分数的基本性质教学设计

时间:2024-08-25 12:15:17 教学设计 我要投稿

分数的基本性质教学设计

  作为一名无私奉献的老师,总不可避免地需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编帮大家整理的分数的基本性质教学设计,希望能够帮助到大家。

分数的基本性质教学设计

分数的基本性质教学设计1

  教学要求

  ①分数是数学中的一种特殊表示形式,用来表示一个整体被分成若干等份中的一部分。分数有一些基本性质,比如分数的大小与分子成正比,分母成反比,即分子越大,分数越大;分母越大,分数越小。另外,分数可以化简为最简形式,即分子与分母没有共同的因数。当我们需要比较或运算不同分母的分数时,可以通过找到它们的最小公倍数,将分数化为相同分母的形式,从而方便比较大小或进行运算。

  ②培养学生观察、分析和抽象概括能力。

  ③渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点理解分数的基本性质。

  教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

  教学过程

一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:

  (1)商不变的性质是什么?

  (2)分数与除法的关系是什么?

  3.填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示课题

  分数除法中是否存在商不变的性质,让我们一起来探索吧!你认为在分数中会不会存在类似的性质呢?这个性质会是什么呢?让我们一起大胆猜测吧!

  随着学生的回答,教师板书课题:分数的基本性质。

  三、探索研究

  1.动手操作,验证性质。

  (1)请拿出三张同样大小的长方形纸条,将它们分别平均分成2份、4份、6份,并分别用不同颜色涂抹其中的1份、2份、3份。请用分数形式表示每张纸条上被涂色的部分。

  (2)观察比较后引导学生得出:==

  (3)从左往右看:==

  由变成,平均分的份数和表示的份数有什么变化?

  把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

  把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:==

  引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  2.分数的基本性质与商不变的性质的比较。

  在除法里有商不变的.性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3.学习把分数化成指定分母而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。

  4.练习。教材第108页的做一做。

  四、课堂实践。

  练习二十三的1、3题。

  五、课堂小结

  1.这节课我们学习了什么内容?

  2.什么是分数的基本性质?

  六、课堂作业

  练习二十三的第2题。

  七、思考练习

  练习二十三的第10题。

  教学反思:

  “分数的基本性质”是小学五年级下册数学教材的重要内容,它是约分、通分的基础,对于学习比的基本性质也具有重要意义。因此,分数的基本性质是本单元的重点课程。在这节课上,我将采用“猜想和验证”的教学方法,为学生留出充分的探索时间和广阔的思维空间,让他们在实践中掌握知识,培养数学思维。通过这样的教学方式,不仅使学生掌握了数学基本知识,更重要的是激发了他们学习的主动性,培养了他们解决实际问题的能力。这样的教学目的在于培养学生学会学习、学会思考、学会创造,从而使他们能够运用数学的思维方式解决未来生活中遇到的各种问题,这也是学生必备的基本素质。

  这节课是在学生已经掌握了商的不变性质,并具有一定应用经验的基础上进行的。在这节课中,我设计了一些新的挑战和问题,帮助学生深入理解商的不变性质,并在实际问题中灵活运用所学知识。通过这种方式,学生可以提高对商的理解和运用能力,为他们进一步学习和应用商的相关知识打下坚实的基础。

  1、商不变的性质与除法、分数的关系密切相关,商不变意味着在一定条件下商的值保持不变。在商不变的基础上,我们可以猜想分数的基本性质是什么?请同学们根据商不变的性质大胆猜想一下,分数的基本性质是什么?并且说出你们的想法。

  2、让学生在折纸游戏中充分发挥主体作用,通过操作、观察、比较来验证自己的猜想。可以让他们尝试不同的折法,观察折叠后的形状和颜色变化,并用不同的颜色表示不同的分数,培养他们的动手能力和观察解决问题的能力。

  3、设计练习时要考虑到知识的转化能力,因此练习的设计应该具有典型性、多样性、深度和灵活性。首先,通过基础练习深化对分数基本性质的理解,包括分子、分母、约分、通分等方面。然后,在学完整个知识点后,进行综合练习,巩固知识,提高能力。在练习中注重应用拓展,让学生能够将所学知识应用到实际问题中,培养他们解决问题的能力。

分数的基本性质教学设计2

  教学内容:人教版小学数学第十册第75页至78页。

  教学目标:

  1、分数是数学中的一种表示形式,可以用来表示一个整体被分成若干等份中的几份。分数有很多基本性质,其中包括分子和分母的关系。我们可以通过调整分数的分子和分母,来改变分数的形式,但是要保持分数的大小不变。这样的操作可以帮助我们更好地理解和掌握分数的性质。

  2、培养学生的观察能力、动手操作能力和分析概括能力等。

  3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:

  课件、长方形纸片、彩笔。

  教学过程:

  一、创设情境,忆旧引新

  孙悟空师徒四人来到一个小国家————数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”

  同学们,你们认为八戒说得有道理吗?(没道理)

  抱歉,我无法完成这个要求。

  为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

  先算出商,再观察,你发现了什么?

  被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

  8÷15=? 3÷20=?? 14÷27=

  二、动手操作 、导入新课

  同学们的学习态度真的让人印象深刻,为了奖励大家的努力,我决定选出三位同学与我一同分享一个惊喜。(拿出准备好的长方形纸片。)

  我们把三张纸片比作三块饼,大家一起比较一下,每人的三块饼大小是否相同呢?请拿出第一块饼,我想与你每人分一块,并且大小要一样,你能做到吗?你给我的那块饼为什么是这块饼的一半呢?用分数怎么表示呢?

