《比的应用》教学设计

时间:2024-06-17 16:02:36 教学设计 我要投稿

《比的应用》教学设计15篇(精)

  作为一无名无私奉献的教育工作者,有必要进行细致的教学设计准备工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。优秀的教学设计都具备一些什么特点呢?下面是小编为大家整理的《比的应用》教学设计,仅供参考,希望能够帮助到大家。

《比的应用》教学设计15篇(精)

《比的应用》教学设计1

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的.两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的,(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

《比的应用》教学设计2

  《我设计的一本书》属于设计应用课。主要是要求学生通过自主学习,设计绘画制作一本书,这本书要有封面、封底、内业设计等。来培养学生对美术设计的兴趣。对于三年级的学生来说,虽然绘画已经有了一定的基础,但对于书籍的设计却了解很少。由此在设计本课时,我认为创设一种真实的问题情境还是有必要的。首先问学生喜不喜欢看书,喜欢看什么样的书, 从这一点切入主题,来提高学生对本课的兴趣。接着出示一本书,引导学生观察书的'封面设计有哪几部组成。讲解设计过程,让学生了解书的设计规律及方法。如:封面、插图可以绘画,也可以剪贴等等。最后让学生选择自己喜欢的方式来设计一本自己喜欢的书。并鼓励学生今后为自己的日记或周记来配插图。

  本课学生能发挥个性思维,来具体创作设计,但配图与内容的搭配还不是很恰当。

《比的应用》教学设计3

  本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

  一、有效的“复习回顾”

  学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

  二、有效的`“新知探究”

  根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。

  三、有效的“拓展延伸”

  设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

  四、有效的“感悟收获”

  通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。

  五、有效的“巩固提高”

  通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

  六、有效的“作业布置”

  根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

  以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家

《比的应用》教学设计4

  教学时间:

  教学内容:第114页例8例9第115页做一做中的题目和练习二十六的第1、2题。

  教学目标:

  知识:使学生了解乘法应用题的结构,学会根据乘法的意义列式解答。

  能力:培养学生分析乘法应用题的能力。

  教学重难点:学会根据乘法的`意义列式解答。

  突破方法:讲解法、练习法

  教具:小黑板、投影机、多媒体

  教学过程

  一、前提测评

  1、看卡片,说得数

  2、看题列乘法算式

  (1)4个2相加多少?(2)5个3相加是多少?

  二、新授

  1、出示例8

  题目讲了一件什么事情?

  2、第一个已知条件是什么?第二个已知条件是什么?4×3=12(棵)

  3、小结:求3个4,所以用乘法。

  4、揭示课题

  5、教学例9

  (多媒体)出示例9

  ①第一个已知条件是什么?

  ②第二个已知条件是什么?

  ③出示问题

  三、达标测评

  练习二十六第1、2题

  四、板书设计

  教后经验与失误分析:

《比的应用》教学设计5

  教学内容:九年义务教育五年制小学数学第九册第112一132页的分数应用题。

  教学目的:

  1、通过一些有联系的分数乘、除法应用题的整理和复习,使学生进一步掌握分数乘、除法应用题的解题思路以及他们之间的内在联系。掌握分数应用题的结构特征和解题规律。

  2、使学生会正确、熟练地解答分数应用题,提高学生分析问题和解决问题的能力。

  教学重点:进一步掌握分数应用题的结构特征和解题规律。

  教学关键:找准单位"1",理清单位"1"的量、分率及分率对应量之间的关系。

  教具准备:投影仪

  教学过程:

  一、梳理知识,使知识建成网状结构

  1、口答:(打开投影仪)

  (1)分数应用题的基本类型有几种?哪三种?

  (2)解答这三种分数应用题的关键是什么?

  (找准单位"1",弄清单位"1"的量、分率及分率对应量。)

  (3)解答这三类分数应用题的基本关系式是什么?

  2、(l)简单的分数应用题

  ①某班有男生40人,女生人数是男生1/4,女生有多少人?

  ②某班有女生10人,男生40人,女生人数是男生人数的几分之几?

  ③某班有女生10人,是男生人数的士,男生有多少人?

  (2)稍复杂的分数应用题

  ①某班有男生40人,女生人数比男生人数少1/4,女生有多少人?

  ②某班有男生40人,女生30人,男生人数比女生人数多几分之几?

  ③某班有女生30人,比男生人数少言,男生有多少人?

  以上这两组题把分数应用题全部展示出来,教学时可先出示第(1)题的3个小题(打幻灯),让学生口头列式并比较异同,生答师板书:

  ①求一个数的几分之几是多少?

  单位"1"的量×分率=分率对应量

  ②求一个数是另一个数的几分之几是多少?

  分率对应量÷单位"1"的量=分率

  ③已知一个数的几分之几是多少,求这个数?

  分率对应量÷分率=单位"1"的量

  而后出示第(2)题的3个小题(打幻灯),让学生试做,再和第(1)题的三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是三个小题比较异同,使学生进一步懂得,解答这三类应用题的关键是找准单位。然后根据这三个基本关系式进行解答。

  [评析:根据以上复习,使学生对分数应用题从简单到复杂有了整体的认识,这样既梳理了知识,又沟通了联系,通过对知识进行纵向、横向比较和梳理,使知识构成了网状结构,促使学生的思维条理化,进一步理清了学生的解题思路。]

  二、抓住结构特征,应用所学知识,提高能力。

  (1)某用户三月份用电100度,四月份比三月份节约用电1/10,?

  ①100×1/10?

  ②100×(1—1/10)?

  ③100×(1—1/10+1)?

  (2)某用户四月份比三月份节约用电100度,正好节约了1/10,

  ①100÷1/10?

  ②100÷1/10×(1—1/10)?

  ③100÷1/10×2—100?

  (3)某用户四月份用电90度,比三月份节约用电1/10,?

  ①90÷(1—1/10)?

  ②90÷(1—1/10)×1/10______________?

  ③90÷(1—1/10)+90________________?

  (学生口述,集体订正,比较异同)

  2、根据补充的条件或问题列式计算:(发散思维,提高能力)(用幻灯逐题打出)

  __________运来的桔子比苹果少,___________?

  (1)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子是苹果的几分之几?

  (2)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果是桔子的几倍?

  (3)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子比苹果少多少吨?

  (4)某商店运来苹果10吨,运来的桔子比苹果少,运来的苹果比桔子多多少吨?

  (5)某商店运来苹果10吨,运来的桔子比苹果少,运来的桔子有多少吨?

