《平行四边形的面积》教学设计
在教学工作者实际的教学活动中,时常需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。教学设计要怎么写呢?下面是小编整理的《平行四边形的面积》教学设计,仅供参考,欢迎大家阅读。
《平行四边形的面积》教学设计1
一、 案例背景:
执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。
教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。
二、教材简析:
平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。
三、教学诠释与研究。
“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。
现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?
如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的`方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:
小黑板出示:
师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?
生:图1的面积是12平方厘米。
师:你们是怎么想的?
生1:我是一块块数的。
生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。
师:谁能很快知道图2这个图形的面积吗?
生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。
生2:把中间的一排往左推一格,所以还是12平方厘米。
生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。
师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?
生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。
生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。
师:对于这个图形,我们用割补的方法能很快知道它的面积。
接下来,小黑板出示:
比较一下,图中的平行四边形的面积与长方形面积大小如何?
生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。
生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。
师:把平行四边形割补成长方形,图形的什么变了,什么没有变?
生:图形的形状变了,面积大小没有变。
师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。
反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。
几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:
师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?
学生进行操作实践,加验证。
师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?
学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。
学生演示时,师追问学生:是沿着哪一条线剪的?
生:沿着平行四边形地高剪开的。
师:为什么要沿着高剪?
生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。
师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?
有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。
全班交流自己的结果。
生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。
师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?
生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。
结合学生的回答,板书:
长 方 形 面 积 = 长×宽
平行四边形面积 = 底×高
师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?
生1:s=a×h
生2:还可以用小圆点代替乘号。
生3:还可以省略小圆点,写作:s=ah
师:这节课,你们学到了什么?
生:学会了计算平行四边形的面积。
师:是怎么学会的呢?
部分学生沉默,估计是学生不善于表达。
师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?
反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。
《平行四边形的面积》教学设计2
教学内容:人教版教科书第86—88页
教学目标
1、探索平行四边形的面积计算方法,会运用“转化”的数学思想方法推导平行四边形的面积计算公式、会计算平行四边形的面积。
2、经历观察、操作、讨论、分析、比较、归纳等教学活动过程,获得积极的数学学习情感,从而发展空间观念,提高数学素养。
教学重点:探究平行四边形的面积计算公式、会计算平行四边形的面积。
教学难点:通过探究平行四边形的面积计算公式,感受“转化”思想。
教法学法:自主学习、小组合作、实际操作、观察想象等学习方法,使学生亲自探索,主动发现,让他们学得轻松,学得快乐!
教学准备:多媒体课件、剪刀、平行四边形纸片、尺子。
教学过程
一、复习旧知,导入新课
1、出示主题图
师:看,老师这里还有一幅图,大家看它像什么?
生:像火箭
师:你能快速地求出它的面积吗?
生:……
师:还有没有别的方法?
生:……
师:同学们,通过以上计算火箭的面积、,你发现了什么?
生:……
师:刚才我们把不熟悉的图形转化成我们学过的图形,我们用学过的方法来解决这种问题叫转化法,以后我们在学习数学当中经常会用到转化的方法。
二、初次探究,大胆猜想
师:看,这里有两个花坛,谁来说说他们各是什么形状呢?你说
生:……
师:你能准确地比较出它们的大小吗?为了方便比较,我们把它们放在同样大小的方格里,找一个同学来读题,谁愿意来?
生:……
师:我们先来数长方形的面积,(出示幻灯片),谁来说一说长方形的面积是多少呢?
生:……
师:同意吗同学们?我们再来数平行四边形的面积,先数整格的,再数半格的,大家想一想平行四边形的面积又是多少呢?
生:……
师:好,请坐,你能根据以上把下表填完整吗?我们先来填长方形的
生:……
师:我们再来填平行四边形的
生:……
师:那么通过以上你们又发现了什么呢?
生:发现了他们的面积相等。
三、验证猜想,得出结论
师:同学们,我们刚刚用数方格的方法求出了平行四边形的面积,如果让你测量一个很大的平行四边形草坪的面积,那么你觉得用数方格的方法怎么样?
生:不合适,太麻烦了
师:看来数方格的`方法具有局限性,那我们就要想一种合适的计算方法,那么大家想一想能不能把平行四边形转化成我们学过的图形来研究它的面积呢,同学们看合作要求,谁来读一读?
生:……
师:大家先来看第一个要求,是来干什么的?
生:……
师:再来看第二个要求,是来干什么的?
生:
师:现在明白要求了吗?下面以小组为单位,开始……
师:哪一组愿意上来把你们的结果展示一下?
(两个小组上台演示)
生一:沿着平行四边形的这条高剪开,把它分成了一个直角三角形和一个直角梯形,把直角三角形向右平移就拼出了一个长方形,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。
师:还有哪一组有不同方案的愿意上来展示一下?
生二:沿着平行四边形的一条高剪开,把它分成了两个直角梯形,将左边这个直角梯形平移到右边,就拼成了一个长方形,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。
师:他们说得都很好,下面我们选择其中一种来演示,我们就选第一种,那么谁愿意来说一说剪拼的过程?
生:沿着平行四边形的这条高剪开,把它分成了一个直角三角形和一个直角梯形,把直角三角形向右平移就拼出了一个长方形,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。
师:谁愿意再来说一说剪拼的过程?
生:……
师:再找一个人来说一说
生:……
师:大家想一想怎样剪才能确保拼成一个长方形呢?
生:沿着平行四边形的高剪
师:大家再想一想拼成的长方形与原来的平行四边形有怎样的等量关系呢?
生:长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。
师:大家再来看一看以上这两种方法有什么相同点?
生:都是沿高剪开/拼成的长方形的面积都与原来平行四边形的面积相等,长方形的长就是原平行四边形的底相等,长方形的宽和平行四边形的高相等。
师:谁来说一说长方形的面积等于什么
生:长乘宽
师:所以说平行四边形的面积等于什么?
生:底乘高
师:刚才我们把平行四边形转化成长方形求出来平行四边形的面积等于底乘高,那么这就是我们今天学习的平行四边形的面积。(板书课题)我们通常用那个字母表示面积
生:S
师:我们用a表示平行四边形的底,h表示平行四边形的高,那么平行四边形的面积公式是什么呢?
生:S=ah
师:我们在计算平行四边形的面积的时候必须知道哪些条件?
生:底和高
师:接下来我们来看一看例一
四、解决问题,加深理解
师:今天我们学习了平行四边形的面积等于底乘高,你能用它解决生活中的数学问题吗?
出示例1,平行四边形土地的底是6m,高是4m,它的面积是多少?学生读例题,抽生回答。
师:谁来说一说你是怎么做的?
生:6×4=24平方米
师:在计算面积时,要先写字母公式,再进行计算
师:刚刚你们通过自己动手推导出了平行四边形的面积等于底乘高,接下来有没有信心跟着老师去闯关?
1、口算。看图求面积
师:恭喜你们顺利通过第一关
2、我是小法官
A、明白面积不能用邻边乘邻边
B、求长方形的面积时,底和高要相互对应。
生:错
师:为什么?
生:应该用30乘以15
师:还有没有其他的方法?
生:还可以用18乘以25
师:在计算平行四边形的面积时,底和高一定要相互对应
3、分析思考,得出结论,等底等高的平行四边形的面积相等。
两条平行线之间的距离处处相等
师:它们的底相等,我们就说它们等底
高相等就说它们等高
结论:等底等高的平行四边形的面积相等(齐读一遍)
4、趣味思考。
......还有吗?(意味深长的笑)
同学们,今天你们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实呀生活中还有更多的知识等着你们去发现去探索,快快做个生活中的有心人吧!谢谢大家下课
板书设计:
平行四边形的面积
长方形面积=长×宽
平形四边形面积=底×高
《平行四边形的面积》教学设计3
教学目标:
1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2、能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。
教学过程:
一、激趣引入
1、创设情景
师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)
师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)
师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)
师:回忆一下,以前我们是用什么方法得出长方形的面积的。
2、稳固复习
师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。
生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。
师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?
生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。
师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)
师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)
师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)
二、新知探究
1、数方格
师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?