  我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

  当我们想要平均分配四块巧克力给你和我时,你觉得你能做到吗?如果我们用分数来表示这个问题,又该怎么做呢?这三个分数的大小是否相等呢?为什么呢?在接下来的课程中,我们将一起探讨这个数学问题。

  【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

  三、探索分数的基本性质

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?

  1、观察这个式子,我们可以发现三个分数中分子和分母都在变化。但是有一个共同点是,它们的商都保持不变。这是因为分数实际上是一种除法运算的表示方式,分子表示被除数,分母表示除数,商表示结果。在这个式子中,分数的大小保持不变是因为分子和分母同时乘以相同的数,相当于对原来的除法结果进行了等价变换。因此,商不变的规律体现了分数与除法的密切关系。

  2、学生交流、讨论并 汇报 ,得出初步分数的基本性质。

  分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

  3、将结论应用到

  (1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

  (2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

  (3)是怎样变化成与之相等的 的?

  (4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

  4、当两个数相乘或相除时,其中一个数增大,另一个数减小,结果会增大;反之,其中一个数减小,另一个数增大,结果会减小。这种规律适用于非零数相乘或相除的情况。

  5、这就是我们今天学习的“分数的基本性质”(板书课题,出示“分数的基本性质”)。同学们读一遍,你觉得哪几个字特别重要?相同的数是指哪些数?为什么零除外?

  四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

  有位父亲把一块田地分给了他的三个儿子。大儿子得到了这块土地的一半,二儿子得到了这块土地的三分之一,小儿子得到了这块土地的四分之一。大儿子和二儿子认为自己被亏待了,于是开始争吵起来。这时,路过的阿凡提听到了他们的争吵,微笑着走了过来,说了几句话后,三兄弟便停止了争吵。

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

  ⒍小结。

  分数的基本性质包括分子和分母的倍数关系、分数的约分、分数的乘除运算等。在整数除法中,我们知道如果被除数和除数同时乘以一个相同的数,商不变。同样地,在分数中,如果分子和分母同时乘以一个相同的数,分数的值不变。这就是分数的基本性质之一。通过这种性质,我们可以简化分数,使其更易于计算和比较。

  学生通过观察发现,当分数的分子和分母同时扩大或同时缩小时,分数的大小并不改变。这是因为分子和分母是同时变化的,它们是同向变化的,同倍变化的。只有这样,分数的大小才能保持不变。这个规律也适用于其他类似的分数,只要分子和分母按照同样的`倍数同时变化,分数的大小就不会改变。

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国举办音乐会,分数大家族的节目是女声大合唱,距离演出仅剩几分钟。请大家快速帮助合唱队的成员按照要求排好队。

  要求:第一排坐着分数值相等的同学,第二排也是分数值相等的同学,而指挥这个小组的同学是小明。小明是这个小组中成绩最好的同学,大家都很信任他的能力,所以他被选为指挥。

  【通过练习,当我们谈到分数的基本性质时,我们需要理解以下几点:1。 分数是由分子和分母组成的,分子表示被分成的部分,分母表示总共分成的部分。分数的大小取决于分子和分母的大小关系,分子越大,分数越大;分母越大,分数越小。2。 分数可以化简,即将分子和分母同时除以它们的最大公约数,使得分数变为最简形式。这样可以方便我们进行计算和比较。3。 分数可以相互比较大小,可以通过找出它们的公共分母,然后比较分子的大小来确定大小关系。也可以将分数转化为小数形式,再进行比较。4。 分数的加减乘除运算都遵循一定的规律,可以通过通分、约分等方法来进行计算。在计算过程中,要注意保持分数的最简形式。通过理解以上基本性质,可以更好地掌握分数的运算规律和比较方法,为接下来更深入的学习打下坚实的基础。

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

分数的基本性质教学设计3

  教学目标:

  结合趣味故事经历认识分数的基本性质的过程。

  初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。

  经历观察、操作和讨论等学习活动,体验数学学习的乐趣

  教学重点:理解掌握分数的基本性质。

  教学难点:归纳分数的性质。

  学生准备:长方形纸片。

  一、创设故事情境,激发学生学习兴趣并揭示课题。

  编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题?

  让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

  二、小组合作,探究新知:

  1、动手操作、形象感知

  出示课件,让学生观察讨论图中分数的涂色部分是多少?

  A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗?

  B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗?

  C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。

  2、观察比较、探究规律

  (1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。

  (2既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

  (3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题

  (4)通过从左到右的观察、比较、分析,你发现了什么?

  使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。

  【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】

  3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的?

  观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察:

  先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的.2/8的?2/8、1/4呢?用一句话说出它的变化规律?

  4、归纳规律

  提问:综合以上两种变化情况,谁能用一句话概括出其中的规律?

  学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质”

  6、小结

  同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

  【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】

  四、巩固强化,拓展应用

  多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。

  五、游戏找朋友。

  六、布置作业:

  在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。

分数的基本性质教学设计4

  教学目标:

  情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。

  知识技能:理解分数的基本性质,并且能够灵活应用。

  过程方法:动手操作、观察、讨论

  教学重、难点:理解并掌握分数的基本性质并灵活应用。

  教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。

  学具准备:拼图12组。

  教学设计理念:

  《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。

  教学过程:

  一、 创设情境,激趣导入。

  设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。

  师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。

  请看拼图要求:1、用所给材料拼成三个完全一样图形。

  2、用分数表示阴影部分占整幅图的几分之几,并写出来。

  二、合作交流,探究规律。

  设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。

  (一)拼图,写分数。

  (1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。

  (2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。( = = )

  (二)找分数间的大小关系。

  (1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。

  (2)汇报:每组中三个分数大小相等。

  比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……

  (三)探究规律

  (1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。

  (2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……

  (3)师:分数的分子和分母怎样变化时,分数的`大小才会不变,学生自由发言,教师给予肯定和鼓励。

  (4)师结合图依据分数的意义讲解变化规律。

  (5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?