  (6)某商店运来苹果10吨,运来的桔子比苹果少,两种水果共运来多少吨?

  (7)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来苹果多少吨?

  (8)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求运来桔子多少吨?

  (9)某商店运来的桔子比苹果少10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

  (10)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少,求运来苹果多少吨?

  (11)某商店运来的苹果比桔子多10吨,运来的桔子比苹果少?,求运来桔子多少吨?

  (12)某商店运来的苹果比桔子多10吨,运来的桔于比苹果少,求两种水果共运来多少吨?

  (13)某商店运来桔子10吨,运来的桔了比苹果少,求运来的苹果有多少吨?

  (14)某商店运来桔子10吨,运来的桔子比苹果少,求运来的`桔子比苹果少多少吨?

  (15)某商店运来桔子10吨,运来的桔子比苹果少,求运来的平果比桔子多多少吨?

  (16)某商店运来桔子10吨,运来的桔子比苹果少,求两种水果共运来多少吨?

  (17)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来苹果有多少吨?

  (18)某商店运来桔子和苹果共18,运来的桔子比苹果少,求运来桔子有多少吨?

  (19)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的桔子比苹果少多少吨?

  (20)某商店运来桔子和苹果共18吨,运来的桔子比苹果少,求运来的苹果比桔子多多少吨?

  以上各题采用先让学生试做,然后老师归纳总结解题思路:

  ①先找出单位"1"的量

  ②谁和单位"1"的量相比

  ③确定算法:a:单位"1"的量是已知的就用乘法(求一个数的几分之几是多少)或除法(求一个数是另一个数的几分之几是多少?);b:单位"1"的量是未知的就用除法(已知一个数的几分之几是多少,求这个数。)

  ④确定算法(或列式)的依据是什么?

  3、发展题(用幻灯逐题打出)

  (1)要修一条路,已修了全长的3/5多2千米,还剩了12千米没有修,求这条路有多少千米?

  (2)要修一条路,已修了全长的3/5少2千米,还剩下12千米没有修,求这条路有多少千米?

  教师先出示第(1)小题,让学生试做,估计有一部分同学会列出错误算式:(12—2)÷(l—3/5),此时,老师不要急于纠正,而应再出示第(2)小题让学生比较异同,引导学生发现两题仅一字之差,列式却不同,然后教师帮助学生画图分析解答。

  通过以上两小题的讲解,使学生在找准单位"1"的基础上,通过图形,灵活掌握"量率对应"。

  三、课堂小结,再次构成学生的认知结构。

  师问:这节课你有哪些收获?

  甲生答:这节课我们复习了分数应用题的基本类型。

  乙生答:解答分数应用题的关键是找准单位"1",然后看谁跟单位"1"的量相比,它相当于单位"1"量的几分之几。

  丙生答:根据分数应用题的基本关系式确定算法。

  丁生答:有些灵活题还要通过画图,找出"量率对应"再解答。

《比的应用》教学设计6

  教学内容:小学数学六年级上册北师大版第四单元第55页——第56页的内容“比的应用”。

  教材分析:

  这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习“比例”“比例尺”奠定了基础。

  学情分析:

  对于按比分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

  设计理念:

  《数学新课程标准》指出:义务教育阶段的数学课程其基本出发点是促进学生全面、持续、和谐地发展。为此,本课从学生地生活经验出发,把陌生枯燥地应用题与学生地熟悉地生活背景联系起来。通过“问题情景”——“建立模型”——“解释应用与拓展”,这三个阶段让学生亲身经历数学建构地过程,体验策略地多样化,初步形成评价与反思意识,从而提高解决问题地能力。

  教学目标:

  1、能够运用比的意义,通过计算解决分配的实际问题,进一步体会比的意义,提高解决问题的能力。

  2、在解决问题的过程中,培养学生的合情合理的推理能力,旧知的迁移能力,体会解决问题策略的多样性。

  3、感受探索知识、合作学习的乐趣,体会比与生活的密切联系,收获积极良好的情感体验。

  教学重难点:

  重点:运用比的意义解决按比例分配的实际问题。

  难点:通过实际操作理解按比例分配的实际意义。

  教学准备:课件、小棒若干。

  教学时间安排:复习2分钟,导入3分钟,新授20分钟,巩固5分钟,小结3分钟,练习7分钟。

  教学过程:

  一、课前组织复习旧知

  同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

  学生自由发言,预设推断如下:

  1、全班人数是9份,男生占其中的5份,女生占其中的4份。

  2、以全班为单位“1”,男生是全班的,女生是全班的。

  3、以女生为单位“1”,男生是女生的,全班是女生的。

  4、女生比男生少(或20%)。

  5、男生比女生多(或25%)。追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?你的依据是什么?(请3个学生说说,把握总人数比是5:4就可以了。答案不是唯一的。)二、创设情境,导入新知

  师:看来大家对比的认识还是相当清楚的。那接下来老师要同学们帮老师一个忙,我这儿有一筐橘子打算分给幼儿园的大班和小班的小朋友,你们认为应该怎么分合理?(出示课件)

  同学发言。

  小结:平均分不太合理,按两个班的人数比分才公平合理。师:这样吧,我们用小棒代替橘子,小组实际分一分,并记录分的过程。

  师:分好了吗?能说说你们是怎样分的吗?学生交流分的方法。

  师:在这次分小棒的活动中,你们有什么发现?

  师:实际上以前我们学过的平均分就是按1:1进行分配的。 小结:不管我们怎么分,我们都是按3:2的比来分的,也就是我们每次分的小棒的根数比都得是3:2。三、合作探究,解决问题

  师:如果我现在给你们140个橘子按3:2来分,你能求出大班和小班各可以分到多少个橘子吗?请把你的方法写下来。然后小组讨论。(出示课件)

  1、师巡视辅导。

  2、请不同做法的学生交流汇报。方法一:根据分数的意义。板书:3﹢2=5大班:140×3/5=84(个)小班:140×2/5=56(个)

  追问:为什么要“× ”?你能不能告诉大家表示什么?(引导明确:因为大班人数占总人数的,所以它分到的橘子个数应该也要占橘子总数的。)方法二:根据比的意义,板书:140÷(3+2)=28大班:28×3=84(个)小班:28×2=56(个)

  追问:为什么要“÷(3+2)”?

  答:大班分84个,小班分56个,比较合理。

  3、引导小结:好,还有其他做法吗?