生:一格代表1m2,不到一格按半个计算。
师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)
2、推导公式
师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)
生:相邻两边相乘,或者底乘高。
师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?
生:面积变小了,但四条边都没有发生变化。
师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)
师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?
生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?
生:长方形。
师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。
(1)面积还相等吗?
(2)转化后的长方形与原来的平行四边形有什么关系?
(3)长方形的长、宽与平行四边形的底、高有什么关系?
(4)怎么计算平行四边形的面积?
生:沿着一条高切下来,不到另一边就变成了长方形。
师:试着说说上面的四个问题。
生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的`高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
(生边说师边演示,并进行适当的引导)
师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)
师:还有其他的方法吗?
生:演示方法。(课件演示两种方法)
师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)
师:平行四边形的面积大小是由()和()决定的。共同决定的。
3、回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?
三、练习巩固
(一)基础练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)
3判断:
①平行四边形的底是7米,高是4米,面积是28米。()
②a=5分米,h=2米,s=100平方分米。()
③平行四边形的底越长,面积就越大。()
④平行四边形的高越长,面积就越大。()
4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。
a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小
5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。
(二)拓展提升
1、计算下面每个平行四边形的面积。
2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
四、总结提示
师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
板书设计平行四边形的面积
数方格
长方形的面积=长×宽
计算平行四边形的面积=底×高(底高对应)
s=ah
割补法(转化)
《平行四边形的面积》教学设计4
一、教学目标:
1、使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。
2、使学生经历观察、操作、测量、填表、讨论、推理等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。
3、使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受“变”与“不变”的辩证思想。
二、教学重点:
理解并掌握平行四边形的面积公式。
三、教学难点:
理解平行四边形的推导过程。
四、教学过程:
一、回顾导入:
提问:我们学习过哪些平面图形?你已经会求哪些平面图形的面积?
小结:通过前面的学习,我们已经掌握了正方形、长方形面积的计算方法,今天我们就运用一些学过的知识来研究平行四边形面积的计算方法。
(一)、探究新知:
1、教学例1。
出示例1图,提问:下面每组的两个图形面积相等吗?说说你是怎么比较的?交流后指出:可以数格子,可以移一移,转化成右边的图形再比较。演示移一移的过程,并说明:把①号图形中小长方形剪开、平移、拼合,和②号图形面积相等;把③号图形中小长方形剪开、平移、拼合,和④号图形面积相等。
讨论:数格子和移一移的方法,哪个更方便?提问:通过刚才的操作,你能说说我们是怎样比较的?
指出:我们把每组里左边的不规则图形,经过剪、移、拼,变成了和右边完全一样的长方形或正方形,比较出每组两个图形面积相等,这个过程叫作转化,是计算图形面积的一种常用方法。今天我们就运用这种转化的的思想来研究平行四边形面积的计算。(板书:转化)
(设计意图:引导他们初步体会:复杂图形可以转化成简单的图形,割补,平移是实现转化的基本方法,转化前后的图形形状变了但面积不变。
2、教学例2。
出示题目,提问:你能把这个平行四边形转化成长方形吗?拿出准备好的平行四边形,想一想你打算怎么剪,先画一画,然后再剪一剪。学生操作后,交流:谁愿意把自己的操作过程说给同学听听?
预设1:从平行四边形的一个顶点出发,沿着一条高剪成一个三角形和一个梯形,将三角形向右平移或将梯形向左平移,转化成长方形。
预设2:沿平行四边形一条高,剪成两个梯形,将其中一个梯形向左或向右平移转化成长方形。
投影演示后,追问:还有不同的剪法吗?
比较:大家的剪、拼方法不完全相同,这些方法之间有什么相同的地方吗?(都是沿着平行四边形的一条高剪开的)
追问:为什么都要沿着平行四边形的高剪开?
指出:沿着高剪开,能使转化后的图形中出现直角,从而也就能使平行四边形转化为长方形。
(1)设疑:任意一个平行四边形沿着高剪都能转化成长方形吗?平行四边形转化成长方形后,它的面积大小变化了吗?与原来的平行四边形之间有什么联系?
(2)动手操作,然后小组讨论:
转化成的`长方形与平行四边形面积相等吗?
②长方形的长和宽与平行四边形的底和高有什么关系?③根据长方形的面积公式,怎样求平行四边形的面积?
(3)全班交流:你是怎样知道平行四边形的面积的?为什么说平行四边形与转化成的长方形面积相等?
指出:从转化过程可以看出,这两个图形尽管形状变了,但面积没变。指名读表中每个平行四边形的底、高和面积,提问:根据这几组数据,你认为平行四边形的面积与它的底和高有什么关系?
进一步指出:大家的想法究竟对不对呢,我们再做进一步研究。
(4)分析关系,推导公式。
提问:要求平行四边形的面积,就是求哪个图形的面积?为什么?长方形的面积公式是怎样的?它的长、宽与平行四边形的底、高有什么关系?平行四边形底与高的乘积是长方形的面积吗?也是平行四边形的面积吗?
根据交流形成板书:因为
长方形的面积=长×宽
转化为平行四边形的面积=底×高
提问:如果用S表示平行四边形的面积,a表示底,h表示高,你能用字母表示平行四边形的面积公式吗?板书:S=a×h,齐读。
(二)、回顾:
谁来说说我们是怎样推导平行四边形的面积公式的?你从推导过程中有什么体会?
《平行四边形的面积》教学设计5
教学内容:
义务教育课程标准实验教科书数学人教版五年级上册《平行四边形面积》
教学目标:
1.使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2.通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3.培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:平行四边形面积公式的推导过程。
教具准备:课件、方格纸、剪刀、长方形、纸质平行四边形、透明平行四边形。
教学过程;
一、情景引入,激趣导课
1.情景引入(出示课件)
师:同学们大家好,今天我们一起继续研究图形面积计算,请看主题图。看情景图有哪些图形?
生:长方形、正方形、平行四边形、三角形、梯形。
2.从平行四边形的花坛中引出“平行四边形的面积”。
师:请同学们看这幅图的下方有两个花坛,你认为这两个花坛哪一个大?
师:到底是哪个大,我们该怎么办?
生:算它们的面积。
3.板书:平行四边形的面积
【设计意图】
A、指导学生有序的读图,从整体(你发现在哪儿有哪些图形?)到局部(两个花坛)。
B、“这两个花坛哪一个大?”带着问题引入探究,突出课题并激发学生探究的欲望和研究的兴趣。
二、动手操作,探究新知
1.猜测、试算、验证。
师:既然大家已经会算长方形的面积了,你们敢不敢试着算一算平行四边行的面积。
学生动手测量、试算按比例缩小的平行四边形图形的面积,老师观察出现的情况。
汇报并板演出现的各种情况。(生成有三种情况)
生1:6×5.5=33(平方厘米)
生2:6×4=24(平方厘米)
生3:(6+5.5)×2=23(平方厘米)
说理:
生1:相邻两边的积等于平行四边形的面积。
生2:底和高,底乘高等于平行四边形的面积。
生3:两条邻边的和乘2就是平行四边形的面积。
【设计意图】
从贴近学生的生活中的平行四边形花坛,抽象出来的图形,学生动手测量并试着算一算。从试做中发现问题、提出问题、为解决问题做好铺垫。
2.归纳意见,提出验证。
(1)归纳意见
师:你们对以上三种方法有什么意见或补充?
生1:我认为第三种是错的,这样计算出来的表示平行四边行的周长而不是面积。
师:你们对其它两种有什么看法:
生:我认为第二种是正确的,我的理由是:长方形的面积是长乘宽,所以平行四边的面积就是底边乘它的邻边。
师:有同意她想法的吗?说说看……。
师:现在有两种意见,怎么办?
生:验证。
师:怎么验证?
