比的应用教学设计

时间:2024-10-12 11:33:40 教学设计 我要投稿

比的应用教学设计

  在教学工作者开展教学活动前,时常需要用到教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编为大家整理的比的应用教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

比的应用教学设计

比的应用教学设计1

  教学内容:课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:正确分析数量关系,找准单位1

  教学难点:依题意正确画图教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。()?

  (2)梨的筐数是和苹果的筐数相等,有40筐。()?

  (3)有40只白羊,白羊的只数的等于黑羊的只数。()?

  (4)白羊的只数相当于黑羊的,有40只黑羊。()?

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的`,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  (元)

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  (元)

  把上面的分上步算式列成综合算式,该怎样列?

  (元)

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三.巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

  教学反馈:

比的应用教学设计2

  设计思路:本节课在谈话中创设情境,引导学生在现实背景中让学生亲身感受按比例分配的意义,并对例题进行探索,感悟数学思想方法。在解释应用中让学生亲身经历知识的建构过程,体验解题的多样化,初步形成验证与反思的意识,从而提高自身的学科素养。

  教学内容:六年级上册比的应用

  教学目标

  1、在自主探索中理解按比例分配的意义,掌握按比例分配问题的结构特点。

  2、能正确解答按比例分配问题。

  3、培养解决问题的能力,促进探索精神的养成。

  教学重点:掌握解答按比例分配应用题的步骤。

  教学难点:掌握解题的关键。

  教学过程:

  一、创设情境,感受价值

  1、师:同学们,大家平时放过东西吗?

  2、请大家分一分彩旗吧。(课件:植树节到了,学校准备了60棵树苗,要把它发给六一班和六二班栽植,已知两个班人数相等,如何分比较合理?)

  注:学生一般会按平均分的方法解答,教师就可追问:这样分配的方法,我们以前学过,叫什么分法呢?

  3、在实际生活中,有时并不是把一个数量平均分配的,而是按不同量来进行分配的。

  注:教师用谈话的方式,以两班分配植树任务的事情为事例,分步呈现问题情境,让学生根据有关信息发表见解,体会平均分只是一种分配方法,在现实生活中还需要更为合理的分配方式。这样结合旧知体会按比例分配的实际意义。

  二、探究教学

  1、探究例题

  呈现例题,根据学生的建议,共同完成例1

  师:植树节到了,学校准备了60棵树苗,按3:2的比例分给六一班和六二班栽植,两个班各应栽多少棵? (2)分析题意:按3:2的比例分给两个班栽植告诉我们那些数学信息?

  师:请同学们独立思考,独立完成(教师巡视、指导)

  (3)展示结果

  根据学生的.回答板书解题方法

  第一种:60÷(2+3)=12(棵) 12×3=36(棵) 12×2=24(棵)

  第二种:2+3=5

  60×3/5=36(棵) 60×2/5=24(棵)

  注:学生可能会出现以上两种解法,对于学生以前学过的归一问题的解法,老师应给予肯定。而重点放在分数乘法的意义来解答的方法上,让学生充分表达自己的想法。

  2、揭示课题

  师:像这样把一个数量按照一定的比进行分配,我们通常把这种分配方式叫做按比例分配。

  3、思考:如何检验答案是否正确呢?

  讨论:按比例分配问题有什么特点?用按比例分配方法解决实际是要注意什么呢?

  指导学生检验不但有助于学生养成良好的解题习惯,也有利于培养学生的反思意识。小结按比例分配问题的一般方法与步骤,将感性的解题经验归纳,深入理解按比例分配的关键是被分的总数和分配的比,从而突出重点,突破难点。

  三、巩固练习教材做一做。

  四、总结

  通过这节课的学习,你有什么收获?

  教学反思:

  1、教材的编排遵循由易到难的原则。新旧知识之间的联系点,既是数学知识的生长点,又是学生认识过程中的发展点,它们用承上启下的作用。按比例分配问题是平均分问题的发展,又有它独特的价值。在谈话导入环节中,设问如何分配植树任务才合理?引发学习的思维,发现平均分之外的另一种分配方法(按比例分配),激发了学生的探究兴趣。

  2、为了使学生通过解决具体问题抽象概括,形成普遍方法,指导他们及时反思十分必要。教学中先是观察分析这类题型的结构,并讨论解答此类问题的一般解题方法和步骤。接着引导学生归纳按比例分配问题的解题规律,并反思遇到不同的问题,应选择哪种方法比较合适。这样在回顾反思中理清思路,不断提升思维的层次。

比的应用教学设计3

  教学目标:

  通过练习使学生进一步理解和掌握一般复合应用题的解题思路,提高学生分析问题解决问题的能力。

  教学重点:一般复合应用题的解题思路

  教学用具:幻灯,小黑板

  教学过程:

  一、看问题想条件

  1、奶糖和水果糖区有多少盒?

  1还剩多少数学题没有做?

  2每只垒球需要多少元?

  3实际比计划节约用电多少度?

  二、根据条件可以求出哪些问题

  4买了5顶帽子,每顶5元,?

  53小时行了45千米,?

  三、只列式不计算

  1、工厂要生产1200个零件,已经生产了5天,每天生产146个,还要生产多少个才能完成任务?

  2、小明买了7本练习本,每本5角,现在还剩1元5角。小明一共带了多少钱?

  3、小红5分钟做口算150题,照这样计算,做450题要几分钟?

  4、工厂运进一堆煤,计划每天烧4吨,可以用15天;实际用了20天,实际每天烧煤多少吨?

  5、同学们做了12朵黄花,做的红花的朵数比黄花的3倍多4朵。做红花多少朵?

  6、同学们做了12朵黄花,正好是红花朵数的3倍,红花做了多少朵?

  要求学生说出基本的数量关系式。

  四、解决问题

  问题:

  某粉笔厂接到一份订单:彩色粉笔86000盒,10天交货。如果不能按时交货,将厂方赔偿一切由此造成的.损失。

  生产情况如下:4天已经生产了32000盒。

  请问按这样的生产进度能按时交货吗?

  等学生得出结论后再出示:

  请你提出解决的方案。

  主要是复习归一应用题和验算方法。

  五、独立计算

  1、今年是一丰收年,王大爷家用大麻袋装麦子,一共装了12袋,每袋80千克。如果改用每袋装比大麻袋少装20千克的小麻袋,那么需要这样的小麻袋多少只?