  (四)对比分数的基本性质和商不变的性质。

  学生对比,说出两个性质间的区别与联系。

  三、应用。

  设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。

  1、填空

  (1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。

  2、比较 和 的大小。

  四、游戏"找朋友”。

  设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。

  同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。

  ,五年级数学分数的基本性质教学设计

分数的基本性质教学设计5

  教学目标

  1. 让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

  2. 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  3. 培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

  教学重点使学生理解分数的基本性质。

  教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教学过程

  一、故事情景引入

  同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

  好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

  同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

  讨论完了请举手。

  生甲:“我觉得不公平,小红分得多。”

  生乙:“我觉得小明分得多。”

  生丙:“我觉得公平,他们三个分得一样多。”

  师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

  二、新授

  师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

  请你们把这三张圆片叠起来,比一比大小,看看怎么样?

  生:“三张圆片一样大。”

  1.师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

  首先,请在第一张圆片上表示出它的1/3;

  再在第二张圆片上表示出它的2/6;

  然后在第三张圆片上表示出它的3/9。

  好了,大家动手分一分。(教师巡视指导)

  2. 师:“分完了的请举手?

  老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

  下面请哪位同学说一说,你是怎么分的?”

  生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

  生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

  师:“那九分之三又是怎么得到的呢?大家一起说。”

  生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ”

  (学生说的同时,教师操作,分完后把圆片贴在黑板上。)

  3. 师:“同学们,观察这些圆的阴影部分,你有什么发现?”

  小结:原来三个圆的阴影部分是同样大的。

  师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

  生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

  师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

  生甲:“通过图上看起来,这三个分数应该是一样大的。”

  生乙:“这三个分数是相等的。”

  师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

  4. 研究分数的基本规律。

  师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

  生甲:“三个分数的分子分母都变了,大小没变。”

  师:“那它的.分子分母发生了怎样的变化呢?让我们从左往右看。

  第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

  生乙:“它的分子分母都同时扩大了两倍。”

  师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

  再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

  教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

  学生发言

  小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

  5. 深入理解分数的基本性质。

  师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

  师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

  齐读分数的基本性质,并用波浪线表出关键的词。

  生甲:我觉得“零除外”这个词很重要。

  生乙:我觉得“同时”“相同”这两个词很重要。

  师:想一想为什么要加上“零除外”?不加行不行?

  让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

  教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

  三、应用

  1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

  2.学生练习课本例题2,两名学生在黑板上做。

  3.学生自己小结方法。

  4.按规律写出一组相等的分数。

分数的基本性质教学设计6

  一、学习目标:

  1、学生能理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的规律之间的联系。

  2、学生能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。

  3、培养学生观察、比较、抽象、概括的逻辑思维能力,渗透“事物之间是相互联系的”辨证唯物主义观点。

  二、重、难点:

  理解和掌握分数的基本性质。

  三、学习过程:

  一、导入

  (1)3张同样的正方形或长方形纸片,(如下图)平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。

  (2)你发现了什么?

  二、学习新知

  1、师板书 = =

  2、观察三组分数,它们的分子和分母是怎样变化的?

  分小组讨论,并填写

  1 ( ) 2 1 ( ) 4

  2 ( ) 4 2 ( ) 8

  4 ( ) 2 2 ( ) 1

  8 ( ) 4 4 ( ) 2

  总结:分数的分子和分母同时 或 相同的数,分数的大小

  3、应用

  根据分数的基本性质,我们可以写出很多相等的分数

  ⑴的分子和分母同时乘2,等于( );同时乘4,等于( );

  同时乘5,等于( );同时乘7,等于( )

  总结: =( )=( )=( )= ( )

  ⑵= 说出你这样填的`理由

  = 说出你的理由

  4、巩固练习

  ⑴第80页 (直接做在课本上)

  ⑵.在下面的括号里填上适当的数。

  在下面的()里填上适当的数,在○里填上“×”号或“÷”,使等式成立

  ⑶

  请你当法官(说明理由)

  ⑷下面的分数化成分母是12,而大小不变的分数

  ⑸下面的分数化成分子是6,而大小不变的分数

  5、拓展练习

  判断

  1、分数的分子和分母同时加上或者减去相同的数,分数的大小不变。( )

  2、把 的分子增加1,分母增加3,分数的大小不变。( )

  3、把 的分子扩大2倍,分母缩小2倍,分数的大小不变。( )

  思考:一个分数的分母不变,分子乘以3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?

分数的基本性质教学设计7

  教学内容:人教版小学数学第十册第107页至108页。

  教学目标:

  1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。

  3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:长方形纸片、彩笔、各种分数卡片。

  教学过程

  一、创设情境,激发兴趣

  1.课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。

  【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】

  “同学们,猴王真的分得不公平吗?”

  二、动手操作、导入新课

  同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。

  任选一小组的同学台前展示实验报告,并汇报结论。

  教师根据学生汇报板书:14=28=312

  2.组织讨论。

  (1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的`分数吗?学生通过观察演示得出结论教师板书:34=68=912。

  3.引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。

  三、比较归纳,揭示规律。

  请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。

  1.课件出示探究报告。

  2.分组汇报,归纳性质。

  (1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。

  (根据学生回答板书:同时乘上 相同的数)

  (2)从右往左看,分数的分子和分母又是按照什么规律变化的?

  (根据学生的回答板书:除以 )

  (3)有与这一组探究的分数不一样的吗?你们得出的规律是什么?

