
四、课堂总结
今天这节课有意思吗?为什么呀?你有什么收获?
教学目标
1.使学生通过观察、猜测、实验等活动,找出最简单的事物的排列数和组合数。
2.培养学生初步的观察、分析及推理能力。
3.初步培养学生有顺序地、全面地思考问题的意识。
《数学广角──》教学设计15
设计理念:
笛卡儿说过:“数学是使人变聪明的一门科学”,而数学思想则是传导数学精神,形成科学世界观不可缺少的条件。数学思想方法反映着数学概念、原理及规律的联系和本质,是学生形成良好知识结构的纽带,是培养学生能力的桥梁。新课标下的每册教材都通过“数学广角”来进一步渗透数学学习的思想方法。在植树问题的教学中,主要是向学生渗透一种在数学学习上、在研究问题上都很重要的思想——化归思想。
在设计上结合新课标的要求,根据教学内容的特点及学生的认知基础,通过解决矛盾冲突的植树问题,让学生在借助图、式分析题意的过程中,体验到植树问题的另一类型。再通过学生的合作探究,建构(两端不种)植树问题的模型,发现解决这类问题的规律,接着运用模型解决生活中的类似问题,渗透“化归思想”。教学中注重于培养学生运用所学知识,举一反三,解决实际问题的能力,也注重于让学生体验知识、经验获得的过程,培养学生借助图示解决问题的意识以及渗透“化归思想”。
教学目标:
1、知识与能力目标:
通过探究发现一条线段上两端都不种的植树问题“棵数=间隔数-1”的规律。
2、过程与方法目标:
使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、情感态度与价值观目标:
让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重点:
理解“两端都不种”的植树问题的规律
教学难点:
应用“两端不种”的植树方法去解决生活中类似的问题
教学过程:
一、创设情境,发现问题
同学们学过植树的知识吗?请大家来帮忙解决下面这个问题
房屋间的距离是60米,要在两间小屋之间植树,每隔10米种1棵,需要多少棵树?
误区:60÷10=6(个)
6+1=7(棵)
两端不种树还是这样来求棵数吗?这就是我们本节课要学的知识(两端不种)的植树问题
(设计意图:矛盾的冲突更能引发学生探索的兴趣。学生在已经学过两端都种的植树规律的前提下很大程度上会受到误导把棵数求成间隔数+1,这样引起学生认识上的矛盾从而体会更深刻。)
二、化繁为简,经历猜测、验证的过程探索规律
师:怎么来求棵数呢?与上节课的知识有什么联系,又有什么区别
讨论:相同之处都是先求出间隔数;不同之处求棵数的方法不一样
师:我们来大胆猜测一下“两端不种”的植树时怎样求棵数?
猜测:棵数=间隔数+1
是不是这样呢,我们来验证一下(植树)
两端不种
棵数=间隔数+1
(设计意图:让学生经历猜测与验证的过程探索出规律建立起数学模型,为下一环节的例题深入学习与应用规律做好了铺垫)
二、深入学习应用“两端不栽”的规律
1.师:同学们太了不起了,通过举简单的例子,自己又发现了“两端不栽”的规律:棵树=间隔数-1。我们再回到刚才的问题,你会做了吗?
2.例2大象馆和猩猩馆相距60米。绿化队要在两馆间的'小路两旁栽树,相邻两棵树之间的距离是3米。一共要栽几棵树(学生独立完成)
②师:同学们讨论一下解决这道题要注意什么?
课件闪烁:将“两旁栽树”,“两端不用栽”
学生展示:60÷3=20(个)
20-1=19(棵)
19×2=38(棵)
答:一共要栽38棵树。
小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。
(设计意图:通过例2探索让学生更深入的理解植树中“两端不栽”这种情况的处理及方法)
三、回归生活,实际应用
1.为了迎接我校的十周年校庆,要在校园里相距20米的两棵树间每隔4米挂上彩旗,需要准备多少面彩旗?
20÷4=5(个)
5—1=4(面)(面数=间隔数-1)
问:为什么要—1?这相当于今天学习的植树问题中的那种情况?
2.张老师从一楼到四楼去上数学课,学校每层有26级楼梯,张老师一共走了几级楼梯?
4-1=3(层)(层数=楼数-1)
3×26=78(级)
(问你们家住几楼呀?如果你们家的楼房也是每层26级楼梯,你回到家一共要走几级楼梯?)
3一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?(次数=段数-1)
5-1=4(次)(次数=段数-1)
4×8=32(分)
(设计意图:生活中有‘两端不种’植树问题的原型,也有植树问题的变式练习,让学生充分感受数学就在生活当中)
四、全课总结
通过今天的学习,你有哪些收获?
(设计意图:让学生回顾本节知识达到及时巩固的作用)
五、板书设计
植树问题(两端不种)
棵数=间隔数生活中
间隔数=全长÷间隔长挂彩旗:面数=间隔数-1、
学生展示:60÷3=20(个)上楼:层数=楼数-1
20-1=19(棵)锯树木:次数=段数-1
19×2=38(棵)
答:一共要栽38棵树。
(设计意图:简要的板书让学生容易抓住本课的重点知识,一目了然。)
【《数学广角──》教学设计】相关文章:
数学广角教学设计09-06
《数学广角──》教学设计08-07
(合集)《数学广角──》教学设计08-08
《数学广角──集合》教学设计08-13
数学广角简单的排列组合教学设计04-05
数学广角教学反思10-17
三年级《数学广角》教学设计10-24
《数学广角—找次品》教学反思11-14
《数学广角》说课稿12-04
《数学广角——》说课稿06-20