  2、长江全长6300千米,比珠江的2倍还多1900千米。长江比珠江长多少千米?

  六、课堂作业

  练习六第7--12题。

比的应用教学设计4

  本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

  一、有效的“复习回顾”

  学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

  二、有效的“新知探究”

  根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。

  三、有效的“拓展延伸”

  设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的'情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

  四、有效的“感悟收获”

  通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。

  五、有效的“巩固提高”

  通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

  六、有效的“作业布置”

  根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

  以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家

比的应用教学设计5

  教学过程:

  一、复习:

  1.口算:

  5×7= 45÷9= 63÷7= 18÷9=

  32÷4= 56÷7= 27÷9= 6×8=

  72÷9= 8×3= 35÷7= 64÷8=

  9×4= 24÷3= 54÷9= 21÷7=

  2.把32平均分成8份,每一份是多少?

  3.56里面有几个7?

  二、探究新知

  1.出示第59页的例题4(课件)

  (1)先认真观察第一幅图的画面,用自己的话说一说画面的内容。

  (2)再认真观察第二幅图的画面,“我们这么多人,要坐多少辆呢?”这里的“我们”是指什么人?

  (3)把这两幅画面连起来编一道应用题。(小组合作)

  (4)小组讨论:应该如何解决这一道题?

  (5)汇报讨论结果。

  重点强调:应用题解答完后,要记住写单位名称和答语。

  (6)独立思考:怎样列综合算式?然后在练习本上完成。

  三、练习

  完成教科书第60页练习十三的第1题

  (1)学生先自己看图,口头编应用题

  (2)学生独立分析列式解答,教师鼓励学生列综合算式

  (3)全班讲评(讲评时要学生说出每一步算式的意思)

  完成教科书第60页练习十三第2题

  (1)让学生自己看图,口头编应用题,

  (2)说出这一道题目的'已知条件和问题,

  (3)独立分析列式解答

  (4)教师讲评,讲评时要学生说出每一步算式的意思,为什么要添上括号?

  四、全课总结:

  通过这节课的学习,你想说些什么?

比的应用教学设计6

  教学内容:

  北师大版六年级数学上册第55页、第56页。

  教学目标:

  知识与技能:

  能运用比的意义解决按照一定的比进行分配的实际问题。

  过程与方法:

  讲练结合,小组合作,三疑三探。

  情感、态度、价值观:

  进一步体会比的意义,提高解决问题的能力,培养学数学的兴趣,养成良好的.思维品质。

  教学重点:

  理解和掌握按一定的比进行分配的意义,并进行实际应用。

  教学难点:

  把比熟练地转化成分数,将分数知识横向迁移。

  教学准备:

  多媒体课件。

  教学过程:

  一、创设情境,设疑自探

  1、课件出示教材中的情境图,大班30人,小班20人。

  思考:把这筐橘子分给大班和小班,怎么分合理?学生商量分法,得出:按大班和小班的人数来分比较合理。

  2、大班人数和小班人数的比是3:2,学生用小棒代替橘子分一分。

  (没有告诉学生小棒的数目。)学生分好后,交流分法。

  3、小结。

  二、解疑合探,知识迁移

  1、如果有140个橘子,按3:2分,应该怎样分?学生讨论分法,并试着解决。

  2、交流方法,展示。学生可能出现的方法:

  ⑴、借助表格分。

  ⑵、发现橘子总数被平均分成了5份,大班占3份,小班占2份。先求出一份的数,再分别乘以3和2,就求出了大班和小班分的橘子个数。别占橘子总数的几分之几,最后根据分数的意义解题。

  3、引导学生小结方法⑶的思路。

  ⑴计算分配的总份数。

  ⑵计算各部分占总量的几分之几。

  ⑶利用乘法的意义解题。

  4、你喜欢哪种方法,请说明理由。

  5、回忆学过的“平均分配”,可以看成几比几?

  三、巩固练习,深化认识

  1、小清要调制2200克巧克力奶,巧克力和奶的比是2:9。需要巧克力多少克?

  2、3月12日是植树节,学校把种植60棵小树苗的任务分配给六年(3)班和二年(3)班,两班人数相等。想一想,如果你是大队辅导员,你会按怎样的比例分配,两班各栽多少棵?

  3、完成教材第56页练一练第3题合理搭配早餐。

  四、总结评价,课后延伸。

  1、总结。

  2、布置作业。

  板书设计:比的应用

  大班30人,小班20人。

  思考:把这筐橘子分给大班和小班,怎么分合理?

  3、先求出一共分成几份,再求出大班和小班分的个数分

  (以上方法可借助课件演示帮助学生理解。)

比的应用教学设计7

  教学目的:

  1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

  2.培养学生分析、解决问题的能力,以及良好的思维品质。

  教学过程:

  一、复习

  1.什么叫长方体、正方体的表面积?

  如果告诉了长方体的长、宽、高,怎样求它的表面积?

  如果要求正方体的表面积,需要知道什么?怎样求?

  2.图中告诉了长方体的什么?

  (1)要求前面或者后面的面积,需要用哪两个条件?怎样求?

  用9厘米、3厘米这两个条件可以求出哪个面的面积,怎样求?如果要求左面或右面的面积,需要用哪两个条件,怎样求?

  这个长方体的表面积怎样求?

  (2)按要求列式,不计算。

  3.(出示长方体教具)请同学生们看,这是什么体?它有几个面?

  如果没有上面,(同时去掉上面)要求它的表面积,就是求几个面的总面积?是哪5个面呢?

  如果没有上、下面,(再去掉下面)又是求几个面的总面积,哪几个面?

  [说明:以上复习题的设计,突出了逻辑性和灵活性。为学生灵活运用表面积的计算方法,创造性地解决生活中的实际问题,埋下了伏笔。]

  二、新课教学

  1.揭示课题:长方体、正方体表面积的实际应用。

  2.例3:粮店售米用的米箱(上面没有盖),长l.2米、宽0.6米、高0.8米,制作这样一个木箱至少要用木板多少平方米?

  (1)读题,说出这道题的题意(或己知条件和问题)

  (2)要求用木板多少平方米,就是求木箱的什么?这个木箱有几个面?少了哪一个面?