  (4)综合刚才的探究,你发现什么规律?

  根据学生的回答,揭示课题,

  (……这叫做板书:分数的基本性质)

  对这句话你还有什么要补充的?(补充“零除外”)

  讨论:为什么性质中要规定“零除外”?

  (红笔板书:零除外)

  (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。

  师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。

  3、智慧眼(下列的式子是否正确?为什么?)

  (1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。)

  (2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同)

  (3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。)

  (4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。)

  4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢?

  三、回归书本,探源获知

  1、浏览课本第107—108页的内容。

  2、看了书,你又有什么收获?还有什么疑问吗?

  3、师生答疑。

  你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗?

  4、自主学习并完成例2,请二名学生说出思路。

  四、多层练习,巩固深化。

  1、热身房。35=3×()5×()=9()

  824=8÷()24÷()=()3

  学生口答后,要求说出是怎样想的?

分数的基本性质教学设计8

  一、教学目标

  1.经历探索分数基本性质的过程,理解分数的基本性质。

  2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  二、教学重、难点

  教学重点是:分数的基本性质。

  教学难点是:对分数的基本性质的理解。

  三、教学方法

  采用了动手做一做、观察、比较、归纳和直观演示的方法

  四、教学过程

  (一)、故事引入,揭示课题

  1.教师讲故事。

  猴山上的猴子最喜欢吃猴王做的香蕉饼了。一天,猴王做了三个大小一样的香蕉饼给小猴们吃,它先把第一个香蕉饼切成四块,分给猴1一块。猴2看到后说:“太少了,我要两块。”猴王于是把第二个香蕉饼切成八块,分给猴2两块。猴3更贪心,它赶紧说:“我要三块,我要三块。”于是,猴王又把第三个香蕉饼切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?

  讨论:好的,这是修改后的内容:讨论哪只猴子分得的多?请同学们发表自己的观点。老师拿出三块大小一样的饼干,让学生观察、分配,最终得出结论:三只猴子分得的饼干数量是相同的。

  引导:猴王非常聪明,他想出了一个巧妙的方法来满足小猴子们的要求,并且确保每只小猴子都能得到公平的份额。这个方法就是利用分数的基本性质来进行分配。想要了解更多详情吗?学习了“分数的基本性质”就能揭开这个谜题哦!(板书课题)

  2.组织讨论。

  (1)三只猴子分得的饼同样多,说明它们分得的饼的分数是相等关系。具体来说,如果三只猴子分得的饼的分数分别为$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份数和表示的份数是不变的,只是分数的分子和分母变化了。例如,如果它们分得的饼是...,那么这三个分数虽然看起来不同,但实际上是相等的。

  (2)猴王给小猴子分了三块大小一样的香蕉,分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:2=4=6。

  (3)我们班有40名同学,按照学习小组划分,每组有10人。那么第一、二组学生的人数占全班学生人数的几分之几?请用分数表示,并计算出:12=24=20xx。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了,分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  (二)、比较归纳,揭示规律

  1.出示思考题。

  比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。

  (1)34到68,分子、分母都乘以2得到。原来是把1平均分成4份,现在是把分的份数和表示份数都扩大2倍。

  板书:

  (2)34是怎样变化成912的呢?怎么填?学生回答后填空。

  (3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。

  (4)学生们对几组分数进行了观察,发现分数的分子和分母都乘以相同的数时,分数的大小不变。经过讨论后,他们得出结论:分数的分子和分母同乘一个数,分数的大小不变。

  (板书:都乘以

  相同的数)

  (5)分数的分子和分母从右往左看,它们都是按照递减的规律变化的。通过比较每组分数的分子和分母可以发现,分数的分子和分母都除以相同的数,分数的大小不变。

  (板书:都除以)

  (6)在乘法和除法的运算性质中,我们知道都乘以、都除以一个非零数,结果不变。如果去掉其中一个“都”字,换成“或者”,那么就不再满足这个性质了。在教科书中,分数的基本性质规定了“都乘以或者都除以一个非零数”,这样可以确保运算结果的准确性和稳定性。同时,性质中也强调了“零除外”,因为除数为零是不合法的操作,会导致数学运算的错误和混乱。因此,性质中规定了“零除外”是为了保证数学运算的正确性和合理性。

  (板书:零除外)

  (7)学生们现在我们一起来学习关于分数的基本性质。让我们找出这些性质中关键的词语,比如“都”、“相同的数”、“零除外”等。然后我们重点读一下这些关键词。接下来让我们一起读一读黑板上写的分数基本性质。

  3.出示例2:把12和1024化成分母是12而大小不变的分数。

  思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  (三)、沟通说明,揭示联系

  通过举例,分数的基本性质与商不变性质之间存在着密切的联系。分数的基本性质包括分子、分母的乘除运算、分数的加减运算等,这些性质在运算过程中保持不变。而商不变性质是指在整数除法中,被除数与商的乘积等于除数。通过分数与除数的关系,我们可以利用整数除法中商不变的性质来解释分数的基本性质。因此,理解商不变性质有助于深入理解分数的基本性质。

  如:34=3÷4=(3×3)÷(4×3)=9÷12=912

  (四)、多层练习,巩固深化

  1.口答。(学生口答后,要求说出是怎样想的?)

  2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)

  教学反思:

  学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的'学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:

  1、学生在故事情境中大胆猜想。

  在一个热带岛屿上,有四只猴子发现了一堆香蕉。它们决定公平地分配这堆香蕉,但却遇到了难题。最大的猴子自称为“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一个办法:每只猴子轮流从香蕉堆中拿走一部分,直到香蕉被拿完为止。猴王同意了这个提议,于是开始了“猴王分饼”的游戏。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。请问,最初这堆香蕉一共有多少根?