  方法一是根据比与分数的关系,看看每种物体各占总数的几分之几,再用分数的`知识来解答;方法二是根据比的意义,看看一共分成几份,先平均分求出每份的具体数量,再各取所需,乘各自分得的份数。请同学们看书第55页的内容,书中还有哪些刚才我们没有探讨到的方法?(画图法、画表格法)这也是解决问题的方法,但是跟我们探讨的这两种方法比较,我们两种方法更方便。其实这就是我们这节课要学习的内容:比的应用。(出示课件,板书课题)

  四、实践应用

  1、师:刚才我们共同探讨解决了这样一道“按比分”的问题,觉得有困难吗?有信心独自完成一道这样的题目吗?好,请大家自己读题分析完成,有几种方法都可以把它写下来。课件出示题目—— “幼儿园阿姨要调制2200克巧克力奶,说明书上介绍了其中巧克力和奶的比是2:9,你能帮阿姨算算调制这些巧克力奶需要用多少克奶和多少克巧克力吗?”

  独立完成,师巡视辅导。学生上台展示汇报。

  2、师:非常棒,但一直做同类型的题目没意思。现在我把题型改一改,看看有谁大家被考倒。请看题,师读题:“幼儿园图书室有图书若干本,按3:2分给大班和小班后,大班小朋友分到了60本,你能帮小班小朋友算算他们能分到多少本吗?”怎么样,谁发现了它和前面题目不一样的地方?能解决吗?好,你能想到几种解题方法,都请你写出来。

  师巡视辅导:有句俗话说“三个臭皮匠,抵个诸葛亮”,已经写好的同学不妨把你的做法在小组里和其他同学交流一下,通过思维碰撞,说不定你能得到更多灵感哦。先请一个小组的同学上来把你们的解法写出来。预设方法如下:

  (1)60÷3×2=40(本)(2)60÷ × 2=40(本)(3)60× =40(本)(4)60÷ =40(本)

  小结:解决生活中的实际问题时,同学们只要认真分析数量关系,就可以找出多种解题方法。

  五、拓展延伸(课件出示题目)

  1、一座水库按2:3放养鲢鱼和鲤鱼,一共可以放养鱼苗25000尾。其中鲢鱼和鲤鱼的鱼苗各应放养多少尾?

  2、一种喷洒果树的药水,农药和水的质量比是1:150。现有3千克农药,需要加多少千克的水?

  六、评价总结,促进发展

  师:这节课我们利用比的知识解决了许多问题,解决问题关键是讲究实效,所以我们要选择最佳方法也是自己最适合的方法解决问题。

  那么学习了“比的应用”,你有什么想法吗?(自由发言)比在我们生活中的应用非常广泛,比如在建筑业、农业、医药等方面都需要非常精确应用比的知识,所以同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

  七、巩固新知

  完成课本第56页:

  1、独立试做:试一试。

  2、独立试做练一练的1—3题。

《比的应用》教学设计7

  教学标:

  1、能运用比的意义解决按照一定的比进行实际分配的实际问题。

  2、进一步体会比的意义。

  3、提高解决问题的能力。

  教学重点:理解按一定比例来分配一个数量的意义。

  教学难点:根据题中所给的比,掌握各部分量占总量的几分之几,能熟练地用乘法求各部分量。

  教具学具:多媒体课件

  教学过程:

  一、创设情境,激发兴趣

  小调查:奶茶中,奶与茶的比是3:7,从中你可以获得什么信息?

  3月12日是植树节,学校把种植42棵小树苗的任务分配给六年级人数相等的三个班,怎样分配才合理?(平均分配)

  出示课题:这就是今天我们要学习的“比的应用”

  二、分析探究,初步感知

  出示题目:老师这有一筐橘子,把这筐橘子按3:2分给幼儿园大班和小班应该怎样分?(课件显示)

  (学生独立思考一会儿,有的同学想到要实际分一分)

  师:这样吧,我们用小棒代替橘子,小组分一分

  (老师给每组相同数量的小棒,但没有告诉学生小棒的数量,学生按3:2分小棒,教师巡视)

  师:分好了吗?说说你们是怎样分的?

  生1:先给大班3根,小班2根;然后再给大班3根,小班2根,就这样一共分了8次分完。由此可知这堆小棒有40根,最后大班分到24根,小班分到16根。

  生2:我们前两次分得跟他们一样,第三次我们发现剩的太多,我们就给大班分6根,小班分4根,就这样又分了两次分完,结果也是大班分到24根,小班分到16根。

  生3:我们的分法和他们的不一样,我们按3:2来分,因为小棒有一大堆,我们就想给大班分30根,小班分20根,后来发现不够,就给大班15根,小班10根,剩下的再给大班9根,小班6根,正好分完。

  师:虽然分得结果一样,但是你们的方法却不尽相同,可见同学们是用心、用脑去想了。事实上,很多科研成果也是通过科学家们的无数次试验得来的,希望你们把这种好的学习方法保持下去。

  师:在这次分小棒的活动中,你们有什么发现?说说你们的感受。

  生1:我觉得不管怎么分我们都要按3:2的比来分,也就是我们每次分的小棒的个数比是3:2。

  生2:我发现6:4,30:20,15:10,9:6结果都是3:2。

  生:我觉得按3:2的`比分和我们以前学过的平均分给两个人不一样,因为平均分后两个人每人分得的个数相同,而按3:2的比分两人分得的个数不同。

  师:实际上以前我们学过的平均分就是按照1:1进行分配的。

  师:如果现在有140个橘子又该怎么分?把你的想法在四人小组内说一说。

  生1:我觉得现在橘子数目大了,再像刚才那样一次一次的分太麻烦,实际上按3:2来分的意思就是大班3份,小班2份,还是先算出来再分比较好。

  生2:......

  比较不同的方法,说出你的解题思路,并找找他们的共同点(课件展示)

  方法一:列表法

  方法二:画图

  3+2=5 140÷5=28(根)28×3=84(根)28×2=56(根)

  方法三:列式

  3+2=5 140× =56(根)140× =84(根)

  小结:在解决实际问题时,同学们要认真分析数量关系,可以选用自己喜欢的方法来解答。

  三、运用新知,学以致用

  1、独立完成教材56页“试一试”,集中反馈。

  2、独立完成教材56页“练一练”2题。,找学生板眼,集中反馈,讲解不同的解题思路。

  3、用48厘米的铁丝围成一个长方形,这个长方形长和宽的比是53,这个长方形长和宽各是多少?

  四、归纳拓展,巩固新知

  教材56页故学故事

  五、总结全课

  1、学生看书回顾本节学习内容

  2、对于这节课的学习,你还有什么疑问?