(2)数方格法验证猜想。
师:推导长、正方形面积时,我们就是用数方格的方法。
师:平行四边形不同于长方形,想一想怎么数好数。(题目中不出示“不满一格按半格计算要求”)
学生用方格纸测量平行四边形的面积
生1:我是把所有不满一格的都按半格算,这样数的。
生2:我是把这些半格移到另一边半格上就组成整格了,这样好数。
生3:我是沿着格子的竖线把平行四边行剪下来,平移到另一边,这样组成了一个长方形,这样很好数了。
师:同学们的方法真多,这些方法都能很好的解决了这个问题。
师:根据数格得出的结论,你认为哪种结果是错误的。
生:我们通过数方格法得知,用一条边乘它的邻边的方法是错误的。
【设计意图】
A:让学生归纳意见的同时对问题进行深入的分析,并能寻求解决问题的策略。
B:通过数方格验证哪种方法是正确的,并且围绕“怎么数好数”让学生了解、体会方法优化的思想及为接下来的剪拼法做好铺垫。
3.提出疑问,验证猜想、得出结论。
(1)提出疑问。
师:你们同意她的想法吗?齐:同意。
师:那么正确的方法是……
生齐说:底乘高。
(2)剪拼法,科学验证猜想。
师:底乘高来计算平行四边形的面积与数方格得出的结论是一样的,那么用底乘高的方法计算平行四边形的面积是对还是错,需要……
生齐说:验证。
师:怎么验证更合理,更科学?
学生提问:能不能转化成长方形?
师:请同学们想一想,怎么做才能把平行四边行转化成长方形?
师:请同桌合作,并动手用学具剪一剪,拼一拼。
小组合作,动手操作。
(3)演示操作,寻求不同,强化过程。
演示学生操作过程
师:同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。
(4)合作讨论,得出结论
师:小组讨论拼出的长方形和原来的.平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。
①拼出的长方形和原来的平行四边形比,什么变了,什么没变?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?
学生汇报:
生1:形状变了,面积大小没变。
生2:转化后的长方形与原来的平行四边形对比,发现,长方形的长等于平行四边形的底,宽等于平行四形的高,面积没有变化,得出,平行四边形的面积等于底乘高。
老师根据学生的表述板书:
长方形的面积=长×宽
平行四边形的面积=底×高
师:我们通过猜想,数方格验证,产生疑问,转化法验证,从而明白学生的猜想(底乘高等于平行四边形的面积)这个结论是正确的,在今后的学习中我们经常用到“猜想”“转化”“验证”等方法进行探究。
【设计意图】
A:数方格法已确定底乘它的邻边计算平行四边形面积是错误的。教师设疑让学生体会猜想的结论不一定是正确的,激励学生还需要进行一步经历和探究更科学的推理平行四边形面积计算公式的方法。
B:在数格时渗透剪拼的思想,在这里学生想到剪拼法并不难,在同学的相互帮助下能够顺利的完成任务。
C:由学生上讲台演示沿着中间的高剪开,拼成长方形既是强化剪拼法的过程,也是要寻求不同方法。
D:小组合作,观察对比,得出结论。培养学生小组合组和小结、概括能力。
4.用字母表示公式。
师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah
师:要求平行四边形的面积,必须知道什么?
生:底和高。
三、利用公式,独立完成,解决问题。
1.独立完成,情景图中,两个花坛哪一个大?
生:长方形面积生:平行四边形面积
S=abS=ah
=6×4 =6×4
=24(m2)=24(m2)
答:两个花坛一样大。
2、利用公式解决例1。
例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
两人板演,其余做在练习本上。S=ah=6×4=24(m2), 6×4=24(m2)
【设计意图】
应用公式解决课前留存的问题及生活中的问题。把数学还原回生活中去。
四、反馈练习,发展思维。
1.解决生活中的问题
一个平行四边形的停车位底长5m,高是2.5m,它的面积是多少?
2.在方格纸上画一个底是4厘米,高是3厘米的平行四边形,它们的面积是多少?
【设计意图】
A、让学生明确认识到等底等高的平行四边形它们的面积一定相等。
B、让学生体会面积相等的平行四边形不一定是等底等高。
3.拓展延伸
要求下图的面积需要知到哪两个条件?你能把这个平行四边形分成两个面积相等的三角形吗?并求一个三角形的面积是多少:
【设计意图】
学生通过把这个平行四边形分成两个面积相等的三角形,推算一个三角形的面积是多少,让学生能在这道题的影响下,学生对知识和数学思想都有一个延伸。
五、课堂总结
今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?给你有什么启示?
板书设计:
平行四边形的面积
《平行四边形的面积》教学设计6
教学内容:
人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》P79-81
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:掌握平行四边的面积计算公式,并能正确运用。
教学难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:动手操作、小组讨论、启发、演示等教学方法。
教学准备:
1. 平行四边形卡纸
要求:底为6厘米,高为4厘米,最小的内角为45度,形状为:
2. 剪刀、三角尺、文具(铅笔、橡皮等)
3. 板贴
文字为:“平行四边形的面积”;
“长方形的面积=长×宽” “平行四边形的面积=底×高” “S=ah”;
“平行四边形的面积=相邻两边的乘积”
教学过程:
教学
环节
教师活动及教师语言
学生活动及学生语言
课件设计
复习导入
探索新知
巩固练习
小结
师:同学们,你们好!很高兴又能和大家一起探讨有趣的数学问题了!
那么今天聪聪将带我们去什么地方探讨怎样的数学问题呢?(课件:出示课本P79主题图)
师:仔细观察找一找图中有哪些学过的图形?
师:好,下面谁来说一说你找到了哪些学过的图形?
(教师随着学生的回答点击课件相应的画面)
师:你们知道这两个花坛中哪个面积大吗?
师:那么,谁的想法正确呢?我们一起来验证一下,好吗?
请大家看屏幕。(点击课件,边点击边说)
师:我们把这两个花坛画到纸上,用数方格的方法数数看。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。数一数,它们的面积各是多少?
师:下面请同学们打开书第80页,先独立思考并数一数,然后再和同桌互相交流。
师:好,谁来说一说你是怎么数的。
(师随生说点击课件)
师: 哦,你们数的结果是都是24平方米,说明……
也就是……
(一生举手,老师示意其发言)
师:这个问题提得很好,那平行四边形的面积公式是什么呢?这就是我们这节课要研究的内容。
(出示课题)
师:下面请同学们继续观察这两个图形,并完成课本第80页下方的表格。完成后想一想,除了面积相等外,它们还有什么关系呢?
师:谁来汇报一下你填的结果?
(师随学生汇报点击课件,补充表格)
师:通过这个表格,你们有什么发现呢?
师:大家同意吗?
那谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法?
(教师板贴:平行四边形的面积=相邻两边的乘积)
师:那这个猜想对不对呢?请大家想办法验证验证。
师:验证完了吗?
师:这个猜想对吗?
师:那谁来说一说你是怎样验证的?
师:哦,我听明白了。你是这样验证的。(点击课件,演示过程)你画了这样的两个平行四边形,它们的底边相等,与底边相邻的边也相等。那大家看它们的面积相等吗?
(点击课件)那这样呢,它们的面积相等吗?
(点击课件)这样呢?
师:同学们,你们也是这样验证的吗?
师:看来,这个猜想(指黑板)不正确(在板贴公式的等号上画上斜杠)。那谁还有不同的猜想呢?
(教师板贴)
师:能说说你的'理由吗?
(师在刚才贴的上面贴上长方形面积公式)
师:那这个猜想到底对不对呢(在平行四边形面积公式的等号上方画上问号)?请大家借助手中的平行四边形卡片、剪刀等学具想办法验证验证。
师:验证完了吗?
师:谁愿意把你的验证方法说给大家听听?
师:你为什么想到这样转化?
师:那你接着说说是怎样把平行四边形转化成长方形的。
师:哦,这位同学是这样(点击课件)沿着平行四边形的一条高剪开,把平行四边形转化成一个长方形。那谁能说说,平行四边形转化成长方形后,什么变了?什么没变?
师:非常正确!转化后,长方形的长与宽分别与平行四边形的底和高有什么关系?(师随生回答在黑板上的公式间标上对等关系。)
师:那现在你们知道平行四边形的面积怎样计算吗?
师:不错,这样我们就验证了平行四边形的面积公式=底×高(指黑板,擦去等号上的“?”号)
师:刚才这位同学是把平行四边形转化成长方形来验证的。不错,谁还有不同的方法?