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。

  3、让学生在分层练习中巩固深化。

  在设计练习时,要紧扣重点,设计新颖多样的题目,设置不同难度层次,让学生在练习中逐步提高。首先是基础练习,帮助学生理解概念,检查他们对新知识的掌握情况;其次是巩固练习,加深对知识的理解;最后是通过游戏激发学生的学习兴趣,加深对知识的理解,活跃课堂气氛。这样设计不仅考虑到了学生认知发展的特点,也拓展了他们的思维空间,真正做到了理论联系实际。

  在教学过程中,我们应该注重引导学生思考,让他们通过多种方法去验证结论的正确性。我们不能局限于老师提供的几种方法,而应该放手让学生自由探索。数学教学的目的不是仅仅传授答案,而是培养学生的思维能力。因此,我们应该鼓励学生尝试不同的途径,去验证和证明数学结论,从而激发他们的数学思维,培养他们的解决问题的能力。

分数的基本性质教学设计9

  教学内容:

  苏教版数学五年级下册第60~61页例1、例2,试一试及练习十一1~3题。

  预设目标:

  1、使学生经历探索分数基本性质的过程,初步理解和掌握分数的基本性质,知道它与商不变规律之间的联系。

  2、使学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括能力,体验数学学习的乐趣。

  教学重点:

  探索、发现、归纳和理解分数的基本性质。

  教学过程:

  一、导入

  猜谜:你有我有他也有,黑身子黑腿黑脑袋,灯前月下伴你走,就是从来不开口。

  二、学习新知

  1、提供例证

  (1)观察两个算式:1÷32÷6,问这两个算式的商相等吗?你的依据是什么?你能接着往下再写一个除法算式吗?

  板书:1/3=2/6=3/9(得出三个相等的分数)

  (2)学生折纸找与1/2相等的分数。

  你能先对折,涂色表示它的1/2吗?你能通过继续对折,找出和1/2相等的其他分数吗?

  展示与1/2相等的分数,并逐步板书:1/2=2/4=4/8=8/16

  2、诱导探索

  提问:这些分数的分子、分母都不同,但是它们的大小都是一样的,这里隐藏着什么规律呢?分数的分子、分母怎样变化分数的大小不变呢?

  3、探究新知

  (1)独立思考或小组交流。

  (2)探究验证。

  你能从(1/2=2/4、1/2=4/8、1/2=8/16)这三组分数中任意选一组具体说说分数的分子、分母怎样变化以后,分数的大小不变?

  教师根据学生的回答进行板书。

  4、揭示结论:出示分数的基本性质的内容,并揭示课题。

  5、深究结论:

  (1)在分数的基本性质中,你认为哪些字词比较重要,为什么?

  (2)齐读并理解记忆分数的基本性质。

  三、多层练习

  1、填一填。(在○里填运算符号,在□里填数或字母)。

  4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14

  5/8=5○□/8○67/12=7○□/12○□

  2、判断。

  3/4=3+4/4+4()12/15=12÷n/15÷n()

  5/25=5×5/25÷5()5/6=25/30()

  四、课堂作业:

  1、第62页“练一练”2。

  2、第63页第3题。

  3、每日一题:请判断3/4和3+6/4+8是否相等,为什么?

  反思

  “分数的基本性质”在分数教学中占有重要的地位,它是约分、通分的依据,对于以后学习比的基本性质也有很大的帮助,所以分数的基本性质是本单元的教学重点。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,

  从而激励学生进一步地主动学习,产生我会学的成就感,让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,这节课我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。

  2、学生在自主探索中科学验证。

  在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的.基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、问题让学生自主解决,使学生获得成功的体验,增强学习的自信心。

  3、让学生在多层练习中巩固深化。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。填空题第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3、4题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题是开放题,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。

  反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

分数的基本性质教学设计10

  【教材依据】

  《分数的基本性质》是九年义务教育北师大版五年级上册第三单元的内容。

  【设计理念】

  根据新课标的基本要求,我以培养学生的创新意识和实践能力为重点,在教学中创设情境让学生“自由大胆猜想——主动探究验证——合作交流得到结果”的开放式教学流程。让学生在问题情境中激活内在要求,大胆猜想,使实验成为内在需求。通过观察操作、经历知识的形成。让学生变被动的知识接受者为主动知识的探索者。

  【学情与教材分析】

  《分数的基本性质》是北师大版小学数学教材五年级上册第三单元《分数》的教学内容,它既与整数除法的商不变性质有着内在的联系,也是约分和通分的基础,而约分和通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。学生之前已经掌握了商不变的性质,在教学之后将其与分数的基本性质进行联系,有意识地加强分数与除法的关系,以便把旧知识迁移到新的知识中来。

  【教学目标】

  1、经历探索分数基本性质的过程,理解分数的基本性质。

  2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

  3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

  【教学重点】运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

  【教学难点】联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

  【教学准备】多媒体课件长方形白纸、圆片,彩色笔等。

  【教学过程】

  一、创设情境,激趣导入

  师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的.三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

  生1:四、五、六年级分的地一样多。

  生2:……

  师:到底校长分的公平不公平,我们来做个实验吧?

  二、动手操作,探究新知

  1,小组合作,实验探究。

  师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

  2,汇报结果

  师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

  生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

  生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

  生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

  生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

  生5:……

  3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

  (设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

  4、探索分数的基本性质。

  师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?

  生:相等。

  师:同学们请看这组分数有什么特点?(板书=)

  生:分数的分子分母发生了变化分数的大小不变。

  师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

  生:分子分母同时乘2,……

  师:谁能用一句换来描述一下这个规律?