  3、说说这节课你的收获。

  六、作业:

  按不同的比例把糖和水配成糖水,品尝之后,记录好你最喜欢的糖水比例。

《比的应用》教学设计8

  学习目标:

  1、应用比的意义,解决按照一定的比进行分配的实际问题。

  2、进一步体会比的意义,提高解决问题的能力。感受比在生活中的广泛应用。

  学习重点:应用比的意义,解决按照一定的比进行分配的实际问题。

  学情分析、教材处理:

  六年级学生在明晰了比与分数和除法的关系后,完全能自己找到按比分配的方法。教师在本节课中要起到启发、点拨、深化引导的作用。在教材处理上,有意由两个量的比过渡到三个量的比,旨在归纳出按比分配前提下,无论是两项或是三项,它们的分配方法是一样的。

  教学准备:水杯、水、鲜奶、茶、秤、课件。

  教学过程:

  一、分配礼物

  师:同学们,今天的这节课,老师想送给大家一些特别的礼物,猜猜是什么?

  1、想一想

  ① 我将礼物的一半给男生、另一半给女生,你们说怎么样?

  ② 如果你觉得不太合理,那你们认为我应当怎样分呢

  ③ 调查班级男女生人数

  ④ 假设所带礼物的数量,(不等同于人数),该怎么分呢?

  如男生30人,女生20人,我只有5个礼物怎么分给男生和女生呢?每个人得到的是多少呢?如果我带10个、15个、50个礼物呢?……

  ⑤ 为什么这么多的分法你们都认为合理呢?,

  师:因为按人数的比来分,落实到每个人手中的礼物就是一样的,这才最合理。

  【设计意图:给学生分礼物是学生最感兴趣的,好奇心立刻被激发。教师直接抛出平均分配是否合理的问题,小学生天真的心理决定了他们一定认为不合理,因为男女生人数不同。教师不断的假设,学生不断的思考,无形中给学生提供了一个又一按比分的可能,并在对比中理解到为什么按人数比来分配是最合理的。】

  2、分一分(教师拿出纸杯)

  ① 不知道有多少杯子,你建议怎么分呢?

  ② 依照学生的建议分杯。

  教师依照学生的提议逐次分杯。分后让提议查总数的人核算分配的结果

  ③各种分杯建议的结果一样吗?为什么?

  ④这些分杯的方法哪一种最好?

  师:方法没有最好,只有最适合,如果知道总的`数量,就直接按比来分;如果不知道总数或不方便查总数时,我们就按比来逐次分,来确保分配的合理。

  3、比一比

  ① 出示“两袋鲜奶”。直接给男生一袋、女生一袋

  思考:这是平均分呢?还是按比分呢?(生答)

  ② 其实,平均分也是按比分的一种,这个比就是1:1。

  ③ 现在,我们人手一只杯子,但鲜奶只有两袋,想要全班同学都能品尝到鲜奶,你有什么好办法吗?(推出配饮品的建议)

  【设计意图:分礼物的情境是从分橘子的情境中蜕变出来的,我先让学生们想一想,体味按比分是合理的;再让学生实际分一分,感受逐次分和按比分的结果相同;最后让学生比一比,肯定平均分也是按比分的一种。材料发放完毕了,制作奶茶的需求也随之产生了,学生的激情被又一次点燃。】

  二、配制奶茶

  1、制茶前明确:

  A、 制作奶茶需要什么材料?

  B、你打算怎么来制作奶茶?是随便放吗?想想你怎样确定一下这三个材料的用量?

  C、那你们想想要按着怎样的比来配呢?谁来提议一下?

  D、 谁理解这个比的含义了?

  E、哪一个单位最合适呢?

  2、回归具体的量

  A、 顺势提问:如果我有3克奶,要配多少茶?多少水呢?奶茶一共多少克?

  B、逆势提问:如果我想配制2500克 奶茶,要多少奶?多少茶?多少水呢?(板书)

  想一想,你要用什么办法解决这个问题?

  【设计意图:在明确单位后,顺势提问问题为的是理清数量关系,顺势思维的模型在学生的头脑中形成。紧接着的逆势提问与顺势形成强烈的对比,学生会马上领悟到其中的不同,“2500克是总量”的意识很清楚地纳入到学生的脑海中,解决问题的方法和策略也就应运而生。】

  C、学生自己解决问题,再汇报后

  方法1:联系除法

  方法2:联系分数

  方法3:综合方法

  方法4:方程方法

  【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】

  C、学生自己解决问题,再汇报后

  方法1:联系除法

  方法2:联系分数

  方法3:综合方法

  方法4:方程方法

  【设计意图:在以往,指导学生计算是重点内容,可是,在这里这一部分内容成了学生自由发挥的天地,学生可以根据自己的喜好自由选择自己喜欢的方法。结合他们对分数、除法知识的理解,选择自己的解决方法。这里没有最好,最适合自己思维的方法就是最好的方法。老师鼓励多种思维形式并存。】

  4、品尝奶茶后的思考

  A、感觉怎么样?有什么改进的建议?

  B、如果在这壶(没被品尝)奶茶中加一勺糖,这时,糖就可以说是这个比中的1份了吗

  师:我这一勺是多少你才认为可以在这个比中占1份呢?

  C 、小结:的确, 几个量之间的比,必须在单位统一的前提下,才能成比,否则,每一份的量都不同,就失去了比的意义了。既然前面的一份茶,就是?克,那么这里的1份糖也应当是?克,这样,糖才能以1份的身份站在这里。现在我就将?克的糖防入奶茶中。我想,此时不仅是奶茶的味道变得甘甜了,还有什么改变了呢?

  D、这时,再问要加多少水,你会怎样列式呢?(口头列式就可)

  E、师小结:同学们敏捷的思维令老师欣赏,现在让我们静下心来,想一想,依据比,我们合理分配了礼物;依据比,我们又配制成醇香美味的奶茶了,这就是比在我们生活中的应用。(板书课题)

  【设计意图:初次品尝后的学生们是兴奋的,甚至有些人已经觉得新知识如此简单,骄傲起来,教师依据学生的需求添上一勺糖,就势将话题延伸,1勺是否能在这里充当1份呢?这个小小的转折点,会使学生的注意力立即集中起来,投入到新的问题的研究中,更深入地理解了比中各个量之间的对应关系。并在此基础上,运用心中已经建立起来的数学模型去解答新的问题了。】

  三、回归生活

  师:其实,比在我们生活中,应用得非常广泛。下面就让我们到各行各业中,走一走,看一看,哪些问题我们能帮助解决呢?