  (3)怎样列式?

  a.1.2×0.8×2+0.6×0.8×2+1.2×0.6

  =1.92+0.96+0.72

  =3.6(平方米)

  答:至少要用木板3.6平方米。

  b.谁还有不同的方法(并讲出列式思路)。

  (1.2×0.8+0.6×0.8)×2+1.2×0.6

  (l.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6

  [说明:教师让学生审题时,强调题中的隐含条件"上面没有盖",抓住解答本题的关键,又从不同角度引导,加强学生逻辑思维的训练,培养思维的灵活性。]

  3.小结:

  通过例3的学习,我们知道在解答长方体、正方体表面积的问题时,首先要判断什么?然后就按照有几个面就直接求几个面的面积或先求出6个面的总面积再减去缺少面的面积的方法来解答。

  4.如果原已知条件不变,再增加条件和问题,出示如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?

  (1)提问:求刷油漆的面积就是求几个面的面积,自你会解答吗?请独立完成。

  (2)集体评讲。(师板书如下)

  1.2×0.8×2+0.6×0.8×2=2.88(平方米)

  (1.2×0.8+0.6×0.8)×2=2.88(平方米)

  (1.2×0.8+0.6×0.8+1.2×0.6)×2-1.2×0.6×2=2.88(平方米)

  (1.2+0.6)×2×0.8=2.88(平方米)

  (3)利用教具演示,验证(1.2+0.6)×2×0.8是否正确:如果把它刷油漆的四个面展开,观察是什么形,要求长方形的面积需要知道什么,这个长方形的长是多少?长方形的宽是多少?面积是多少?

  [说明:通过上题只改变一个问题,使学生灵活运用知识,变换思路,培养学生集中思维和随机应变的能力,发展思维的灵活性。当学生说出(1.2+0.6)×2×0.8时,教师给予表扬性的肯定,然后教师借助教具的演示,使学生明白刷油漆的'四个面展开后与长方形的关系及计算的简洁性,利用了转化思想,培养了学生的思维独创性。]

  5.看来,在实际生活中,有些物体不一定要求6个面的总面积。老师带来一幅图,请看,哪些物体是需要求6个面的总面积,哪些是求5个面的或4个面的总面积的?谁还能举出生活中的例子?

  [说明:举例说明生活中的求六、五、四个面总面积的物体,不仅提高了学生学习的兴趣,开阔了数学视野,而且使学生感觉到生活中处处有数学,可以学以致用。]

  三、巩固练习

  1.只列式,不计算。

  (1)农民伯伯要做一个不带盖的正方体水桶,底面是边长3分米的正方形,做这样一个水桶至少要用铁皮多少平方分米?

  (2)工人叔叔要做一个长方体烟卤,长宽都是3分米,高10分米,求至少要用铁皮多少平方分米?

  2.判断下列算式是否正确,并说明理由

  一个火柴盒长5厘米、宽4厘米、高1.5厘米,做这样一个外盒至少要用硬纸多少平方厘米?

  (1)5×4×2+4×1.5×2 ( )

  (2)(4×1.5+5×1.5)×2+5×4 ( )

  (3)5×4×2+5×1.5 ( )

  (4)(5×4+5×1.5)×2 ( )

  (5)(4×1.5)×2×5 ( )

  (4+1.5)×2×1.5对不对呢?

  请同学们像图一样放置火柴盒,用剪刀沿长剪开,看看是什么图形?要求长方形的面积需要知道什么?长是多少?宽是多少?(4+1.5)冬2×1.5求的是什么?

  [说明:老师在处理判断题时,不仅仅满足于学生说出正常的分析思路,而且紧跟一句"谁还有不同的理由也能说明这道题是错的",培养了学生的多向思维;"哪一种判断方法最快",又培养了学生思维的敏捷性和批判性。当学生的思维遇到障碍时,老师引导学生亲自动手操作去发现,相机点拨,教给了学生探索解决问题途径的策略。]

  3.希望小学新盖了一间教室,长8米、宽6米、高4米,工人叔叔要粉刷教室屋顶和四壁。除去门窗和黑板的面积20平方米。

  (1)粉刷的面积是多少平方米?

  (2)如果每平方米用涂料0.25千克,需要用涂料多少千克?

  想一想在实际粉刷过程中,工人叔叔准备35千克的涂料够用吗?为什么?

  [说明:"在实际粉刷过程中,工人叔叔准备35千元的涂料,够用吗",看似一句无关紧要的问话,却把学生的思维引向更加严密和周全的角度,这是创造性思维不可缺少的重要品质。]

  4.一个长方体的食品盒长6厘米、宽5厘米、高10厘米,在食品盒的四周贴上商标纸,宽度是1.5厘米,贴这样1个食品盒要用商标纸多少平方厘米?

  读题后,让学生讲什么叫接头处。

  独立思考,并把算式写在练习本上。

  [说明:以变化激趣,在变中找不变,使学生养成多层次思考的习惯,培养思维的广阔性。]

  四、全课小结

  同学们,我们今天学习了什么?你有什么收获?

  [说明:最后,教师没有总结本节课所学的知识,而是让学生谈自己的收获。学生不但总结了本节课的知识而且从中明白了许多道理,这一设计打破了原来的教学模式,加深了学生对知识的理解和掌握,诱发了创造性思维。]

  [说明:这节课重点突出、逻辑严密、灵活多样,充分调动了学生思维的积极性,在学习的过程中,不时有创造性的思维火花产生。这样设计一是通过一题多解培养了学生探索精神,发展了他们思维的独特性;二是通过简缩思维,培养了学生思维的敏捷性;二是通过联想,培养思维的变通性。]

比的应用教学设计8

  本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。

  一、教学目标

  1、综合运用平行四边形的五种判定方法和性质解决实际问题;

  2、进一步理解平行四边形的性质与判定的区别与联系;

  3、通过练习提高学生的逻辑思维能力以及分析问题的能力。

  二、教学重难点

  重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。

  难点:在应用中明晰性质与判定的区别与联系。

  三、教学方法

  通过简单,典型,针对性质和判定的`应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考————组内有效交流讨论————组内归纳方法————全班展示————及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的过程。

  四、教学反思

  题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟————小组交流5分钟————小组展示————全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。

比的应用教学设计9

  过程与方法:

  1、能将自己的设想画出图样。

  2、能按照自己的设想去制作。

  3、能在制作完成后进行尝试并加以改进。

  4、能说得出自己应用的主要原理。

  科学知识:

  1、知道张衡发明地动仪是利用了地震波在大地中传导的原理。

  2、知道瓦特发明蒸汽机是利用了蒸气气流的力量。

  3、了解发电的多种方法和电转化为其他能量的形式。

  情感、态度与价值观:

  1、善始善终地从事一项活动。

  2、有精益求精的行为倾向。

  教学准备:搜集有关科学原理及其应用的资料,气球、轮胎、卡纸、剪刀、胶带、吸管、泡沫板、木块、橡皮泥、叶轮、皮筋等。

  教学步骤:

  1、上一节课,我们已经能够利用所学的知识和本领解释生活中的各种现象,懂得和解释是一种本领,能将所学的科学原理应用在物品的制作上是更大的本领。

  2、你知道在科学的发展史上有哪些将科学原理应用在制作上的例子吗?

