[优选]《乘法分配律》教学设计
作为一名优秀的教育工作者,就不得不需要编写教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么什么样的教学设计才是好的呢?下面是小编整理的《乘法分配律》教学设计,欢迎阅读与收藏。
《乘法分配律》教学设计1
设计思路:
本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。
一、教学内容
义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。
二、教材内容分析:
《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要
三、学生情况分析:
今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。
四、教学目标
针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标.
知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。
过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。。
情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。
五、教学重点、难点
重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。
难点:难点是理解乘法分配律的意义及应用。
六、教学准备:交互式多媒体、课件ppt.(以下均为做课课件)
七、教法、学法:
(1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。
(2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。
本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。
八:教学过程:
(一)、谈话导入、激发兴趣。(课件出示图片ppt4)
1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)
设计意图:看我们中国的语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢
使学生带着问题,带着对算式的好奇心进入本科的`学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义
(二)、创设生活情境,引入新课。
谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。
(课件出示主题图)(课件出示图片ppt5)
3.提问:(出示ppt6)
(1)你从图中获得了哪些信息
(2)今天我们要解决的问题是什么
预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”
设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。
(三)、自主探索、合作交流。(课件出示ppt7)
一)初步感知
1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的
2.学生解答后汇报。
追问:还有不同的想法吗
板书:(4+2)×25 4×25+2×25
3.组织交流
(1)说说每道算式的意思
预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。
(2)比较最后的计算结果。(相同)
追问:可用等号连接吗写成一个算式。
板书:(4+2)×25 = 4×25+2×25
读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律。
观察,这道等式左边和右边有什么相同的地方和不同的地方
请跟你的同桌说说。全班汇报。
相同的地方:结果相同,每个算式都有3个数。
不同的地方:运算顺序不同。
设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性
(二)、猜想验证。(课件出示ppt9)
1.小组内写一写,算一算,举出这样的例子。
2.汇报交流。
3.引导学生总结概括。(提示:等式左右两边是怎样计算的)
预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;
而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。
(三)、同类推广,总结归纳。(出示ppt10、11)
1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的本子上写一写。
2.你是怎样验证的。
3.同桌互相验证。
4.用符号表示:这样的式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)
5.揭示课题(小结:出示ppt12)
我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。
6.统一用字母表示:(课件出示ppt13)
如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的式子吗
(a+b) ×c=a×c+b×c
总结规律:
(a+b) ×c=a×c+b×c
a×(b+c)=a×b+a×c
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。
设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。
1、既然左边=右边,那右边等于左边,谁来读一读。
2、从右往左看,这个式子有什么特征
3、乘法分配律可以从左边用到右边,也可以从右边用到左边。
设计意图:让学生明白:乘法分配律左右两边可以相互逆用。
(四)、巩固应用,拓展延伸。(出示课件ppt16)
1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
问题:说一说你的判断理由。
2.下面哪些算式运用了乘法分配律(出示课件ppt17)
117×3+117×7=117×(3+7) ( )
4×a+a×5=(4+5)×a ( )
24×(5+12)=24×17 ( )
36×(4×6)=36×6×4 ( )
3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)
4.观察下面的竖式,说一说在计算的过程中运用了
什么运算定律。出示课件ppt19
25×12=25×2+25×10
5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)
103×12 20×55
6、回顾、拓展
1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗
学生回答,师板书。(在原有算式上添上减号即可)
(4-2)×25 = 4×25-2×25
2、说说算式所表达的意思。
3、进一步完善乘法分配律。字母表示为:(a-b) ×c=a×c-b×c
[设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]
(五)、课堂小结
这节课你学会了什么请说一说。
板书设计乘法分配律
(4+2)×25 = 4×25+2×25
(a+b) ×c=a×c+b×c a×(b+c)=a×b+a×c
两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。
教学反思
乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。
在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。
《乘法分配律》教学设计2
教学目标:
1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教具:课件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。
生计算。
师:请选择第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选择的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:可以
板书:(72+28)×2=72×2+28×2
出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?
(生计算,汇报)
生1:我列的算式是32×64+18×64,结果是6400元。
师:有没有用不同的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。
师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎么办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的结果都是30。
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:现在我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果一定相等。
【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】
师:这么看来,同学们猜测的那个规律是真的存在,你能用自己的方式表示出你认为的规律吗?
生1:(我+你)×他=我×他+你×他,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。
生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。
生3:(A+B)×C=A×C+B×C
生4、(a+b)×c=a×b+a×c
生5、(○+□)×◎=○×◎+□×◎
师:同学们真了不起,通过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?
生:第三个用小写字母的那一个。
师:你为什么觉得这个好?
生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。
师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。
(通过读式子,完善语言表达)
【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,通过观察、比较和归纳,大胆用自己喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自己有意义的知识,用语言表达乘法分配律也就水到渠成】
三、巩固应用,内化提高
1、火眼金睛,判对错。
56×(19+28)=56×19+28
64×64+36×64=(64+36)×64
32×(3×7)=32×7+32×3
2、思维敏捷,连一连。(把结果相同的两个式子连起来)
①(42+25+33)×26①20×25+4×25
②36×15-26×15②(66+34)×66
③66×66+66×34③42×26+25×26+33×26
④38×99+38×1④(36-26)×15
⑤(20+4)×25⑤38×(99+1)
师:相等的式子我们都找到了,请你选择其中的一组计算出它们的结果。
生1、我算的是(20+4)×5=20×25+4×25,结果是600。
师:你是把两边的式子都计算了吗?