(师随生说点击课件,依次呈现转化图中右侧的转化过程)
师:大家听明白了吗?
师:他们都把平行四边形沿着一条高剪开(点击课件),将平行四边形转化成一个长方形再进行验证的。
师:(小结)(点击课件)看来,沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,大家都值得表扬。
师:下面请大家想一想,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形底边上的高,平行四边形的面积公式用字母怎样表示呢?
(师出示板贴“S=ah”)
师:知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。(出示例1)这道题是书上81页的例1,请大家做一做。
谁来说一说你是怎么做的?
师:通过这道题,请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?
师:不错,只要知道它的一组底和高就能求面积了。
师:那我们接着再来看一道题(点击课件)你能求出下面平行四边形的面积吗?这就是课本第82页的第2题。请大家在书上完成。
师:谁来说一说你是怎样求的?
(师随生说点击课件。)
师:大家同意吗?
师:下面我们继续看这两个平行四边形,(出示书P83(5)题目),仔细观察,想一想它们的面积相等吗?算一算它们的面积各是多少?这就是书上83页的第5题,请大家先独立思考,再两人一组讨论、交流自己的想法。
师:讨论完了吗?谁来说一说你是怎么解决这一问题的? (根据学生回答出示课件)
师:真不错!老师也是这么想的!可以说等底等高的平行四边形的面积相等,大家同意这种说法吗?
师:运用这节课我们所学的知识,我们还可以解决生活中的一些实际问题。请看屏幕。(点击课件)这是我们书上82页的第4题,请同学们一起完成吧。
师:谁来说一说你是怎样解决这一问题的?
师:你完成得很好,在解决问题时也注意了面积单位的变化!
师:下面请大家回顾一下我们这节课的内容,想一想,通过这节课的学习,你有哪些收获?
师:看来,大家的收获真不少。只要大家勤动手,勤思考,就一定会学到更多的数学知识,也会变得越来越聪明!
好,今天这节课我们就上到这里,同学们再见!
生(齐):老师好!
学生观察、思考。
生1:斑马线上有长方形,地砖上有正方形。
生2:房顶上有三角形,左边的花坛是长方形的,右边的花坛是平行四边形的。
生3:车窗是梯形的。
生4:车轮是圆形的。
生1抢先站起来:长方形的面积大;
生2起来反驳:平行四边形的面积大;
生3:我认为长方形和平行四边形的面积一样大。
学生独立思考后,互相交流。
生1:长方形每行有6格,一共有4行,面积就是6×4=24(平方米);
生2:平行四边形整格的有20个,半格的有8个。不满一格的按半格计算,平行四边形的面积是
20+8÷2 = 24(平方米)。
生(齐):平行四边形的面积和长方形的面积同样大。
生(齐):两个花坛的面积同样大。
生2:我觉得长方形的面积不用这样数。我们已经学过了长方形的面积计算公式,只要数出长和宽,直接计算就可以了。
生3(站起来说):老师,我有一个问题,平行四边形的面积是不是也有计算公式呢,如果有就方便了。
学生填写表格,并思考。
生1:平行四边形的底和长方形的长都是6米;平行四边形的高和长方形的宽都是4米,长方形的面积和平行四边形的面积都是24平方米。
生2:平行四边形的底与长方形的长相等,高与长方形的宽相等,它们的面积也是相等的。
生(齐):同意!
生1:长方形的面积公式是长乘宽,也就是相邻两边的乘积,所以我认为平行四边形的面积公式也应该是相邻两边的乘积。
生集体验证。
生(齐):验证完了。
生(齐):不对。
生1(举起练习本):我画了这样两个平行四边形(如右图),它们的底边相等,与底边相邻的边也相等。如果面积公式是相邻两边相乘,面积应该是相等的,但是一眼就能看出它们的面积并不相等。所以这个猜想不对。
生(齐):不相等。
生(齐):不相等。
生(齐):不相等。
生(齐):是的。
生2:我认为平行四边形的面积公式应该等于它的底乘高。
生2:因为我们刚才填表格时,发现这个长方形的长和这个平行四边形的底相等,长方形的宽又和这个平行四边形的高相等,它们的面积也相等。而长方形的面积等于长乘宽,所以我想平行四边形的面积等于底乘高。
学生分组操作,教师巡视。
生(齐):验证完了。
生1:因为我们刚才发现底和长方形的长相等、高和长方形的宽相等的平行四边形面积和这个长方形的面积相等。我就想到了把平行四边形转化成长方形。
生1(从投影仪演示):我先从平行四边形的一个顶点画了一条高,这样剪出了一个直角三角形和一个直角梯形,把平行四边形转化成了长方形。
生2:形状变了,面积没有变。
生3:转化后的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
生1:知道。因为长方形的长与原来平行四边形的底相等,宽与原来平行四边形的高相等,而长方形的面积=长×宽,所以,平行四边形的面积=底×高。
生2:我也同意平行四边形的面积等于底乘高。
生1(投影以上演示):我的方法和××同学的差不多。但我是这样验证的:我画出了平行四边形的一条高,沿这条高把它剪成两个直角梯形,把一个直角梯形移到另一边,正好拼成一个长方形。
生(齐):听明白了。
生(齐):S等于ah。
生1:平行四边形的面积计算公式是底乘高,这个平行四边形的底是6米,高是4米,所以它的面积就是6×4=24平方米。
生1:平行四边形的一组底和高。
学生独立完成。
生1:我先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。结果是××平方厘米和××平方厘米。
生(齐):同意!
学生先独立思考,在课堂练习本上计算,再两人一组讨论、交流。
生1:这两个平行四边形的底相等,高也相等,因此它们的面积肯定相等。算式是1.4乘2.5等于3.5平方厘米。
生(齐):同意!
学生独立在课堂练习本上练习。
生1:我先求出麦田的面积为250×84=21000(平方米)=2.1(公顷),再求14.7÷2.1=7(吨)
生1:我们用转化的方法推导出平行四边形的面积公式。
生2:我知道了平行四边形的面积公式是S=ah 。
生3:我会用平行四边形的面积公式解决一些实际问题。
生4:我知道了等底等高的平行四边形面积相等。
生(齐):再见!
《平行四边形的面积》教学设计7
教学内容:
《义务教育课程标准实验教科书数学》(人教版)五年级上册第80页。
教学目标
1.知识与技能
1)使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2)使学生理解转化的思想,初步学会运用转化法来解决问题。
3)培养学生的合作意识和自主探究解决问题的能力。
2.过程与方法
让学生充分经历平行四边形面积的探究过程和公式的推导过程,培养学生的实际操作能力和抽象概括能力,同时发展学生的空间观念。
3.情感态度与价值观
通过解决“山西省的面积大约有多大”这个问题,向学生渗透爱祖国爱家乡的良好情感,树立起学生的民族自豪感和自信心。
教学重点、难点
教学重点:探究平行四边形的面积计算公式,并会应用公式解决实际问题。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教学准备:
多媒体课件、平行四边形学具等。
教学过程:
一、设置悬念激发兴趣
师:同学们,你们看,我们中国的版图像一只昂首挺胸的雄鸡,在这九百六十万平方千米的土地上,我们山西省就位于祖国的华北西部。你知道山西省的面积大约有多大吗?
[学情预设:摇头或不知道。]
(出示:中国版图)
师:请大家仔细观察,山西省近似我们学过的什么平面图形?
[学情预设:学生根据观察可能会说:四边形或平行四边形。]
师:你很会观察。要想知道山西省的面积大约有多大,需要我们解决什么问题?
[学情预设:学生可能会说:计算出这个平行四边形的面积,就可以知道山西省的面积有多大了。]
师:对,这节课我们就一起来研究“平行四边形的面积”。
(引出课题并板书:平行四边形的面积)
[设计意图:新课程指出:数学来源于生活。通过从生活情境中引入问题、设疑激趣,激起学生探究的欲望,直接引入研究课题。]
二、动手操作引发欲望
1、回忆平行四边形的底和高。
师:同学们,平行四边形有哪些特征,你们还记得吗?