  1、第一站:某大学后勤部

  今年大学共招收1500人,其中男女生的比是4:1,现有5栋宿舍楼,该怎么分呢?(口答)

  2、第二站:四丰农药加工厂

  农药厂要生产新型农药,药与水的比是3:50,现在已经准备好药30千克,需要加水多少千克?(口答)

  3、第三站:木材加工厂配料车间

  下料通知单:本月要生产教学用的三角板,有长80厘米的木料若干根,将每根木料按着5:2:1分成三部分,搭制成一个三角板,请预算每条边的长度,以便调试机器。

  【设计意图:考察学生对已学过的知识,三角形三边定理的掌握情况,培养学生敢于质疑,严谨思维的品质。】

  4、第四站:人民法院民事审判厅

  案情介绍:一年前,李某和王某合资开了一家文具厂,一年后工厂获利5.39 万元,两个人由于没事先约定,发生争执,提出诉讼。

  ① 你们想要什么条件呢?

  ② 材料提供:1、建厂时,李某出资5万元,王某出资3万元。

  2、经营时,李某出勤10个月,王某出勤12个月。

  3、创效益,李某签定6万元合同,王某签定8万元合同。

  ③你会选择哪一条做为判决的依据呢?具体应当怎样分配呢?

  提供法律依据:合伙企业法第33条规定

  “ 合伙企业的利润分配、按照合伙协议的约定办理;合伙协议未约定或者约定不明确的,由合伙人协商决定;协商不成的,由合伙人按照实缴出资比例分配;无法确定出资比例的,由合伙人平均分配。”

  ⑤ 现在你知道法官怎么分配财产的了吗?

  【设计意图:开放的条件,开放的情景,将分配的权利留给了学生。学生会结合自己对各个条件的理解和重视程度,选择不同的分配方法,这里没有对错之分,每一种想法都是智慧的体现,可以说,这时已经超越了数学,对学生更是一次综合能力的考验。最后回归法律,将有法可依的意识渗透到学生的心中。】

  四、总结反思

  ①一节课的时间很快就过去了,现在你最想说的是什么呢?(自由发挥)

  ② 师总结:掌握按比分的方法并不困难,难的是我们怎样运用它去解决现实中问题,只有丰富自己各项知识,才能更好的处理问题,解决问题。

《比的应用》教学设计9

  一. 教学内容:等差、等比数列的综合应用

  二、教学目标:

  综合运用等差、等比数列的定义式、通项公式、性质及前n项求和公式解决相关问题.

  三、要点:

  (一)等差数列

  1. 等差数列的前 项和公式1:

  2. 等差数列的前 项和公式2:

  3. (m, n, p, q ∈N )

  5. 对等差数列前n项和的最值问题有两种:

  (1)利用 >0,d<0,前n项和有最大值,可由 ≤0,求得n的值。

  当 ≤0,且 二次函数配方法求得最值时n的值。

  (二)等比数列

  1、等比数列的前n项和公式:

  ∴当 ① 或 ②

  当q=1时, 时,用公式②

  2、 是等比数列 不是等比数列

  ②当q≠-1或k为奇数时, 仍成等比数列

  3、等比数列的性质:若m n=p k,则

  【典型例题

  例1. 在等差数列{ + + + 。

  解:由等差中项公式: + , =2 + + =450, + =180

  =( + + )+( )+=9 为 项的和。

  解:(用错项相消法)

  ①-② 时,

  当 时,例3. 设数列 项之和为 ,若 ,问:数列 ,

  ∴

  即: ,∴ ,

  ∴即:

  例4. 设首项为正数的等比数列,它的前 项之和为80,前 项中数值最大的项为54,求此数列。

  解:由题意

  代入(1), ,从而

  ∴ 项中数值最大的项应为第 项

  ∴ ∴

  ∴

  ∴此数列为

  例5. 求集合M={mm=2n-1,n∈N*,且m<60=的元素个数及这些元素的和。

  ,又∵n∈N*

  ∴满足不等式n< = =900

  答案:集合M中一共有30个元素,其和为900。

  【模拟

  1. 已知等比数列的.公比是2,且前四项的和为1,那么前八项的和为 ( )

  A. 15 B. 17 C. 19 D. 21

  2. 已知数列{an=3n-2,在数列{an}中取ak2,akn ,… 成等比数列,若k1=2,k2=6,则k4的值 ( )

  A. 86 B. 54 C. 160 D. 256

  3. 数列A. 750 B. 610 C. 510 D. 505

  4.<0的最小的n值是 ( )

  A. 5 B. 6 C. 7 D. 8

  5. 若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,

  则这个数列有 ( )

  A. 13项 B. 12项 C. 11项 D. 10项

  6. 数列 并且 。则数列的第100项为( )

  A. C. 7. 在等差数列{ =-15,公差d=3,求数列{ 的元素个数,并求这些元素的和。

  9. 设

  (1)问数列 是否是等差数列?(2)求 = +3d,∴ -15= +9, =-24,

  ∴ =-24n+ = [(n- - 最小时, 最小,

  即当n=8或n=9时, =-108最小

《比的应用》教学设计10

  教学目标:

  1.理解此类连除应用题的数量关系,能用两种方法解答此类应用题.

  2.正确列综合算式解答应用题,理解连除与连乘应用题的互逆关系.

  3.培养学生分析推理能力和逆向思维能力.

  4.渗透事物间联系的思想和比较的思想.

  教学重点:分析理解数量关系.

  教学难点:利用线段图理解数量关系,确定计算步骤.

  教学步骤:

  一、铺垫孕伏

  出示复习题:一种织布机每台每小时织布4米,5台织布机8小时可织布多少米?

  要求学生:画线段图,并用两种方法解答.

  二、探究新知

  出示例2:一种织布机5台8小时织布160米,平均每台每小时可织布多少米?

  对比复习题组织讨论:例题与复习题相比较,有什么特点?

  讨论结果:例题与复习题的问题与已知条件换了位

  根据学生汇报的讨论结果,让学生在已画成的两个线段图中标注一下,已知什么,求什么?

  (通过线段图,从直观到抽象,使学生感知算理.)

  4.指导学生对照线段图讨论:要想求出每台每小时织布多少米,我们怎样做?

  5.根据学生汇报的讨论情况,让学生在线段图中标注出先要求的是图中的`哪一段,应该怎样求?学生说清解答步骤后,教师板书每一步的小标题.然后再要求学生在练习本上直接试做,分步解答.同桌间互相讨论订正.