  3、学生交流搜集的有关科学原理应用在制作上的例子。

  4、阅读书上73页的资料。

  5、出示做小车的材料和要求(以空气为动力,比一比谁的小车跑的又快又远)

  6、要想在比赛中获胜,你觉得做小车时应当注意些什么?为什么要这样做?你的依据是什么?

  7、回忆一下,做空气动力的.小车运用到了我们以经学过的哪些知识?

  8、学生动手制作。

  9、小车进行比赛。

  10、交流有关小船的资料。

  11、设计自己想做的小船的草图和所需的简单材料。(应当配有文字说明)

  12、你认为制作的小船应当涉及哪些科学原理呢?

  13、讨论交流。

  14、学生根据自己的设计图利用自己准备的材料制作一个小船。

  15、你造的小船涉及哪些科学原理呢?

  16、今天,我们将自己所学的科学原理应用到了物品的制作上,这也是一种拓展。

  17、其实,科学发展的目的本意就是用来改善人类的生活,促进人类社会的进步。

  18、你在平时做过哪些小制作,你知道它们是根据哪些科学原理吗?

比的应用教学设计10

  教学内容:

  教科书第60页。

  教学目标:

  1、通过小动物们重建家园的情境中的信息,探索乘加、乘减两步计算问题的解题思路。

  2、培养学生们提出问题和综合应用知识解决问题的能力。

  教学重难点:

  探索解决乘加、乘减两步计算问题的解题思路。

  教学准备:

  多媒体、学具等。

  信息:1.每次搬4块,已经搬了5次,还剩24块没搬。

  2.共有16只小兔,每4只小兔住一间房,已经建好3间。

  学生:准备:本子,笔,学具。

  教学过程:

  活动一:谈话导入、提出问题

  师:上节课,我们知道森林里发生了水灾,小动物的家被洪水冲垮了。他们在忙些什么呢?这节课我们一起去看看。

  (课件出示信息图)谁能说说小动物们在干什么呢?

  师:请同学们仔细观察画面,你发现了哪些数学信息?

  师:这么多数学信息,主要说了哪几件事?

  关于小熊搬砖盖房子的信息都有哪些呢?(每次搬4块,已经搬了5次,还剩24块没搬)这位小朋友信息找得很准确,谁能把小熊搬砖的信息再大声说一遍呢?关于小兔盖房子的信息又有哪些呢?谁能把小兔子盖房子的信息再大声说一遍?师边指边说:信息经过这样分类整理,是不是就更清楚了呢?当遇到信息较多时,我们就应该像刚才这样把信息进行分类整理。

  我们一起读一读小熊搬砖的信息,想一想根据这些信息你能提出什么数学问题?“一共有多少块砖?”这个问题有点难,今天这节课我们就来解决这个问题。

  活动二解决问题1

  同学们看这个问题你们会解决吗?先在练习本上试着做一做!

  同学们在小组里交流一下自己是怎么想的,怎么做的?

  老师发现很多小组的同学讨论好了,哪个同学愿意代表小组交流一下?

  实物投影:生交流算式:4×5=20,20+24=44

  师:能和大家说说你是怎么想的吗?

  生:生指算式:4×5=20我先求已经搬了多少块砖。再用20+24=44求出一共有多少块砖?

  师:小朋友们听清楚了吗?他先用4×5=20,求出小熊已经搬了多少块砖。现在请小朋友们看黑板,谁来说说他是根据哪条信息求出小熊已经搬了多少块砖?他是根据每次班4块,已经搬了5次,这两条信息求出了已经搬了多少块。他又用20+24=44求出一共有多少块砖?谁知道他又是根据哪两条信息求出来的呢?老师指着再重复根据已经搬的和还剩24块没搬。求出一共有多少块砖?

  哪个小组做法与他一样的举手?谁能完整的再说一说,你先根据什么信息求出了什么,又根据什么信息求出了什么?

  还有哪个小组有不同做法想下来交流?

  (4×5+24=44(块),他列出了综合算式。能和大家说说你是怎么想得吗?这种做法我们以后还会学习,今天先不研究,这节课我们主要学习分步算式。

  刚才我们小朋友交流了自己的不同做法,可不管哪种做法,大家的想法都是一样的,都是先根据“每次搬4块,已经搬了5次”。求出“已经搬了多少块砖”,再根据已经搬的`砖和剩下的砖合在一起,求出一共的砖。来,我们一起来解决这个问题。第一步算式是,生答师板书:

  4×5=20(块)

  20+24=44(块)

  同学们看,刚才我们先用乘法求出已经搬的砖又用加法求出一共多少块砖,这就是今天要学习的乘加两步计算。

  活动三:解决问题2

  师:同学们帮小熊解决了搬砖的问题,小兔子着急了,说:快来帮我们吧!

  我们一起读一遍小兔盖房子的信息,同学们想一想如果把这三个信息都用上你又能提出什么数学问题呢?

  还有几只小兔没有房子住?

  请同学们试着在练习本上做一做。

  做完的同学想一想自己是怎么想的,怎么做的。

  下面同桌之间交流一下自己的想法和做法?

  哪位同学愿意起来交流一下自己的做法?

  板书:3×4=12(只)

  16-12=4

  (生交流,师板书,能和大家说说你是怎么想的吗?)

  你根据什么信息求出来的,能说出来吗?再完整的说一说,根据哪些信息求出了什么,又根据哪些信息求出了什么?