[学情预设:
生1:平行四边形对边平行、对角相等。
生2:还有底和高。]
师:我们知道平行四边形是两组对边分别平行且相等的图形,如果从这点引出一条高,你知道和这条高相对应的底在哪里吗?
[学情预设:学生根据不同的高,找到所对应的底。]
师:由此,你发现了什么?
生:底要和高相对应。
师:对,这一点值得注意。
[设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在探究之前,回忆平行四边形的有关知识,让学生找到此知识的原知识点,激发学生学习的兴趣,从而顺利的进行平行四边形面积计算公式的探究。]
2、第一次探究
师:回忆起平行四边形的底和高,就可以顺利的研究平行四边形的面积了。现在这个平行四边形已经缩小放到大家的学具袋当中了,请大家利用学具袋中的学具,想办法计算出这个平行四边形的面积。
(小组活动,教师巡视)
[学情预设:
生1:直接数。
生2:间接数。
生3:沿边上的高剪开。
生4:沿中间的高剪开。
生5:沿两边的高剪开。……]
师:我看到大家都已经研究出计算这个平行四边形的面积的方法了,请每个小组选一名代表到前面来给大家边说边演示一下。
(小组汇报)
[学情预设:
组1:用直接数方格的方法。]
[问题讨论:师抓住“不满一格的如何计算”这个问题,让小组展开讨论,从而初步渗透转化思想。]
师:哪个小组和他们的方法不一样?
[学情预设:
组2:间接数。
组3:沿边上的高剪开。
组4:沿中间的高剪开。
组5:沿两边的高剪开。……]
师:由此,你又发现了什么?
小结:任何一个平行四边形,只要沿着高剪开就可以拼成长方形。
[设计意图:新课程倡导让学生在自主探索、合作交流、动手实践的基础上充分经历数学活动的过程,获得广泛的数学活动经验。所以我在这一环节就让学生自己经历探究的过程,得出多种方法,体会转化前后的这两种图形之间的联系与区别,为后面公式的推导做好铺垫。]
3、第二次探究
师:同学们,你们是否想过,如果要计算这么大一个平行四边形的面积,或者比他更大的平行四边形的面积,能用这张小小的方格纸数出来吗?
师:请大家再想一想,在我们生活当中有很多物体的形状都是平行四边形的,比如像花坛、麦田、楼梯扶手等,要计算它们的面积,我们还能用数方格的方法吗?还能用这种割下来补过去的方法吗?
生:不能。
师:有没有一种既科学又简便,象计算长方形的面积一样,运用一定的公式来解决的方法呢?
生:有。
[学情预设:学生利用学具验证自己的猜想:平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽]
(板书:长方形的面积=长×宽
平行四边形的面积=底×高)
师:平行四边形的面积公式还可以用字母来表示:请大家打开课本第81页,自学例1上面的两段话。
[学情预设:学生汇报自学成果,教师板书字母公式。]
师:用字母表示平行四边形的面积公式:S=ah
小结:同学们,刚才我们研究得非常好,各种平面图形是有一定的联系,也是可以相互转化的,今天我们把平行四边形转化为已学过的长方形,从而找到了计算平行四边形面积的方法。
即:平行四边形的面积=底×高
[设计意图:著名教育家布鲁纳指出:掌握基本的数学思想和方法能使数学更易于理解和更便于记忆。平行四边形面积计算方法的'教学是进行数学思想方法教学的良好契机。在本环节中,我不只是满足于单纯的平行四边形面积计算方法的学习,更注重引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力。]
三、联系实际解决问题。
师:解决课前遗留问题:山西省的面积大约有多大?
[设计意图:数学来源于生活,又回归于生活。在解决问题的同时,渗透情感教育。]
四、课后延伸渗透转化
师:吉林省近似学过的什么平面图形?
生:三角形
师:会计算它的面积吗?(不会)我建议大家利用转化的思想方法下课后继续研究。
[设计意图:数学教育的价值目标不仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得数学的基本思想方法,并能灵活运用方法解决在以后的学习中遇到的问题,达到举一反三的效果,提高解决实际问题的能力。]
五、板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
《平行四边形的面积》教学设计8
教学内容:
五年级上册第79—81页。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:
动手操作、小组讨论、演示等
教学准备:
每个学生一把剪刀,一个平行四边形
教学过程:
一、导入:
1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
3、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的`?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
反思:
在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
《平行四边形的面积》教学设计9
教学目标:
1、使学生通过数、剪、拼、算等实际操作,推导平行四边形的面积计算公式。
2、能应用平行四边形的面积计算公式解决实际问题。
3、在割补、观察与比较中,初步感知与转化,变换的数学思想方法,发展学生的空间观念。
教学重点:
平行四边形的面积计算公式的推导与应用教学难点:
理解和掌握用割补法推推导平行四边形的面积计算公式
教具准备:
平行四边形纸、长方形纸、多媒体学具准备:
平行四边形纸、剪刀、尺子教学过程:
一、创设情景,引出课题
1、创设情景
同学们,这几年我们东莞市许多学校都在创建绿色学校,校园绿化得越来越漂亮。现在跟着镜头一起去看看吧!(播放校园绿化情况)
2、引出课题
提问:他们在讨论什么?(长方形的花坛大还是平行四边形花坛大?)要判断哪个花坛大必须知道什么?(长方形的花坛的面积和平行四边形花坛的面积)我们已经知道长方形的面积是怎样计算的,可是平行四边形的面积又是怎样计算的呢?这节课我们就来共同研究,并板出课题。
二、新课
1、自学,用数方格的方法计算平行四边形的面积。
(1)多媒体出示P80图和表格
(2)读一读数方格时要注意的地方
(一个方格代表1平方米,不满一格都按半格计算)
(3)让学生在电脑上填写表格
(4)提问:观察表格的数据,你发现了什么?
(5)学生汇报。
(6)小结:通过数方格我们发现这两个花坛的面积是同样大的。
2、推导平行四边形的面积计算公式
(1)猜想
如果都用数方格的方法去计算平行四边形的面积的话,大家感觉怎么样?(比较麻烦)那不数方格能不能计算出平行四边形的面积呢?(能)你有什么好办法?(推导出平行四边形的'面积公式)好主意。刚才在数方格的时候已经有同学发现平行四边形的面积=底高,那是不是所有的平行四边形的面积都是这样计算的?下面我们一起合作验证。
(2)验证
a、动手操作
剪——平移——拼,把一个平行四边形变成一个长方形。
b、讨论:
1、剪拼出的长方形的长和宽与平行四边形的底和高有什么关系?
2、剪拼出的长方形的面积和原来的平行四边形的面积有什么关系?
《平行四边形的面积》教学设计10
教材分析:
本节课是在学生对平行四边形有了初步认识,学习了长方形、正方形面积计算的基础上进行教学的。平行四边形面积公式的推导方法的掌握,对后面三角形、梯形面积公式的学习具有重要的作用。几何知识的初步认识贯穿在整个小学数学教学中,是按由易到难的顺序呈现的。本课时内容在教科书的第96至97页,包括剪拼图形、总结公式、试一试、练一练和问题讨论五个环节,这部分知识的学习、运用会为学生学习后面的三角形,梯形等平面图形的面积计算奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。
学情分析:
五年级的学生已经具有了自主学习、迁移推理的能力,在学平行四边形面积计算之前,学生已经了解了平行四边形各部分的名称及特点,掌握了长方形、正方形面积的计算公式。
设计理念:
根据教学内容,因材施教制定了教学思路:创设情境——指导探究——发现规律——实践应用。人人参与教学活动,动脑、动手、动口,达到理解和运用公式的目的。在解决问题中真切感受到数学知识来源于生活,又服务于生活。
教学目标:
1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
3、培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点:
探究平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
平行四边形面积公式的推导过程。
教具准备:
课件、方格纸、剪刀、长方形、平行四边形。
教学过程:
一、情景引入,激趣导课
1、情景引入(出示课件)
2、从平行四边形的花坛中引出“平行四边形的面积”。
师:这两个花坛哪一个大?(生自由说)
我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢?
3、揭题:平行四边形的面积(板书课题)
二、动手操作,探究新知
1、联想、猜测。(用数格子的方法)
长方形的面积与它的长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?