  6.指名学生口述分步解答过程,教师板书:

  (1)每台织布机8小时织布多少米?

  160÷5=32(米)

  (2)每台织布机每小时织布多少米?

  32÷8=4(米)

  引导学生列综合算式解答,先自己直接列式,再指名在线段留下对应位置板演成板书:

  160÷5÷8

  =32÷8

  =4(米)

  答:平均每台织布机每小时织布4米.

  (引导学生讨论、思考、试算,感知计算方法.)

  7.改例2线段图的问题和条件成下图,根据这幅图,我们应该先求什么?怎样求?

  8.学生讨论确定先求“5台1小时织布多少米”,再求“1台1小时织布多少米”,教师根据学生汇报书写小标题.

  然后自己在书上第10页填空,由一名学生板演,形成以下板书:

  (1)5台织布机1小时织布多少米?

  161÷8=20(米)

  (2)每台织布机每小时织布多少米?

  20÷5=4(米)

  列综合算式解答为

  160÷8÷5

  =20÷5

  =4(米)

  答:平均每台织布机每小时织布4米.

  9.集体订正,订正时进一步强调每一步求的是什么?

  10.讨论:比较一下,两种解法有什么相同点和不同点?

  11.反馈练习:(投影出示)第10页“做一做”.

  读题,思考:找出已知条件和所求问题,要想求“1只母鸡1个月下多少蛋”这个问题,可以先求出什么?

  (三)巩固发展

  根据题中提供的条件进行分组练习,练习题目由各组任选一组.

  条件:“书法小组每人每天写8个大字,5个人4天共写了160个大字.”

  第三组题目:

  连线题,把意义相同的算式用线连接起来.

  8×4160÷4

  8×5160÷5

  8×5×416÷5÷4

  (注意:此题并非一一对应关系.)

  (四)课堂小结

  通过小结,进一步把连乘应用题与连除应用题进行比较区分,指明课题(板书课题:连除应用题),并对两种解题方法再进行理解区分.

  (五)布置作业(略)

  板书设计

《比的应用》教学设计11

  教学内容:

  义务教育课程标准实验教科书数学六年级下册P49、50“练一练”和练习十一的第3、4、5题

  教学目标:

  1、使学生在理解线段比例尺含义的基础上,能按给定的比例尺求相应的实际距离或图上距离。

  2、使学生在认识比例、应用比例的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。

  教学重点:

  能按给定的比例尺求相应的实际距离或图上距离。

  教学难点:

  能按给定的比例尺求相应的实际距离或图上距离。

  设计理念:

  本课时主要是学生在对比例尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。

  教学步骤

  教师活动学生活动

  一、复习旧知

  引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的.比例尺吗?

  2、什么叫比例尺?求比例尺时要注意哪些问题?

  学生练习,找出图上距离与实际距离,再写出比例尺。

  二、理解明确

  实践运用

  1、出示例7,明确题意

  找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。

  2、分析比例尺1:8000所表示的意义。

  引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。

  3、尝试列式

  根据对1:8000的理解你能尝试列出算式吗?

  师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)

  4、归纳、选择、

  教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。

  5、练习

  教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?

  学生分析题意,明确已知比例尺,已知图上距离,求实际距离。

  学生分析1:8000表示的意义。

  学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。

  学生可能出现的方法:

  1、5×8000=40000……2、5×80=400……

  3、5/X=1/8000……

  图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。

  学生列式5/X=1/8000并计算。

  三、尝试练习

  巩固提高1、做“试一试”。

  先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。

  2、做“练一练”先独立解题,在组织交流

  3、做练习十一第4题

  引导学生在地图上测两地之间的距离和在地图上如何找比例尺。

  3、做练习十一第5题。

  引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。

  学生练习

  在图中表示医院的位置。

  学生练习后交流

  四、全课总结

  回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?

  2、你还有什么疑问,或你能给同学提出什么新问题?

  五、知识拓展

  激发兴趣P51“你知道吗?”

  1、收集地图资料,展示给学生观看。

  2、介绍国家基本比例尺地图。

  学生观看

  阅读后适当交流

《比的应用》教学设计12

  教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。

  2、使学生能利用正反比例的意义正确解答应用题。

  培养学生的判断分析推理能力。

  教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

  教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。

  教学过程:

  (一)复习

  1.说说正、反比例的意义。

  2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行的路程和所用时间。

  (2)从A地到B地,行驶的速度和时间。

  (3)每块砖的面积一定,砖的块数和总面积。

  (4)海水的出盐率一定,晒出的盐和海水重量。

  3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

  (1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。

  (2)一辆汽车从A地到B地,每小时行60千米,5小时到达。如果要4小时到达,每小时行驶75千米

  (二)新课

  例1:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  (1)用以前方法解答。

  (2)研究用比例的方法解答

  题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?

  能不能利用这个关系式列比例解答?

  解比例,同学自已完成,及时纠正。检验。

  改变例1中的条件和问题

  甲乙两地之间的'公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?

  教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?

  1、以前的发法解答。

  2、怎样用比例知识解答?

  3讨论结果填书上。

  4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。

  整理和复习

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、培养学生的思维能力。

  教学过程:

  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

  甲乙两数的比是5:3。乙数是60,甲数是()。

  2、解比例

  5/x=10/340/24=5/x

  3、完成26页2、3题

  综合练习

  1、A×1/6=B×1/5A:B=():()

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例():()、():()

  实践与应用

  1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

《比的应用》教学设计13

  教学目标

  1。了解什么是应用题的已知条件和问题,初步理解一步应用题的结构。

  2。会联系加减法的含义解答有图有文字的一步计算应用题。

  3。培养初步的分析、判断和推理能力。

  教学重点

  有图有文字应用题的解答。

  教学难点

  解答有图有文字的减法应用题。

  教具学具准备

  教师准备教科书第88页例5的两幅图的图画,独立作业的投影片。

  学生准备教科书第88页数学游戏的口算卡片和得数卡片。

  教学步骤

  一、铺垫孕伏。

  6+2=9+4=9+9=

  9+3=3+5=4+6=

  9+7=9+6=9+5=

  2+7=9+2=9+8=

  统计2分钟以内做完的人数及正确率。指名说一说计算9+3和9+7应该怎样想。

  二、探究新知。

  1、导入。

  (1)教师出示例5的左图(小鸟图),3只小鸟落在树枝上,再出示一幅图,上面画有6只小鸟。

  师:图中先告诉我们什么?又告诉我们什么?