  你现在明白了吗?自己改正一下

  小结:同学们看,刚才我们帮小兔解决问题,先算乘,再算减,这就是乘减两步计算问题。板书课题。

  四、巩固练习

  小猴摘桃

  活动四:

  课堂总结:老师发现咱班同学真了不起,不但会动脑思考,还很善于交流,相信同学们在以后的学习中表现更棒。

比的应用教学设计11

  课题:

  比的应用

  教学内容:

  义务教育课程标准小学数学六年级上册第三单元《比的应用》

  教学目标:

  1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。

  2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。

  3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独立思考、自觉检验的好习惯,增强学生学好数学的信心。

  教学重点:

  掌握按比分配应用题的结构特点和解题思路。

  教学难点:

  正确分析,灵活解决按比分配的实际问题。

  教学准备:

  教学课件卡片

  教学过程:

  一、复习导入

  1、复习求一个数的几分之几是多少的实际问题。

  2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。

  二、讲授新课

  1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。

  2、利用课件出示例2。

  (1)学生读题,弄清题意。

  (2)引导学生找出题中所提供的数学信息。

  (3)课件出示稀释液的配制过程,同时引导学生理解按比分配问题的.结构特点。

  (4)引导学生分析题中的数量关系,使学生理解按比分配问题的解题思路。

  (5)小组讨论解题方法,然后进行汇报,并集体订正。

  (6)引导学生用不同的方法解决问题,重点理解按比分配的方法。

  (7)提示学生用多种方法进行检验,培养学生自觉检验的习惯。

  3、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?

  三、巩固练习

  1、解决课前分卡片时所产生的问题。

  2、课件出示练习题1,在学生理解题意的基础上,引导学生比较练习题与例题

  的异同,并用自己喜欢的方法解决,后集体订正。

  3、课件出示练习题2,理解题意,引导学生比较本题与例题及练习1的异同,鼓励学生用不同的方法独立解决,并引导学生自行检验。

  四、拓展延伸

  利用课件出示教材第51页“你知道吗”,教师介绍“黄金比”的知识,使学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

  五、课堂总结

  学生畅谈本节课的收获,教师鼓励学生树立学好数学的信心,并用所学的数学知识解决生活中的实际问题。

比的应用教学设计12

  教学目标

  1.知道求几个相同加数和的乘法应用题的结构,初步掌握求相同加数和的乘法应用题的分析思路和解答方法,能正确解答这种类型的应用题.

  2.通过乘法应用题的分析解答,培养学生认真审题、动脑分析、比较区别等能力.并使学生们学会简单地分析乘法应用题中的数量关系.

  3.在授课过程中,教育学生们养成认真审题、正确解题、仔细检查的习惯.

  教学重点

  使学生理解求相同加数和的应用题的结构和数量关系.

  教学难点

  使学生真正掌握此类应用题的结构.

  教学过程

  复习导入

  1.口算.

  2×3= 2×5= 4×2= 5×1=

  5×3= 4×3= 5×5= 1×4=

  2.列式计算.

  (1)3个4相加是多少?

  (2)5个2相加是多少?

  3.师:大家已经学习了1~5的乘法口诀,学会了计算相应的式子题和文字叙述题.今天,我们要一起来研究一些生活中的问题,看谁能够应用前面所学的知识来解决这些问题.

  4.教师板书课题:应用题

  新授

  1.出示例8(教师板书)

  同学们浇树,每个人浇4棵,3个人一共浇多少棵?

  2.分析解答例8

  (1)读题,找出题目中的已知条件、要求的问题各是什么?用小圆片摆一摆,表示出题目中的意思.

  学生可以答出:每个人浇4棵,有了3个人,要求一共浇了多少棵.(一个学生说,另一个学生在黑板上板贴小圆片.)

  (2)师:看图思考,要求一共浇了多少棵树应该怎么想?(学生回答:每个人浇4棵,也就是1个4棵,有3个人浇树,就是浇了3个4棵.要求一共浇了多少棵,也就是求3个4是多少.)

  (3)问:要求3个4棵是多少,应该用什么方法解答?该怎样列式?说一说为什么要这样列式?

  学生边回答教师边板书:4×3=12(棵)

  口答:一共浇了12棵.

  3.进一步理解例8算式的意义.

  师问:谁来说一说,算式中的每个数分别表示什么意思?

  (算式中的4表示每个人浇了4棵树,也就是一份是4,算式中的3表示有3个人再浇树,也就是有相同的3份,算式中的12表示3个人一共浇了12棵树,也就是3个4是12.)

  4.讲解例9

  (1)出示例9(教师板书例9)

  小明买了3个扣子,每个5角钱,一共用了多少钱?

  (2)师:读题,已知条件是什么?要求的问题是什么?

  教师根据学生的叙述板贴:

  (3)师:看图思考,要求一共多少分应该怎样想?用什么方法解答?怎样列式?说说为什么? (分小组讨论)

  (4)汇报解答方法.(小组同伴分工完成下面的`任务:一人负责口头列式,一人负责板书列式,一人负责说为什么这样列式.)

  (5)再次说明列式中每个数表示的意义.(算式里的5表示每个扣子5角,3表示买3个扣子,一共是3个5角,要求3个5角是多少应该用乘法计算)

  巩固练习

  教师要求:

  (1)在规定的时间里,根据个人的不同情况,能完成几道题就完成几道题.

  (2)如果在规定时间里,完成了所有的题目后,可以思考以下问题:

  这几道题有什么共同的特点?(都是用乘法解答的;这几道题都是求几个几是多少.)

  这几道题还可以用什么方法解答?

  如果每一道题都能用两种方法解答,你更喜欢哪一种方法,为什么?

  归纳质疑

  师:通过这节课的学习,大家有什么收获?

  1、乘法算式可以用乘法口诀来迅速的计算.

  2、求几个几用乘法计算.

  3、求几个几还可以用加法来计算,但是用乘法计算起来比用加法计算更简便.

  4、我们已经学习了“求几个几” 的文字叙述题和应用题.其实把文字叙述题加上不同的事情就是不同的应用题.