2、归纳意见,提出验证。(用剪、拼的方法)
能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。
⑴小组合作,动手操作。
⑵演示操作过程。(课件演示)
同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。
⑶观察几种不同的转化方法,它们有什么共同的地方?为什么沿高剪开?
长方形有四个直角,只有沿高剪开,拼时才能出现直角。
⑷讨论:拼出的长方形和原来的平行四边形相比,你发现了什么?以下面的讨论题进行思考交流。
①拼出的长方形和原来的平行四边形比,什么变了,什么没变?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③你能根据长方形面积的计算公式推导出平行四边形面积的计算公式吗?
⑸讨论推导出平行四边形面积公式:
长方形的面积=长×宽
平行四边形的面积=底×高
3、演示过程,强化结果。
大家刚才在操作中沿平行四边形任意几条高剪开、平移、拼都把一个平行四边形转化成一个长方形。请同学们再观察一遍(多媒体演示),一个平行四边形有无数条高,沿任意一条高剪开、平移、拼都可以把一个平行四边形转化成一个长方形,这个长方形的面积与原来平行四边形面积相等,这个长方形的长等于这个平行四边形的'底,这个长方形的宽等于这个平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形面积等于底乘高。(刚才有同学猜想平行四边形的面积是两邻边的积,是不是这样呢?这里有一个平行四边形框架,请你拉一拉,发现了什么?邻边长度没变,面积变了,所以平行四边形面积不等于两邻边的积)
从而也验证了大家前面猜想的底乘高等于平行四边形的面积是正确的,在学习中我们采用了先猜想,再转化,最后验证等学习方法,这些方法在学习中我们经常用到。
4、用字母表示公式。
师:如果用s表示平行四边形面积,a表示它的底,h表示它的高,那么平行四边形的面积可以用字母什么表示?字母中间乘号可以省略。S=ah
师:要求平行四边形的面积,必须知道什么?
(通过大家共同的努力,推导出了平行四边形面积公式,下面让我们走进阳光小区,去解决一些实际问题。)
5、利用公式解决例1。
例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
两人板演,其余做在练习本上。S=ah=6×4=24(m2),6×4=24(m2)
[评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。]
三、反馈练习,发展思维。
课件练习
四、课堂总结
今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?
板书设计:
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
《平行四边形的面积》教学设计11
教学内容分析:
平行四边形面积计算的教学是新课程标准五年级上册第79-81页的教学内容,本教学内容是在学生掌握了这些图形的特征及长方形,正方形面积计算的基础上学习的,它和三角形,梯形面积计算联系比较紧密,也是为今后进一步步学习圆面积和立体图形表面积打下基础。
设计的理念:
学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征会做高,为了让学生更好的理解掌握平行四边形面积公式。因此在教学中让学生经历猜想操作验证推理的过程,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想,感受到数学知识的应用价值。
教学目标:
1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作,观察,比较活动,初等认识转化的方法,培养学生的观察,分析,概括,推导能力,发展学生的空间观念。
3.引导学生初步理解转化的思想方法,培养学生的思维能力和解决简单的实际问题的能力。
教学重点:
使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。并能正确运用平行四边形的面积公式解决相应的实际问题。
教具,学具准备:多媒体,平行四边形硬纸片,一把剪刀。
教学过程:
一、创设情境、导入新课。
多媒体课件出示课文主题图,观察主题图,让学生找一找图中有哪些学过的图形,当学生找到图中学校门前的两个花坛时。
师:观察图中学校门口前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?
生:会计算长方形面积,不会计算平行四边形的面积。
师:可是要比较两个花坛的大小我们必须要知道平行四边形的面积怎样计算呢?今天我们就来研究平行四边形面积的计算。(板书课题:平行四边形的面积)
[设计意图:是让学生在现有知识水平中无法比较两个花坛的大小,来激发学生积极探求知识的奥秘的欲望。]
二、探究平行四边形的面积。
1.用数方格的方法探索计算面积。
师:请同学们大胆猜想一下,你想用什么方法来求平行四边形的面积呢?
生1:我想把平行四边形拉成一个长方形。
生2:我想用数方格子的方法来计算。
……
师:(1)拉动平行四边形的边框,让学生观察得知;用拉的方法不能求出平行四边形的面积。
(2)我们再来验证一下你们刚才提出的数方格子的方法行不行,用多媒体出示教材第80页方格图。我们已经知道可以用数方格子的方法得到一个图形的面积,现在请同学们用这个方法算出这个平行四边形和长方形的面积。
说明要求:一个方格表示1平方厘米,不满一格的都按半格计算。现在同学们一齐来交流一下是是怎样数的,请把数出的结果填在表格中。
同桌合作完成:
4.汇报结果:用投影展示学生填写好的表格,观察表格的数据,你发现了什么?想到了什么?
平行四边形
底
高
面积
长方形
长
宽
面积
通过学生讨论,可以得到平行四边形与长方形的'底与长,高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
[设计意图:通过让学生数一数,议一议,先感受一下平行四边形与长方形的面积的联系。培养学生联想、猜测的能力,同时为下一步的探究提供思路。]
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到一平行四边形的面积,但是用数方格这个方法能任意数出一些平行四边形面积吗?为什么?哪些平行四边形的面积不能用这种方法呢?
生:不方便、比较麻烦,不是处处都适用,例如没方格图的平行四边形和生活中一些的平行四边形物体。
师:既然不方便,不能处处适用,我们能否不数方格从中探索出平行四边形面积的规律呢?
学生讨论,鼓励学生大胆发表意见。
(2)归纳学生意见,向学生提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?现在请大家验证一下。
(3)分组合作动手操作,探索图形的转化。
各小组用课前准备的平行四边形和剪刀进行剪和拼。思考一下;能否把平行四边形转化成自己会算面积的图形来计算它的面积。转化成一个什么图形呢?各小组组织学生动手实验、合作交流开展探究活动。各小组代表把拼剪的图形展示在黑板上,并说一说演示的过程和自己的一些想法。
生:我们就把平行四边形变成一个长方形,因为长方形的面积我们已经会计算了。
引导学生:用割补的方法沿着平行四边形任意一条高剪开,平移后都可以得到长方形。
用多媒体演示平移和拼的过程。剪——平移——拼。
[设计意图:通过小组合作,共同完成操作。使每个学生能从感性上认识利用割补把平行四边形通过剪—平移—拼成一个长方形的演示全过程。]
(4)小组讨论,合作交流,探索平行四边形的面积计算公式。
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论后,根据学生回答情况出示讨论题目给学生。
拼出的长方形和原来的平行四边形相比,面积变了没有?
拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
能否根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
[设计意图:创设探究的空间和时间,采用自主探索,合作交流等学习中,让学生了解平行四边形的面积与长方形的面积之间的关系,掌握了平行四边形面积的计算方法。]
(5)小组交流汇报,归纳叙述出自己的推导过程。
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等。那么平行四边形的面积等于什么?
因为:长方形的面积=长×宽,
所以:平行四边形的面积=底×高
如果用S表示平行四边形的面积,用a表示平行四边形形的底,用h表示平行四边形的高,同学们能否尝试用字母表示平行四边形面积计算公式。S=ah
学生思考:要求平行四边形的面积必须要知道什么条件呢?(平行四边形的底和高)
3、平行四边形面积计算公式的应用。
既然我们已经推导出平行四边形面积计算公式,那么我们现在可以运用公式解决一些实际的问题。
(1)、现在课本主题图中学校门口两块花坛的大小这个问题现在可以解决吗?怎样解答呢?
生:先量出平行四边形的底和高再按平行四边形面积计算公式来计算,并说说计算过程,再比较大小。
(2)运用平行四边形面积计算公式让学生自学例1。
师:例1是给出我们什么数学信息呢?我们根据什么公式来列式计算,学生试做、并说说解题方法和板书结果。
学生板书例1的结果;s=ah=6×4=24(平方米)
[设计意图:在解决问题过程中能让学生进一步理解和掌握平行四边形面积的计算方法。还能让学生感受到学习数学的价值。]
三、巩固拓展。
1、给下面各题目填空。
(1)一个长方形的长是5厘米,高是3厘米,这个长方形的面积是()平方厘米。
(2)一个平行四边形的底是8米,高是5米,这个平行四边形的面积是()平方米。
(3)一个平行四边形的高是6分米,底是9分米,这个平行四边形的面积是()平方分米。
[设计意图:通过反复计算平行四边形的面积,加深学生对面积公式的理解和更熟练地运用平行四边形的面积计算公式解决实际问题。]
2、你能想办法求出下面两个平行四边形的面积吗?