  引导学生回答:图中先告诉我们树上有3只鸟,又告诉我们又飞来6只。

  师:求一共是多少只该怎样算呢?

  引导学生回答:求一共是多少只,就是把树上的3只鸟和又飞来的6只合起来,把3和6合起来是9,列式为:3+6=9。

  教师取下后贴上的第二幅图,在第一幅图的下面贴上用文字写出的条件和问题,成为例5左边的题。

  (2)揭示课题。

  像这样有图有文字的应用题应当怎样解答呢?今天我们就学习有图有文字的应用题。板书课题:应用题。

  2、教学例5左边的加法应用题。

  (1)学生讨论:题里告诉了什么?还告诉了什么?让我们求什么?

  引导学生明确,题里告诉了树上有3只小鸟,还告诉了又飞来6只,让我们求一共是多少只?

  教师说明,已经告诉我们的树上有3只小鸟和又飞来6只都叫已知条件,让我们求的一共是几只叫做问题。在这道题中,第一个已知条件是用图画表示的,第二个已知条件是用文字表示的,问题也是用文字表示的。我们学过的应用题一般都有2个已知条件和1个问题。让学生自己小声说一说题中的两个已知条件和1个问题,指名让学生到前边指一指。

  (2)求一共是多少只怎样计算呢?

  引导学生说出,求一共是多少只,就是把树上的3只小鸟和又飞来的6只合起来,把3和6合起来是9,列式为3+6=9

  (3)让学生把教科书第88页例5左题的算式补充完整。

  (4)反馈练习。

  完成“做一做”左边的加法题(小兔图)。

  先让学生说一说题中的条件和问题分别是什么,怎样计算,然后让学生填书上的空。

  3、教学例5右边的减法应用题。

  (1)出示例5右边的图(梨图),盘子里有10个梨,再用纸盖住其中的4个,并在原来位置用虚线画出4个形状。看图,你知道了什么?怎样计算?

  引导学生说出,盘子里有10个梨,吃了4个,求还剩几个?也就是从10个梨中去掉4个,从10中去掉4剩下6,列式为10-4=6

  (2)拿走盖着4个梨的纸,出示例5右题的用文字叙述的`第二个条件和问题,成为例5右边的减法应用题。

  让学生自由读一读题,找出题中的两个已知条件和1个问题。

  引导学生说出:第一个已知条件是,盘子里有10个梨,是用图画表示的。第二个已知条件是,吃了4个梨,是用文字叙述的。问题是:还剩几个?也是用文字叙述的。

  师:求还剩几个应该怎样想,怎样列式呢?

  引导学生说出,求还剩几个,就是从盘中的10个梨里面去掉吃了的4个,也就是从10里面去掉4还剩6,列式为10-4=6

  (3)让学生把教科书第88页例5右边的减法应用题的算式补充完整。

  (4)反馈练习。

  完成“做一做”右边的题(汽车图)。

  先让学生找出已知条件和问题,说一说怎样解答,再让学生填书上的空。订正时提问:为什么用减法算?

  4、集体讨论:我们今天学习的有图有文字的应用题和以前学习的图画应用题比较,有哪些地方相同,哪些地方不同?

  引导学生汇报:

  相同点,都有2个已知条件和1个问题,都是根据加减法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法算。从一个数里去掉另一个数,求还剩多少,用减法算。

  不同点,图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题是画表格,表格中有图有文字来表示已知条件和问题,比图画应用题难一些。

  5、看书,质疑。

  三、课堂小结。

  今天我们学习的应用题,有一个已知条件是用图画表示的,另一个已知条件是用文字表示的,做题时,先看清已知条件和问题,再想用什么方法计算,然后再列式计算。

  四、随堂练习。

  1、练习十九第1题(图片:练习3)。

  先让学生自己把算式写到练习本上,然后订正。订正时让学生说一说已知条件是什么,问题是什么,是怎样想的,怎样算的。

  2、比比看哪组先夺得红旗(图片:练习4)。

  把全班同学分成男女两组,分别做红旗两边的两组题,全组同学全部完成,速度快,正确率高的获得红旗。

  3、游戏“你争我抢”【详见探究活动】。

  布置作业

  (投影片出示)

  让学生写到作业本上,独立完成作业后,让学有余力的学生做思考题。

  板书设计

  应用题

  教案点评:

  教学开始抓住图画应用题与表格应用题的内在联系,利用学生已有经验,引导学生学习,激发学生兴趣,有利于新知的学习。整个教学过程注意引导学生参与学习的全过程,通过师生合作学习,使学生学会学习,通过体验形成能力,有利于学生思维的发展。

《比的应用》教学设计14

  教学目标:

  1、结合具体的情景,体会理解分数加减法的意义。

  2、在具体的情景中,理解掌握异分母分数加减法的计算方法与法则。

  3、让学生在讨论交流中,感知转化的数学思想,体验成功的乐趣。

  教学重点:

  理解并掌握异分母加减法的计算方法与法则。

  教学难点:

  掌握异分母分数加减法的算理与算法。

  教学过程:

  一、复习引入

  (一)复习有关分数单位的知识。

  1、什么叫分数单位?(把单位“1”平均分成若干份,表示这样的一份的数,叫 做这个分数的单位。 )

  2、填一填 7/16 的分数单位是( ) ,它有( )这样的`分数单位。 7/16 和 1/16 的分数单位相同吗? 1/2 和 1/4 的分数单位相同吗?

  (二)复习通分

  2/7 和 1/3 1/2 和 1/4 师:咱们已经掌握整数,小数加减法的计算方法,而分数加减法的计算,咱们从 这节课开始研究。 出示课题:分数加减法

  二、创设情境、提出问题

  1、同分母分数加减法 出示例 1(展示课件)

  师: 你瞧,工人叔叔正在说些什么?请同学们根据他们的对话,提出合适的数学 问题,并解答。(四人小组合作学习)

  抽学生口头汇报,同时老师根据学生的回答课件出示。

  引导学生观察计算结果,让学生明白用分数表示计算结果时,要约成最简分数。

  生 1:今天一共铺了这个广场的几分之几? 列式为:1/16+1/16=8/16=1/2。答:今天一共铺了这个广场的 1/2。

  生 2:下午比上午多铺了这个广场的几分之几?(或上午比下午少铺了这个广场的几分之几?) 列式为:7/16-1/16=6/16=3/8。答:下午比上午多铺了这个广场的 3/8。

  师:你们真能干,不仅提出了问题,还正确的解答出来了。

  师:同学们,你们知道他们俩是怎样把结果算出来的吗?同桌议一议。学生讨论,汇报讨论结果。

  师:有谁能用自己的话说一说分母相同的分数怎样加减呢?