  布置作业(略)

  板书设计

比的应用教学设计13

  不同分散系分散质粒子的大小不同,胶体微粒分散质的直径(1—100nm)在溶液(100nm)之间,利用丁达尔效应可区分溶液和胶体。

  胶体之所以能够稳定存在,其主要原因是同种胶体粒子带同种电荷,胶粒相互排斥,胶粒间无法聚集成大颗粒沉淀从分散剂中析出。次要原因是胶粒小质量轻,不停地作布朗运动,能克服重力引起的沉降作用。

  一般来说,金属氢氧化物、金属氧化物的胶体粒子带正电荷,如Fe(OH)3胶体、Al(OH)3胶体、AgX胶体(AgNO3过量)等;非金属氧化物、金属硫化物的胶体粒子带负电荷,如硅酸胶体、土壤胶体、As2S3胶体等。胶体粒子可以带电荷,但整个胶体一定呈电中性。胶粒是否带电荷,这取决于胶粒本身的性质,如可溶性淀粉溶于热水制成胶体,具有胶体的性质,但胶体中的分散质为高分子化合物的单个分子,不带有电荷,因而也无电泳现象。

  胶体聚沉的方法有:①加电解质溶液;②加与胶粒带相反电荷的另一种胶体;③长时间加热等。

  胶体有广泛的应用:可以改进材料的机械性能或光学性能,如有色玻璃;在医学上可以诊疗疾病,如血液透析;农业上用作土壤的保肥;在日常生活中的明矾净水、制豆腐;还可以解释一些自然现象如:江河入海口易形成三角洲等。

  胶体的聚沉与蛋白质的盐析:胶体的聚沉是指胶体在适当的条件下,(破坏胶体稳定的因素)聚集成较大颗粒而沉降下来,它是憎液胶体的性质,即胶体的凝聚是不可逆的。盐析是指高分子溶液(即亲液胶体)中加入浓的无机轻金属盐使高分子从溶液中析出的过程,它是高分子溶液或普通溶液的性质,盐析是因为加入较多量的盐会破坏溶解在水里的高分子周围的水膜,减弱高分子与分散剂间的相互作用,使高分子溶解度减小而析出。发生盐析的分散质都是易容的,所以盐析是可逆的。由此可见胶体的聚沉与蛋白质的盐析有着本质的区别。

  二、例题分析

  【例题1】已知有三种溶液:FeCl3的溶液、Na2SiO3溶液、盐酸,现有下列说法:①将FeCl3滴入冷水中,边滴边振荡,便可得FeCl3胶体;②在稀盐酸中滴加硅酸钠可制的胶体,胶体粒子直径大小在1~100nm之间;③用光照射硅酸胶体时,胶体粒子会使光发生散射;④FeCl3溶液和Fe(OH)3胶体都能透过滤纸;⑤胶体、溶液和浊液属于不同的分散系,其中胶体最稳定;⑥常温下,pH=2的FeCl3的溶液和pH=2的盐酸中由水电离出的氢离子浓度之比为1010:1,其中正确的是

  A.①④⑥B.②③⑤C.②③④⑥D.①②③④⑤⑥

  解析:制备Fe(OH)3胶体是将FeCl3的浓溶液(或饱和FeCl3溶液)滴入沸水中,①错误;胶体粒子直径大小介于1~100nm之间,②正确;丁达尔效应是胶体具有的性质之一,是由于胶体粒子使光发生散射形成的,是鉴别溶液和胶体的一种常用物理方法,③正确;溶液和胶体都能透过滤纸,④正确;溶液是最稳定的分散系,⑤错误;强酸弱碱盐溶液中水电离出的氢离子的浓度等于溶液中氢离子的浓度,酸溶液中水电离出的氢离子浓度等于溶液中的氢氧根离子的浓度,分别为10-2、10-12;⑥正确。

  答案:C

  点拨:胶体考查的重点是与常见分散系的比较与判断,以及胶体的概念、制备和性质,常将胶体的基础知识与科技、生活、生产相结合进行命题。胶体在高考题中并不常见,有时会出现在选择题的某个选项中。复习时注意识记胶体的概念、性质,注意与其它分散系的联系与区别。

  【例题2】下列关于溶液和胶体的叙述,正确的是

  A.溶液是电中性的,胶体是带电的

  B.通电时,溶液中的溶质粒子分别向两极移动,胶体中的分散质粒子向某一极移动

  C.溶液中溶质粒子的运动有规律,胶体中分散质粒子的运动无规律,即布朗运动

  D.一束光线分别通过溶液和胶体时,后者会出现明显的光带,前者则没有

  解析:胶体本身是不带电,只是其表面积较大,吸附了溶液中的离子而带了电荷,故A项错;溶液中的溶质,要看能否电离,若是非电解质,则不导电,也即不会移动,B项错;溶液中溶质粒子没有规律,C项错;丁达尔效应可以用来区分溶液和胶体,D项正确。

  答案:D

  【例题3】下列实验操作或叙述正确的是

  A.不能用丁达尔现象区别FeCl3溶液和Fe(OH)3胶体

  B.欲制备Fe(OH)3胶体,将饱和FeCl3溶液加热煮沸

  C.利用渗析法可以分离除去淀粉溶液中的Na+和Cl-

  D.称取10gCuSO4·5H2O晶体溶解在40g水中既得质量分数为20%的CuSO4溶液

  解析:胶体具有丁达尔效应,而溶液不具有,即可用丁达尔效应区分胶体和溶液;制备Fe(OH)3胶体,应将FeCl3的饱和溶液逐滴加入沸水中并加热煮沸而得到;胶体微粒不能通过半透膜,而小分子和离子可以通过半透膜,即利用渗析法可以分离提纯胶体;D项溶液中溶质的质量分数为:×100%=12.8%

  答案:C

  点拨:正确把握胶体、溶液等分散系的概念以及其性质是解决该题的关键。如胶体和溶液都是均匀稳定的混合物;溶液能通过半透膜,胶体粒子可以通过滤纸,而不能通过半透膜,浊液不能通过滤纸和半透膜;胶体具有丁达尔效应,而溶液不具有;分离提纯胶体可以利用渗析法等。

  【例题4】“纳米材料”(1nm=10-9m)是当今材料科学研究的前沿,其研究领域及成果广泛应用于催化及军事科学中。“纳米材料”是指研究开发直径为几纳米至几十纳米的材料,如将“纳米材料”分散到液体分散剂中,对所得分散系的叙述正确的`是

  ①一定是溶液②能全部通过半透膜③有丁达尔现象④可以全部通过滤纸

  A.①②B.②③C.①④D.③④

  解析:根据题给信息,“纳米材料”指的是直径为几纳米至几十纳米的材料,故“纳米材料”分散到液体分散剂中,所得的分散系是胶体,应具有胶体的性质,如丁达尔效应,粒子可以通过滤纸,但不能通过半透膜等。