3、同学们自己画一个平行四边形,并标出平行四边形的底和高的数量,同桌交换来求这个平行四边形的面积。
[设计意图:这两题练习设计可让学生想办法找出平行四边形的底和高才能求出面积,这样设计进一步加强了学生作平行四边形的高的方法,同时培养了学生动手操作和应用公式的实践能力。]
四、课堂总结
通过本节课的学习你有什么收获?你知道平行四边形面积公式是怎样推导的吗?要求平行四边形的面积就必须知道什么条件呢?你会运用平行四边形的面积计算公式来解答一些实际问题。
请你们找出生活中用到的平行四边形,并计算出它的面积,在下节课上进行交流好吗?
板书设计:
长方形的面积=长×宽
平行四边形的面积=底×高
用字母表示是:S=a×h=a·h=ah
《平行四边形的面积》教学设计12
一、教学目标:
1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。
2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。
3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,发展推理能力。
4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。
二、教学重点、难点及关键点剖析:
1、重点:平行四边形面积公式的推导及应用。
2、难点:理解平行四边形面积计算公式的推导过程。
三、教具、学具准备:
平行四边形纸片、剪刀及电脑课件、
四、教学过程:
一、创设情境,导入新课
猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?
生:算出这两块地的面积,比比就知道了。
师:那长方形的面积怎么算呢?
生:长方形的.面积=长×宽
师:平行四边形的面积怎么算呢?
生摇摇头。
师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。(板书课题)
齐读学习目标:
1、通过操作,能推导出平行四边形的面积计算公式。
2、会运用平行四边形的面积计算公式解决实际问题。
二、自主学习
在下面的方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。)
小组讨论:(1)仔细观察、比较表格中的数据,你发现了
(2)猜想:平行四边形的面积=_________________________
三、动手操作,验证猜想
(1)小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)
(2)以小组为单位进行剪拼。
(3)指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。
(4)讨论:
A、平行四边形转化成长方形后面积变了吗?为什么?(没有,因为它的大小没变),(物体的表面或封闭图形的大小,叫做它们的面积)
B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的相当于原平行四边形的()。
(6)交流汇报
板书:长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h,也可以写成S=ah或S=ah(师板书)
四、当堂检测
1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?
出示例1平行四边形花坛的底是6m,高是4m,它的面积是多少?
学生独立完成,并展示学生作业。
2、计算下面平行四边形面积,列式正确的是:()
A:8×3B:8×6C:4×6D:4×3
通过做此题,你想提醒大家注意什么?
3、你能想办法求出下面这个平行四边形的面积吗?
五、拓展提升
下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
1.4cm
2.5cm
通过做此题,你发现了什么?
六、课堂小结
说说本节课,你收获了什么?
七、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓ ↓ ↓
平行四边形的面积=底×高
S=a×h
=ah
=ah
《平行四边形的面积》教学设计13
教学目标:
1、经历平行四边形面积公式的推导过程,体验成功的快乐,形成数学的经验、
2、知道平行四边形的面积公式、
3、会求平行四边形的面积、
4、利用教师的情感特征调动学生学习的积极性和主动性、
教学重点:
1、平行四边形面积公式的推导过程、
2、应用平行四边形的面积公式进行计算、
教学难点:
平行四边形面积公式的推导过程、
教学关键:
转化前后平行四边形与长方形面积及各部分间的对应关系、
教学过程:
一、启动导入:
1、电脑出示长方形图形:
指出:图中一个方格代表1平方厘米,请你求出方格中长方形的面积、
指生口答
问:你是怎么做的?
②出示:
这还是长方形吗?你能求出它的面积吗?(生:18平方厘米、)
生小组内先交流一下,指生反馈
得出两种方法:(1)数格子法 (2)将它转化成一个长方形,再求出它的面积。师重点评讲第二种方法。
③出示: 这个图形,你会求它的面积吗?(生可能说:我把右面的正方形切割下来,移到左右,就变成了一个长方形、再根据长方形的面积公式长×宽就可以求出这个图形的面积、(电脑课件演示转化过程)、
2、刚才, 这两个图在求面积时有什么共同的地方?(都是把不规则图形转化成长方形,求出了它的面积)
把不规则图形转化成规则图形,把没学过面积计算的图形变成学过面积计算图形的过程,就叫做转化。
刚才,在转化的过程中,谁在变,谁不变?(形状在变,面积不变。)
3、(出示一个平行四边形)引入:这个平行四边形的面积你会求吗?今天我们就来研究平行四边形的面积。(板书课题)
二、主动探索:
1、引导探索:不规则的图形可以转化成长方形来求出它的面积。平行四边形能不能也用转化的思想求出它的面积呢?请大家以小组为单位合作转化,转化后讨论。
电脑出示:⑴请同学们拿出自已准备的平行四边形纸片,以四人小组为单位,想法转化成学过面积计算的图形求出平行四边形的面积、
转化后思考:
①转化成怎样的图形?你是如何转化的?(如何画线)
②通过转化你发现了什么?
③说明了什么?学生分四人小组讨论,教师点拨、
学生汇报。
学生可能出现的情况:
问:你是怎么剪开的?是随便剪的吗?(是沿高剪的)
生:我们把平行四边形沿高剪开,变成了长方形。转化的过程中,长方形的面积既没有增加,也没有减少,长方形的面积与平行四边形的面积相等。说明求出了长方形的面积,也就求出了平行四边形的面积。
小结:尽快我们采用了不同的`方法,都是把平行四边形转化为长方形。并且知道转化前后面积的大小没有变化。下面以四人小组为单位仔细观察转化前后平行四边形与平行四边形各部分间的对应关系,讨论推导出平行四边形的面积计算公式。
2、推导公式:
(1)请同学们对照转化前后两个图形各个部分之间的对应关系,以四人小组为单位,小组合作推导出平行四边形的面积计算公式、
四人小组讨论推导平行四边形的面积,教师点拨。
学生汇报:长方形是由平行四边形的面积转化而来的。转化前后面积的大小没有变化,所以长方形的面积等于平行四边形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积是长×宽,所以,平行四边形的面积=底×高。
(2)电脑课件演示平行四边形转化为长方形的过程。结合图重点讲解平行四边形面积公式的推导。
《平行四边形的面积》教学设计14
一、教学目标
1.结合具体情境,通过操作活动,经历推导平行四边形的面积计算公式并交流方法的过程。
2.理解和掌握平行四边形面积计算公式,会运用计算相关图形的面积并解决一切实际问题。
3.通过观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
二、教学重、难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。教学难点:平行四边形面积计算公式的推导。
三、教具学具:
自制长方形框架,平行四边形,小黑板四.教学过程
(一)情境导入
1.师:请同学们看老师手上的框架,这是什么图形?(长方形)长方形有什么特点呢?哪条是长?哪条是宽?
它的长是5厘米,宽是3厘米,它所围成的长方形面积是多少?
(板书:长方形的面积=长×宽)用字母表示S=ab
2.师:注意看,接下去老师要变魔术了哦!如果捏住这个长方形的一组对角,像这样往外拉(教师演示学生看),变成什么图形了?生:平行四边形。
师:平行四边形有什么特点?哪条是底?哪条是高?高有几条(无数条)
3.让学生拿出学具,感受一下长方形变成平行四边形的过程。 (板书:)
4.(学生观察主题图)提问:你们看到了哪些图形?
(长方形、三角形、平行四边形、圆形、梯形、正方形)
提问:在这么多的图形里,有哪些图形出现在了老师的小魔术里?
(长方形、平行四边形)提问:那这两个图形分别在哪里呢?