  生:分母相同的分数相加减,分子相加减,分母不变,最后结果能约成最简分数的要约成最简分数。

  生举出类似的算式计算(全班练习)

  2、异分母分数加减法

  师:孩子们真能干!那这两个问题又是怎样解决的?前几天和今天一共铺了这个广场的几分之几? 今天比前几天多铺了这个广场的几分之几?

  生:1/2+1/4=3/4 ,1/2-1/4=1/4 师:这两个算式与前边的算式的区别?(分母不同)

  师:说说结果是怎样得来的?预设:画图得出结果。 把分母变成同分母分数,再计算得出来的。 把分数化成小数计算,再把计算结果的小数化成分数。 ……

  师:大家积极的开动脑筋,探索出了这么多解决问题的方法,真了不起!但是这几种计算方法是否对每个分数加法算式都是适用呢?

  学生说出自己的意见

  师:同意既适用又简便的方法(先同分,再计算)再把 1/2+1/4=( ),1/2-1/4=( )全班练习,写出计算过程。 1/2+1/4=2/4+1/4=3/4 1/2-1/4=2/4-1/4=1/4

  师:同学们在计算过程中,最关键的步骤是什么?

  生:最关键的步骤是先通分,再计算。

  师:说一说,异分母分数的计算方法?

  生:异分母分数相加减,先通分,再按同分母分数加减法计算。

  三、学生练习

  1、基础练习 填一填:(出示课件)

  ①同分母的分数相加减,(分母 )不变,( 分子 )直接相加减,计算的结果 要化为( 最简分数 )。

  ②异分母分数相加减,先(算一算: 4/15+7/15=11/15 5/6+7/8=20/24+21/24=41/24

  2、拓展练习 下面的题有什么特点?怎么算比较快? 1/4+1/3= 1/3+1/7= 两个分母是互质数,分子都是 1。 得出:1/a+1/b=(b+a)/ab

  3、接龙游戏

  1/2+1/3 3/4-1/2

  四、课堂小结

  1/2-1/3 2/3+1/6 1/2+3/4 2/3-1/6 1/a-1/b=(b-a)/ab 1/3-1/4= 1/2-1/5= 17/18-13/18=4/18=2/9 7/9-2/3=7/9-6/9=1/9 通分),再按( 同分母分数加减法 )计算。 (每组 6 个同学,一个接一个地计算,看哪组又对又快)

《比的应用》教学设计15

  教材分析

  《E时代高职英语教程2》是高等职业教育“十三五”规划教材,本书是继《基础英语》之后,以提高小学教育专业学生英语核心技能而开设的专业基础课程。它结合了现代职业教学特点,融入了全新的“互联网+职业教育”的教学理念,话题不仅涵盖面广还与将来的职业运用紧密联系。全书共五个单元,分别从不同的视角来培养学生综合运用英语思维和表达的能力,为学生毕业后成为新时代全面发展的小学英语教师打下了坚实的理论基础。

  本单元的主题是商务礼仪。教师在向学生介绍了商务礼仪的知识的同时,输入了传统文化的要素和教师礼仪的知识,为他们将来就业提供了知识和心理上的指导。本次课是写作课。旨在教学过程中让学生自然地掌握个人简历写作的正确格式、方法以及技巧。教师在授课中利用了“任务为驱动、批改网为载体、词块为核心、学生为主体、教师为主导”的'大学英语网络自主写作教学模式来提高学生写作技能。

  学情分析

  本课程的授课对象为小学教育专业三年级的学生,他们思维活跃,学习态度认真。在学习这门课程之前,已系统进行了两年《基础英语》的学习且大部分学生通过了大学英语三级考试。具备了一定的英语听、说、读、写、译能力。但由于学生平时写作课的时间较少,缺乏系统的写作知识的指导,学生书面表达中式英语较多,连贯性较差。很多学生对书面表达中快速构思和罗列提纲能力较差。本堂课希望通过指导让学生掌握求职信回复的基本格式和常用表达,同时帮助学生学会使用常用的连接词、过渡词和过渡句,提高文章的连贯性,帮助学生在有限的时间内快速构思、罗列提纲能力。

  在进行本堂课的教学设计过程中,我从学生的实际情况出发,根据学生的现有水平和《人才培养方案》 、《英语课程标准》的相关要求整合教学内容,注重学生思辨能力、英语阅读理解能力和口语输出能力的培养。为了激发学生学习兴趣和求知欲望,我利用信息化手段把线上和线下学习有机结合起来,通过自主探究、小组合作学习、课堂讨论、采访展示等形式帮助学生掌握泛读的方法和灵活利用教材转化话题的能力。

  教学目标分析

  1. 知识与能力目标

  ●能熟练掌握个人简历的书写和简历书写相关的特定表达;

  ●能掌握个人简历写作的正确格式、方法以及技巧;

  ●能够通过个人简历给他人留下好的第一印象,从而赢得一份理想的工作;

  ●提高英语写作自主学习能力。

  2. 过程与方法目标

  ●掌握信息搜索策略,能根据需求快速查找和筛选信息;

  ●掌握自主学习策略,能运用网络平台、移动终端归纳学习内容的要点;

  ●掌握小组合作学习策略,对获取的信息进行对比和评价,培养批判性思维。

  3. 情感态度与价值观目标

  ●热爱传统礼仪文化,端正自身言行,做一位文化的传承者;

  ●引导学生积极参与小组学习和讨论,提高组织能力和团队合作能力;

  ●能够正确、客观的认识自我,既能进行自我批评和改进,也能分析自身优势、不断进取。

  教学重点与教学难点

  学习重点:

  1、理解个人简历的写作在求职中的重要性、学会如何利用简历给他人留下好的第一印象;

  2、个人简历写作的基本格式、主要写作方法和写作技巧;

  3、个人简历和求职等相关的核心词块。

  学习难点:

  1、与求职、个人简历等相关的核心词块在写作过程中整合运用;

  2、如何在自我评价部分简明、恰倒好处的说明求职者自身的优点和长处。

【《比的应用》教学设计】相关文章:

《比的应用》教学设计05-22

比应用教学设计06-07

比的应用教学设计12-11

《比的应用》教学设计02-07

《比例的应用》教学设计03-23

(热门)《比的应用》教学设计06-17

《比的应用》教学设计15篇04-16

加减两步应用题教学设计06-05

六年级《比的应用》教学设计05-10

六年级《比应用》教学设计07-19