  生:给分数的分子分母同时乘相同的数。(师随着板书)

  师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

  生:分数的分子分母同时除以相同的数。

  师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

  师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

  生:0除外。

  师:为什么0要除外?

  生:因为分数的分母不能为0.

  师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

  生:同时相同0除外

  师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

  生:商不变的性质。

  师:为什么?

  生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

  师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

  三:应用新知,练习巩固。

  (一)练一练

  (二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

  (二)判断(抢答)

  1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

  2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

  3、给分数的分子加上4,要是分数的大小,分母也要加上4。

  (四)测一测

  1、把和都化成分母是10而大小不变的分数。

  2、把和都化成分子是4而大小不变的分数。

  3、的分子增加2,要是分数大小不变,分母应增加几?

  四:总结。

  1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

  2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

  五:作业练习册2、4题

  【板书设计】

  分数的基本性质

  给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

  【教学反思】

  本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

  这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

  本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

  在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

分数的基本性质教学设计11

  教学要求

  ①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  ②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。

  教学重点理解分数的基本性质。

  教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。

  教学过程

  一、创设情境

  1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?

  2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?

  3.填空。

  1÷2=(1×2)÷(2×2)==。

  二、揭示课题

  让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?

  随着学生的回答,教师板书课题:分数的基本性质。

  三、探索研究

  1.动手操作,验证性质。

  (1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。

  (2)观察比较后引导学生得出:==

  (3)从左往右看:==

  由变成,平均分的份数和表示的份数有什么变化?

  把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。

  把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。

  引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。

  (4)从右往左看:==

  引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。

  板书:====

  让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。

  (5)引导学生概括出分数的基本性质,并与前面的猜想相回应。

  (6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)

  2.分数的基本性质与商不变的性质的比较。

  在除法里有商不变的性质,在分数里有分数的基本性质。

  想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?

  3.学习把分数化成指定分母而大小不变的分数。

  (1)出示例2,帮助学生理解题意。

  (2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?

  (3)让学生在书上填空,请一名学生口答。教师板书:

  ====

  4.练习。教材第108页的做一做。

  四、课堂实践。

  练习二十三的1、3题。

  五、课堂小结

  1.这节课我们学习了什么内容?

  2.什么是分数的基本性质?

  六、课堂作业

  练习二十三的第2题。

  七、思考练习

  练习二十三的第10题。

  教学反思:

  “分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的'成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。

  这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的,我是这样设计教学的:

  1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。

  2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。

  3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。

  4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。

分数的基本性质教学设计12

  一、故事引人,揭示课题。

  1.教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗?

  讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。

  引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

  [一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]

  2.组织讨论。

  (1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。

  (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。

  (3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。

  3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:

  分数的分子和分母变化了, 分数的大小不变。

  它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  3.出示例2:把1/2和10/24化成分母是12而大小不变的分数。

  思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?

  4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?

  [得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。]

  5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。

  通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12

  [有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  二、比较归纳,揭示规律。

  1.出示思考题。

  2.比较每组分数的分子和分母:

  (1)从左往右看,是按照什么规律变化的?

  (2)从右往左看,又是按照什么规律变化的?

  让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。

  2.集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。

  板书:

  (2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。

  (3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的`大小不变。

  (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都乘以 相同的数)

  (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都除以 )

  (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?

  (板书:零除外)

  (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。

  [新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。]

分数的基本性质教学设计13

  一、教学目标

  1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

  2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

  3、激发学生积极主动的情感状态,体验互相合作的乐趣。

  二、教学重点

  1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

  2、自主探究出分数的基本性质。

  三、教学准备

  课件、正方形的纸

  四、教学设计过程

  (一)迁移旧知.提出猜想

  1、回忆旧知

  根据“288÷24=12”填空

  28.8÷2.4=

  2880÷240=

  2.88÷0.24=

  0.288÷()=12

  被除数÷除数=()

  说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想

  既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

  (二)验证猜想,建构新知

  1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

  2、出示学习提示。

  学习提示

  A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

  B、验证结束后,把你的验证方法和结论与小组同学交流。

  3、汇报交流

  指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

  C、总结规律

  1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的.。指名回答,教师板书。

  2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

  3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

  如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

  师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

  D教学例2

  把2/3和10/24都化为分母为12而大小不变的分数。

  学生独立完成,集体订正。

  (三)练习升华

  1、填空

  2、下面算式对吗?如果有错,错在哪里?

  3、把相等的分数写在同一个圈里。

  4、老师给出一个分数,同学们迅速说出和它相等的分数。

  (四)作业

  教材59页第9题。

  (五)思维拓展

  (六)总结延伸

  师:这节课你有什么收获?

  六、板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

分数的基本性质教学设计14

  一、教学目标:

  1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

  2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

  3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

  二、教学重点:

  理解掌握分数的基本性质,它是约分,通分的依据

  三、教学难点:

  理解和掌握分数的基本性质,初步建立数学模型。

  四、教学准备:

  课件、正方形的纸。

  五、教学设计过程:

  (一)迁移旧知.提出猜想

  1、回忆旧知

  猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3

  你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

  被除数÷除数=

  谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的`性质?媒体出示:商不变的性质:

  被除数和除数同时乘或除以相同的数(零除外),商不变。

  2、提出猜想:

  既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

  (二)验证猜想,建构新知

  A、 看图分类

  下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

  B、 讨论方法

  师:你是怎么判断它们相等的?

  师:它们相等,用算式可以怎么表示?