(两个大花坛)
5.(出示两个花坛)我们已经学会计算长方形的面积,如果要比较这两个花坛的大小,怎么办,谁有办法?(引导学生说可以计算平行四边形的面积)引导学生说出可以用数格子的方法。(板书:计算平行四边形面积的.方法)
师:好,这节课我们就来学习一下平行四边形的面积要怎么计算?(板书课题:平行四边形的面积)
(二)合作探索
1.用数方格的方法计算平行四边形面积。
⑴将课本翻到87页,不足一格的按半格算,数一数,这个长方形和平行四边形的面积由几个小格组成?(板书:数格子)(都是24格)
⑵同桌对子讨论,观察比较两个图形的关系,并完成表格,一个方格代表1㎡。提问:你发现了什么?平行四边形的底和长方形的长、平行四边形的高和长方形的宽它们有什么关系呢?
(生可能回答)生1:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等。
生2:它们的面积也相等。
生3:平行四边形的面积可以用底乘高来计算。
师:非常好。接下来我们就来验证一下平行四边形的面积计算公式是不是底乘高。
(板书:平行四边形的面积=底×高)
2.操作验证
⑴提问:不数方格,能用其它方法来证明它们面积相等吗?(一张平行四边形的纸,一把三角尺和一把剪刀)
⑵提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。(板书:割补法)
⑶对子两人一小组,商议如何通过画一画、剪一剪等方法来进行操作研究;两人合作操作。有困难的对子可以请老师帮忙;比一比哪一对同学能快速解决问题。
2
思考:a、什么改变了?
b、什么没有发生改变?
c、原平行四边形和拼出的长方形有什么联系?(出示关系图)⑷展示学生作品:不同的方法将平行四边形变成长方形。提问:观察拼出的长方形和原来的平行四边形,你发现了什么?(平行四边形的面积=底×高)
引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S=ah(边说边板书)
(三)巩固练习
1.出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。(板书:S=ah=6×4=24㎡)利用例题推出:h=S÷a a=S÷h
2.已知平行四边形的面积是16.8平方米,高是4米,底是多少米?16.8÷4=4.2(米)
一块平行四边形钢板,底是15米,高是底的1.2倍。这块钢板的面积是多少平方米?
15×1.2=18(米)15×18=270(平方米)
四、课堂小结
计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导出来的?
老师魔术中长方形和平行四边形的面积相等吗?请同学们看课本90页第八题,回去思考,我们下节课来进行讨论。
五、板书设计
平行四边形的面积计算平行四边形面积的方法:长方形的面积=长×宽1、数格子平行四边形的面积=底×高2、将平行四边变成长方形——割补法S:面积a:底h:高字母表示:S=ah例一:a=6m h=4m S?ah?6?4?24(m2)
《平行四边形的面积》教学设计15
教学内容:
人教版五年级上册教材P87~88例1及练习十九第1、2、3题。
教材分析:
《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面奠定基础,起到承上启下的作用。
学情分析:
学生虽然已经学习了长方形的面积计算方法和平行四边形的特征,但小学生的空间想象能力不够丰富,推导平行四边形面积计算公式有困难。因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成。
教学目标:
知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。
过程与方法:让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。
情感、态度与价值观:培养学生分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性,感受学习数学的乐趣。
教学重点:
探究平行四边形面积公式的推导过程,掌握平行四边形的面积的计算。
教学难点:
理解平行四边形的面积公式的推导过程。
教学方法:
迁移式、尝试、扶放式教学法
教学准备:
师:多媒体课件,练习纸。生:剪刀、直尺、平行四边形纸片若干个、练习本。
教学过程:
一、情境导入
1、谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(生:长方形和平行四边形。)
2、让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。
3、提问:你会算它们的面积吗?
生:我们以前学过长方形的面积计算,只要量出长和宽,用“长×宽”计算面积。(板书:长方形的面积=长×宽)
师:非常好!那平行四边形的面积怎样计算呢?
4、揭示课题:今天我们就来学习和研究平行四边形的面积的计算。(板书课题:平行四边形的面积)
二、互动新授
(一)利用方格,初步探究。
1。想一想:我们可以用什么方法来计算平行四边形的面积呢?回想一下,以前学习长方形和正方形面积的时候,用过什么方法?
生:我们以前学习长方形和正方形面积的时候,用的是数方格的方法。
出示教材第87页方格图以及平行四边形和长方形。
(引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算)
2。同桌交流方法并完成教材87页的表格。
3。汇报想法。谁愿意说说你数的方法?
4。根据填表的结果进行讨论:你发现了什么?
生:我发现平行四边形的底和长方形的.长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。
5。小结:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,它们的面积也相等。这是一种巧合吗?看来平行四边形和长方形存在着非常密切的联系。
提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)
6。引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?平行四边形的面积与什么有关呢?接下来我们一起探究。
(二)动手操作,深入探究
1。介绍材料,老师为每组准备了4个不同的平行四边形和学习卡,大家可以结合教材第88页平行四边形面积的推导过程,探究平行四边形的面积计算。
2。活动要求:
(1)画一画,剪一剪,拼一拼,把平行四边形转化成学过的什么图形。
(2)观察转化后的图形和原来的平行四边形,有什么发现?(记录在学习卡上)。
(3)尝试推导出平行四边形的面积公式。
比一比,那个小组做得又快又好。
3。汇报交流。
让各小组展示不同的剪拼方法并说出剪拼过程。(多让几个学生上台展示)老师把不同剪拼方法粘贴在黑板上。
质疑:你们为什么要沿高剪呢?
生:因为沿平行四边形的一条高剪下,会出现直角,再平移到另一边才可以拼成长方形。
4。课件演示剪拼过程。
师:同学们做得又快又好,下面再次欣赏课件演示剪拼过程。
运用生动形象的课件演示,介绍平行四边形的底和高,让学生再次体验平行四边形转化成长方形的过程,加深对图形转化的理解。
5。引导学生小组思考讨论:
(1)拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
(2)拼成的长方形的长和宽与原来平行四边形的底和高分别有什么关系?
(3)你能根据长方形的面积公式推导出平行四边形的面积公式吗?
学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。
6。引导学生利用长方形的面积公式推导出平行四边形的面积公式:因为长方形的面积=长×宽,所以平行四边形的面积=底×高(板书)
追问:要求平行四边形的面积必须知道什么条件?
学生得出结论:必须知道平行四边形的底和对应的高。
7、教学用字母表示。
师:翻开教材自学第88页倒数第二自然段的内容。
师:你学到了什么?
生:如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成S=ah(板书)
8。课件演示,加深理解。
9。小结:刚才同学们利用剪拼方法把平行四边形变成长方形,运用了一种很重要的数学思想方法——“转化”。这种方法在数学中运用很多,在后面学习三角形、梯形的面积也会用到,同学们表现真棒!学习了新知识我们就要运用它解决实际问题了,大家敢接受挑战吗?(生齐答:敢)请看题目。
(三)应用公式,解决问题。
出示教材第88页例1。
学生读题,理解题意;独立完成;教师板书。
三、巩固新知,拓展提升。
1、计算出下面每个平行四边形的面积。
4。快速填表。
5。比较下列平行四边形的面积。引导学生发现:等底等高的平行四边形的面积相等。
练习设计意图:练习设计由易到难,层层递进,题量虽然不多,但涵盖了这节课所有的知识点,具有一定的弹性,使不同的学生得到不同的发展,从而进一步内化了新知。
四、回顾总结
师:这节课你学会了什么,有哪些收获?
五、布置作业:教材第89页练习十九第1、2、3题。
板书设计:
平行四边形的面积
长方形的面积=长×宽S=ah
↑ ↑ ↑ =6×4
平行四边的面积=底×高=24(m2)
S=ah
【《平行四边形的面积》教学设计】相关文章:
平行四边形的面积教学设计12-09
人教版《平行四边形的面积》教学设计11-17
人教版平行四边形的面积的教学设计12-16
平行四边形的面积优秀教学设计12-08
人教版平行四边形的面积教学设计12-08
苏教版平行四边形的面积教学设计12-08
平行四边形的面积公式教学设计12-08
平行四边形的面积微课教学设计12-16
面积的变化教学设计02-23