  答案:D

  点拨:解答该题关键是理解题给信息,获得相关知识,并迁移到胶体的相关性质来分析作答。掌握了胶体的性质就能顺利解决该题。

  【例题5】已知土壤胶体粒子带负电,在土壤中施加含氮质量相同的下列化肥,肥效最差的是

  A.(NH4)2SO4B.NH4HCO3C.NH4NO3D.NH4Cl

  解析:土壤胶体粒子带负电,所以容易吸附阳离子,如果氮元素全部在阳离子中肥效就不会丢失。硝酸铵中有一部分氮元素在阴离子硝酸根中,而其它三个答案的氮元素全都在阳离子铵根中,故C答案肥效最差。

  答案:C

  点拨:本题考查里胶体具有介稳性的原因及其应用。只有对其原理理解透彻,才能作出正确选择。胶体粒子可以通过吸附而带电荷,因此胶粒可以吸附异性电荷。

  【例题6】某种胶体在电泳时,它的粒子向阴极移动。在这胶体中分别加入下列物质:①蔗糖溶液②硫酸镁溶液③硅酸胶体④氢氧化铁胶体,不会发生凝聚的是

  A.①③B.①④C.②③D.③④

  解析:该胶体在电泳时,它的粒子向阴极移动,说明它带正电荷,蔗糖属于非电解质,硫酸镁属于电解质,硅酸胶体粒子带负电荷,氢氧化铁胶体粒子带正电荷。

  答案:B

  【例题7】在Fe(OH)3溶胶溶液中,逐滴加入HI稀溶液,会出现一系列变化。

  (1)先出现红褐色沉淀,原因是___________________________________________

  (2)随后沉淀溶解,溶液呈黄色,写出此反应的离子方程式___________________

  (3)最后溶液颜色加深,原因是___________________________________________

  写出此反应的离子方程式_____________________________________________

  (4)用稀盐酸代替HI稀溶液,能出现上述哪些相同的变化现象_______(写序号)

  解析:HI既有酸性又有强还原性,I-能使Fe(OH)3胶粒聚沉,H+能使其溶解,生成Fe3+又能氧化I-成I2;而稀盐酸中的Cl—不能还原Fe3+,只能使其先聚沉后再溶解,导致现象不同。解答此题时不要仅把HI当作“电解质”,也不要仅把HI当作酸,更不能忽略I-的还原性。特别是在非填空型问答题中,由于没有像本题一样分层次设问,而是仅问:会发生哪些变化?为什么?这样极易以偏概全。

  答案:(1)HI是电解质,电解质能使胶体聚沉。

  (2)Fe(OH)3+3H+==Fe3++3H2O

  (3)有I2生成,2Fe3++2I-==2Fe2++I2

  (4)(1)(2)。

  【练习1】下列叙述正确的是

  A.直径介于1nm~100nm之间的微粒称为胶体B.电泳现象可证明胶体属电解质溶液

  C.利用丁达尔效应可以区别溶液与胶体D.胶体粒子很小,可以透过半透膜

  解析:胶体是指分散质粒子直径在1nm~100nm之间的分散系;部分胶体粒子带有电荷,能在外加电场下发生定向移动,即电泳,而有的胶体的胶粒因为不带电所以不发生电泳;丁达尔现象是胶体的重要特征,可用来区别溶液和胶体;胶体粒子可以透过滤纸,但不能透过半透膜。

  答案:C

  【练习2】将某溶液逐滴加入Fe(OH)3溶胶内,开始时产生沉淀,继续滴加时沉淀溶解,该溶液是

  A.2mol·L-1H2SO4溶液B.2mol·L-1NaOH溶液C.2mol·L-1MgSO4溶液D.硅酸溶胶

  解析:H2SO4、NaOH、MgSO4均属电解质,都能使Fe(OH)3溶胶产生沉淀,硅酸溶胶带负电荷能使其聚沉,但2mol·L-1H2SO4溶液还能和Fe(OH)3发生中和反应。

比的应用教学设计14

  一、复习引入

  1.回忆列方程解决问题的一般步骤。

  学生小组内交流。

  2.在横线上写出含有字母的式子。

  (1)明明写了a个生字,红红写的字比明明写的3倍还多5个。红红写了(x)个生字。

  (2)男生x人,女生比男生人数的1.5倍少8人。女生有(x)人。

  学生独立思考后,指名回答。

  二、讲授新知

  1. 导入。

  教师:西安是我国有名的历史文化名城,有许多著名的古代建筑,其中就包括闻名遐迩的大雁塔和小雁塔。(多媒体出示西安大雁塔和小雁塔图片)这节课,就让我们一起来研究一个与它们有关的数学问题。(多媒体出示教材第9页例8)

  2.探究新知。

  (1)分析题旨、提出问题

  教师:仔细观察,认真分析,题目中告诉了我们哪些条件?需要我们解决什么问题?

  学生认真读题,分析题意,全班交流。

  教师:根据你的分析,能从题目中找出大雁塔和小雁塔高度之间的相等关系吗?题目中的哪句话能清楚地表明大雁塔和小雁塔高度之间的关系?

  学生独立思考,全班交流汇报。

  (2)找等量关系。

  教师:你能用一个等量关系式来表示它们之间的相等关系吗?

  小组合作,全班交流。

  多媒体出示各种等量关系式的情况:

  ①小雁塔的高度×2-22=大雁塔的高度。

  ②小雁塔的高度×2=大雁塔的高度+22。

  ③小雁塔的高度×2-大雁塔的高度=22。

  ④(大雁塔的高度+22)÷2=小雁塔的高度。

  教师在充分肯定学生能从不同的角度分析题中数量关系的基础上,引导学生比较最后一种想法与前面几种想法的不同。然后着重引导学生观察第一个等量关系。

  教师:在这个等量关系式中,哪个数量是已知的?哪个数量是要我们去求的?

  指名学生回答。

  (3)引导列出方程。

  教师:通过我们的观察与交流,你觉得可以用什么方法来解决这个问题?

  学生独立思考,全班交流。

  教师:根据等量关系式,你们能列出方程吗?

  学生先自主尝试设未知数,并根据第一个等量关系式列出方程,全班交流,教师板书。

  解:设小雁塔高x米。

  2x-22=64

  (4)自主思考、解方程。

  教师:这样的方程,你以前解过没有?运用以前学过的知识,你能解出这个方程吗?怎样将这个方程变形为我们以前学过的方程?