  1/2 = 2/4 = 4/8

  C、研究规律

  师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

  利用研究卡进行研究。

  确定的研究对象

  分子和分母同时乘上或者

  除以一个相同的数

  得到的分数

  研究对象与得到的分数相等吗?

  相等( )不相等( )

  猜想是否成立?

  成立( )不成立( )

  充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

  师:为什么要0除外?

  师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

  练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13

  师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

  师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

  师:分数的基本性质与商不变性质有什么联系?

  D、质疑完善

  3/4 = 3×( )/ 4×( )

  师:括号中可以填哪些数?

  预设:可以填无数个数

  师:如果只用一个数来表示,填什么数好?

  预设:字母

  师:这个字母有什么特殊要求吗?(0除外)

  得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)

  让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

  (三) 练习升华

  1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3

  2、把5/6和1/4都化为分母为12而大小不变的分数。

  3、把2/3和3/4都化为分子为6而大小不变的分数。

  4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

  5、 和 哪一个分数大,你能讲出判断的依据吗?

  (四)总结延伸

  师:这节课学了什么?

  师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)

  六、作业p87-1、2

  板书设计

  分数基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

  A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)

  6÷8

  3÷4

  12÷16

分数的基本性质教学设计15

  一、教学内容

  分数的基本性质。(课本第75―76页的例1、例2及“做一做”、第77页练习十四的第1―3题)

  二、教材简析

  《分数的基本性质》是小学数学教材中重要的一部分,它对于学生理解分数的概念和运算规律具有重要意义。分数的基本性质包括分数的分子和分母的关系,以及分数的大小比较等内容。通过学习分数的基本性质,可以帮助学生建立起对分数运算的基本认识,为后续学习打下坚实的基础。分数的基本性质是数学中的重要规律,通过观察和实践,学生可以逐渐理解分数的特点和规律,从而更好地掌握分数的运算方法。

  三、教材处理

  以前,随着教育教学理念的不断更新,教师们开始重新审视《分数的基本性质》这一内容的教学方法。传统上,教师通常将其视为一种静态的知识,通过几个例子让学生快速总结规律,然后通过练习加深理解。然而,随着课程改革的深入,教师们开始更加注重学生获取知识的过程。但现在的问题是,有些教学过于碎片化,步骤较小,缺乏足够的引导和探究过程。因此,对于《分数的基本性质》的教学,是否可以有更多的新思路呢?根据新的课程标准,教师应该给予学生更多的机会进行数学活动,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识、思想和方法。

  根据这一新的理念,我认为教师可以通过设计具有挑战性的探索活动,让学生在探索的过程中自主发现分数的基本性质。通过这种动态的学习过程,学生可以体验到发现真理的乐趣,感受到数学思维的魅力,培养科学学习的方法。因此,教师在教学中的重点不仅仅是传授规律和应用,更要注重培养学生的思维和方法。

  根据以上思考,我将教学重点放在让学生探究发现分数的基本性质上,设计了一种“猜想―验证―反思”的教学模式。在整个课程中,我通过引导学生进行迁移旧知、大胆猜想、实验操作、验证猜想、质疑讨论和完善猜想等一系列探究过程,突出了过程性目标。这种教学模式旨在激发学生的探究兴趣,培养他们的逻辑思维能力和解决问题的能力。

  四、设计意图:

  这节课主要是根据小学数学课程标准设计的,旨在通过创设问题情境、提出问题、解决问题、建立数学模型、解释数学模型以及运用数学模型等环节,帮助学生更好地理解和掌握数学知识。

  1、通过故事创设问题情境,贴近学生生活,有利于激发学生学习兴趣。

  2、从故事情境中提出问题,体现数学来源于生活。

  3、小组合作学习,共同探究解决问题,让学生充分体验知识产生的过程。

  4、从几组分数中分析,找到分数的基本性质,从而初步建立数学模型。

  5、设计有坡度的练习,穿插师生互动,生生互动,让整个运用知识的形式活泼有趣。

  6、在游戏活动中对数学知识进行拓展运用。

  五、教学目标

  1、知识与技能

  (1)经历探索分数的基本性质的过程,理解分数的基本性质。

  (2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2、情感态度与价值观

  (1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。

  (2)体验数学与日常生活密切相关。

  3、过程与方法

  (1)在参与观察、操作和讨论等学习活动的过程中,我们通过探索和实践来加深对知识的理解。在这个过程中,我们不仅能够获得直观的认识和经验,还能够培养逻辑思维和解决问题的能力。通过这样的学习方式,我们能够更好地理解分数的基本性质,并能够对其进行简要而合理的说明。

  (2)培养学生的观察、比较、归纳、总结概括能力。

  (3)能根据解决问题的需要,收集有用的 信息 进行归纳,发展学生的归纳、推理能力。

  六、教学重点

  理解分数的基本性质

  七、教学难点

  能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

  八、教学准备

  教师:电脑课件

  学生:圆纸片长方形纸

  九、教学过程:

  (一)回顾复习,旧知铺垫。

  课件出示复习题

  1、商不变的性质

  12÷3=()

  (12×10)÷(3×10)=()

  (12÷3)÷(3÷3)=()

  利用什么知识填空的?

  2、除法与分数的关系

  30÷120=()/()

  ()÷()=17/51

  利用什么知识填空的?

  (二)故事引人,揭示课题。

  课件出示故事(动画):从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦不对,是三个小和尚。小和尚最喜欢吃老和尚做的饼啦。有一天,老和尚做三块大小一样的饼,想给小和尚吃,还没给,小和尚就叫开了,“我要一块”,“我要两块”,“嘻嘻,我不要多,只要四块。”老和尚二话没说,把第一块饼平均分成4块,取出其中1块给第一个和尚;把第二块饼平均分成8块,取其中2块给高和尚。把第三块饼平均分成16块,取其中的4块给了胖和尚。小朋友,你知道哪个和尚分得多吗?