  小组合作探究,全班交流。

  通过交流使学生明确:首先把2x 看出一个整体,先求出2x等于多少,所以可以应用等式的性质将方程两边同时加上22,使方程变形为“2x=?”,再用以前学过的方法继续求解。

  教师和学生一起完成例题呈现的方程两边同时“+22”的步骤,让学生继续独立解答,求出方程的解。

  组织交流解方程的整个过程,并完整板书。

  解:设小雁塔高 x米。

  2x-22=64

  2x-22+22=64+22

  2x=86

  x=43

  (5)引导检验、培养习惯。

  教师:你打算怎样对这道题进行检验?

  学生各自检验,指名汇报检验方法。

  教师:列方程解决实际问题检验答案是否正确,不光要检验结果是不是方程的解,还要把答案作为已知条件,看能不能满足题目中的数量关系。

  3.内化理解、触类旁通。

  教师:根据等量关系还可以怎样列方程解决?

  学生独立列出方程后,在小组内交流各自列的方程,并说说列方程的依据。

  集体交流,然后说说怎样来解自己的方程。

  4.对比归纳、掌握方法。

  教师:刚才我们通过列方程解决了一个实际问题,我们来一起看看这几种列方程的方法,你觉得那种比较简便?为什么?

  小组交流,明确:顺着题意来列方程比较简便。

  三、巩固应用

  (一)预习答疑

  这道题里数量关系有多种,但我们一般用求和的关系式即“看了的页数+剩下的页数= 一共看的”,这样在解方程时比较方便。

  (二)教材习题

  1.教材第10页“练一练”。

  引导学生顺着题意写着关系式,再依据关系式列方程解方程。学生独立完成,选1人板演,教师巡视辅导,针对共性讲评。(解:设香港青马大桥全长大约x千米。x×16+0.8=36 x=2.2)

  2. 教材第11页练习二第5题。

  独立解答,集体讲评,每道题选一名学生说一说解题思路。(x=9 x=0.3 x=3.8 )

  3. 教材第11页练习二第6题。

  学生直接填空,全班交流。(3x+15 4x-80)

  4.教材第11页练习二第7题。

  学生独立完成,教师巡视辅导,集中讲评。(讲评: 解:设猫的最快时速是x千米。2x+20=110 x=45)

  5.教材第11页练习二。第8题。

  学生独立完成,教师巡视辅导,集中讲评。(讲评:解:设水星绕太阳一周大约要用x天。4x-13=365 x=94.5)

  (三)课堂作业

  完成第三部分习题设计“课堂作业”第1、3题。

  学生在作业纸上直接写出答案,教师让做错的同学说一说思路,予以专门辅导。

  四、总结提升

  1.我们今天继续学习了列方程解决简单的实际问题。请同学们先回忆一下,列方程解决问题一般要经过哪几个步骤?

  2.解方程解实际问题时应注意什么?你有哪些收获?还有哪些困惑?

  五、布置作业

  完成第三部分习题设计“课后作业”第5、6、7题。

  设计意图:学习新知识以前,进行两个内容的'准备性练习,为新课做好铺垫,为下一步学习新知识做好准备。

  设计意图:用图文结合的方式展示信息,使数学学习和对历史景观的了解有机融合,增强了学生的探索兴趣,激发学生全身心地投入到问题的研究中去。

  设计意图:找到数量之间的相等关系,才能把实际问题转化为数学问题,也才能列出相应的方程解答问题,这是解决问题的关键一步。通过小组合作交流各自的思考,促使学生透彻地理解大雁塔与小雁塔高度之间的相等关系,从而灵活地解决问题。

  设计意图:以解决问题为载体,引导学生在解决问题的过程中逐步掌握相关方程的解法。从而使学生适时地把获得的知识和方法应用于解决其他一些类似的问题。

  设计意图:设计引导学生掌握解决实际问题检验的方法,养成自觉检验的习惯。是为了在引导学生掌握数学知识的同时,注意处理好智力培养与习惯养成的关系,着眼于全面素质的培养和提高。

  设计意图:在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。但要注意的是,方法并不是越多越好,这里不是要求学生一题多解。教学中要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同,进而进一步优化方法。

比的应用教学设计15

  教学目标:

  1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。

  2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。

  教学重点:

  在解决问题的过程中巩固两位数乘两位数的计算方法。

  教学难点:

  形成综合运用数学知识解决问题的能力。

  教学准备:

  小黑板

  教学设计

  一、情境导入

  师:这几天,我们学习了两位数乘两位数的口算和笔算,这一节课,刘老师和同学们用两位数乘两位数的知识解决实际问题。先来看一下本节课的教学目标:

  二、目标导学

  1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。

  2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力。(让学生看看教学目标,并让一个学生读一读

  三、独立解答、小组合作解决问题

  师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)

  师:夜景迷人吗?(生:迷人)通过欣赏夜景图,你都发现了哪些数学信息?

  生一:48根灯条,每根71个灯泡

  生二:一个广告灯一天的租金是45元,这条街上有29个同样的广告灯

  生三:A型车限乘25人,B型车限乘8人,A租4辆型车正好。

  生四:5棵树用75米彩灯线,用400米彩灯线装饰剩下的.25棵树,够吗?

  (通过让学生说数学信息,培养学生完整、正确表达的好习惯)

  师:根据你发现的信息能提出哪些数学问题?

  (学生各抒己见)

  师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。

  出示四个问题:

  1、一共有多少个灯泡?

  2、29个同样的广告灯一天的租金多少元?

  3、A型车限乘25人,B型车限乘8人,A租4辆型车正好。如果租B型车,需要多少辆?

  4、5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?

  师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。

  (学生独立解答,教师巡视大约10分钟)

  师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。

  (学生小组交流,教师巡视,看看各小组讨论情况)

  师:各小组都讨论完了,下面请小组的同学上来汇报。

  小组同学就各问题汇报,不对的和不完整的其余各小组及时纠正和补充。

  师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。

  四、自主练习

  教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)

【比的应用教学设计】相关文章:

《比的应用》教学设计02-07

比的应用教学设计12-11

比应用教学设计06-07

《比的应用》教学设计05-22

《比例的应用》教学设计03-23

(热门)《比的应用》教学设计06-17

《比的应用》教学设计15篇04-16

《比的应用》教学设计15篇(优秀)07-31

《比的应用》教学设计15篇(精)06-17

加减两步应用题教学设计06-05