  生1:胖和尚吃的多。

  生2:矮和尚吃的多。……

  师:到底谁回答得对呢?我们一起动手分饼来求证吧

  1、合作探究

  师:请同学们组成小组,每组拿出三个大小相等的圆,用阴影部分或涂色表示每个和尚分得的饼,展示出平均分配的情况。学生小组合作,共同展示出分配公平的结果。

  师:比较一下阴影部分的.大小,结果怎样?

  生:阴影部分的大小相等。

  师:阴影部分相等说明每个和尚分的饼相等。

  师:请同学们用分数表示阴影部分。

  师:阴影部分相等说明这三个分数怎样?

  生:三个分数相等。(随着学生的回答,老师将板书的三个分数用“=”连接。)

  2、组织讨论。

  师:仔细观察这三个分数什么变了,什么没有变?

  让学生小组讨论后答出:它们分数的分子和分母变化了,但分数的大小不变。

  师:它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。

  3、比较归纳

  同学们:从左到右观察,这三个分数的分子和分母都是按照相同的比例变化的,保证了分数的大小不变。

  经过几名学生的集体讨论后,他们发现一个有趣的规律:当一个分数的分子和分母同时乘以相同的数时,这个分数的大小保持不变。接下来我们一起来探索这个规律的原因。

  师:从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。(边讲边板书)

  4、揭示规律

  教师小结:大家刚才都认真观察了,发现分数的分子和分母之间有着一种规律性的变化,而分数的大小却保持不变。这正是我们今天要学习的新知识。(板书课题:分数的基本性质)

  师:“什么叫做分数的基本性质呢?就你的理解,能把它归纳成一句话吗?(小组讨论发言)

  师:很好,让我们来总结一下分数的基本性质。在我们的教科书中,分数的基本性质包括:分数的大小比较、分数的加减乘除、分数的化简、分数的约分等。与同学们总结的不同之处在于书中强调了分数的化简和约分这两个概念。这些性质都是非常重要的,能够帮助我们更好地理解和运用分数。让我们继续学习,掌握这些知识吧。

  全班讨论:为什么要规定0除外”?

  引导:在一个寺庙里,有一个聪明的老和尚和一个小和尚。一天,小和尚拿着一块大饼去找老和尚,请求老和尚帮忙将这块大饼平分成两份。老和尚想了一会儿,然后将大饼切成了两块形状完全相同的小块,然后说:“这样一份给你,另一份给我。”小和尚高兴地接受了。老和尚这样做是因为他知道:只要两份的形状大小完全相同,那么无论怎么分,两份总是公平的。

  (三)梳理沟通,灵活运用。

  1、分数的基本性质与商不变的性质的联系。

  想一想,根据分数与除法的关系,以及整数除法中商不变的规律,你能说明分数的基本性质吗?

  启发学生说出它们之间的联系:

  (1)分子相当于被除数,分母相当于除数;

  (2)被除数和除数同时乘以或除以相同的数就相当于分子和分母同时乘以或除以相同的数;

  (3)“相同的数”中要求“0除外”;

  (4)商不变相当于分数的大小不变。

  2、分数基本性质的应用

  (1)出示课本第76页例2,把2/3和10/24分别转化成分母是12而大小不变的分数。

  (2)认真审题,弄清题意。

  要求学生读题后归纳出题目的要求。

  a、分母都变成12

  b、分数的大小不变

  (3)想一想:怎么化,根据什么?

  过程要求:

  a、学生独立思考,完成题目要求;

  b、全班反馈,教师课件显示。

  (四)多层练习,巩固深化。

  1、完成教科书第77页练习十四的第1―3题。

  (1)第1题

  此题着重练习分数的相等和不等。练习时,让学生按照题目的要求涂色。

  (2)第2题

  这道题目涉及分数的大小比较,需要运用分数的基本性质进行计算。学生可以将2/5化简为4/10,或者将4/10化简为2/5,然后进行比较大小。

  (3)第3题,说出相等的分数(对口令)

  此题是运用分数基本性质的游戏练习,游戏时,让学生以同桌为单位,仿照第3题的样子,一个人先说一个分数,另一个人回答一个相等的分数,然后交换先后顺序。

  2、教科书76页“做一做”

  (1)由学生独立完成,然后同学交流。

  (2)全班反馈,说一说思维过程。

  (五)小结

  教师:同学们,经过今天的学习,你有什么收获吗?在分数运算中,我们学到了一个重要的性质:当分子和分母同时乘以或除以相同的数时,分数的值不会改变。这个性质在简化分数运算时非常有用,希望大家能够灵活运用这个知识点。

  (六)动脑筋出教室游戏(机动)

  请拿出手中的纸片,上面写着不同的分数。请仔细看清自己手中纸片上的分数,然后报出来。报出相同分数的同学先离场,接着是下一个相同分数的同学,最后是剩下的同学离场。请开始游戏。

  十、板书设计

  商不变的性质

  被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数与除法的关系

  a÷b=a/b(b≠0)

  分数的基本性质

  分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

【分数的基本性质教学设计】相关文章:

分数的基本性质教学设计04-05

分数的基本性质教学设计15篇06-25

分数的基本性质教学设计[优选15篇]12-22

《分数的基本性质》教学反思04-06

《比的基本性质》教学设计08-17

分数的基本性质说课稿 11-11

分数的基本性质(说课稿)07-04

《分数的基本性质》说课稿12-14

分数的基本性质说课稿06-26