生1:没有,我是算的右边的那个式子。
师:你为什么没用左边的式子计算呢?
生1:右边的那个式子计算起来简单。
师:看来乘法分配律还可以用来简便计算,提高我们的计算速度。
生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。
师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?
生1:不是。
生2:是,就是把它给倒过来用的。
师:是的,这是乘法分配律的逆应用,也可以用来简化计算。
生3:我算的是36×15-26×15=(36-26)×15,结果是150,是通过右边的式子计算出来的,那样简便。
师:看了这个等式,你有什么想说的?
生:我们刚才做的都是带“+”的,可是这个是“-”。
师:看来我们的乘法分配律还有新的内涵呢。
补充板书:(a-b)×c=a×c-b×c
师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?
生4:我算了,结果是2600,算的是左边的那个式子。
师:看了它,你有没有想说的?
生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。
师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?
生:能。
3、合理选择,算一算。
312×12+188×12
101×87
(53+47)×23
【评析:练习题的设计综合性、层次性强,特别是第2题设计的非常巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律可以使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】
四、拓展延伸,引发思考。
这节课我们共同来研究了乘法分配律,除法有没有分配律呢?
板书:(a+b)÷c=a÷c+b÷c?
同学们可以课后用我们今天研究乘法分配律的方法进行验证,总结。
【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的`定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,通过让学生用两种不同的方法解决实际问题,在两个不同的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,让学生写出符合规律的式子,引导学生在研究讨论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维能力得到了发展。小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!
谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?
【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】
二、创设活动情境,在合作中探究
1.交流算法,初步感知
(课件出示例题情境图)
谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?
(1)学生的选择方法1:买5件夹克衫和5条裤子
一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师巡视。
[教师板书:(65+45)×5=65×5+45×5],让学生读一读。
(2)学生的选择方法2:买5件短袖衫和5条裤子
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
[教师板书:(32+45)×5=32×5+45×5]
启发:比较这两个等式,它们有什么相同的地方?
2.深入体验,丰富感知。
现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。
在得数相同的两个算式中间的□里画“=”
(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)
谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)
学生举例并组织交流。(比较这些等式是否具有相同的特点)
3.反思学习,揭示规律
提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]
小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)
对于乘法分配律,用字母来表示,感觉怎样——简洁、明了,这就是数学的美!
【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】
三、巩固内化知识,在实践中运用
谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!
1.大显身手
出示“想想做做”第1题,让学生在书上填一填。
师:第2题你是怎么想的?
小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]
2.生活应用
(“想想做做”第3题)
小结:说说两种方法的联系。
3.巧妙运用
(“想想做做”第4题)(同桌一人做一组,做在练习本上)
谈话:每组两道算式有什么联系?哪一题计算比较简便?
现在你知道上课开始时为什么B组同学算得快吗?
小结:乘法分配律可以使计算简便。
4.明辨是非
我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?
王小明这样计算:
(3+2)×(34+36)
=5×70
=350(人)
①观察一下,你赞同王小明的算法吗?为什么?
②要用乘法分配律,要有什么条件?
5.巧猜字谜
猜一猜,等号后边是三个什么字?
人×(1+2+3)=
6.大胆猜想
如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?
学生小组交流猜想。
谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!
教师组织、引导学生总结得出:
(a-b)×c=a×c-b×c
小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!
【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】
四、回忆梳理知识,在反思中总结
今天这节课,你有什么收获?
五、布置作业:“想想做做”第5题。
《乘法分配律》教学设计3
【学习目标】
学会用乘法分配律进行简便计算,并能用字母表示这一规律。
【学习过程】
一、板题示标
师:同学们,今天我们来学习乘法分配律(板书课题),那么这节课我们的学习目标是什么呢?请看:(投影出示学习目标);要达到这个目标,靠大家自学,你们有信心吗?老师相信:你们是最棒的! 请看自学指导。
二、自学指导(投影出示):
打开书26页例7,根据例7的问题在主题图中寻找信息。重点看黄色边框内的内容。
1、认真观察比较两种方法,计算结果相同,这两个算式之间有什么关系?
2、这种关系运用了什么定律?用文字和字母分别怎么表示?
(6分钟后比一比谁检测题做的最好。)
师:自学的时候,比一比,看谁看书最认真,坐姿最端正。下面,自学竞赛开始
三、先学:
(一)、看一看
学生认真看书,教师巡视,督促每个学生都在认真看书。
(二)、做一做
1、完成教材中第26页的“做一做”。三名学生板演,其余学生做在书上。
2、教师进行巡视了解情况,发现错例,进行二次备课。
四、后教
(一)、更正
让学生观察黑板上的题发现错误的可用不同颜色的'粉笔纠正。
(二)、讨论
1、观察第一道题,你认为做对的请举手,为什么?
2、观察第二道题,你认为做对的请举手,为什么?
(符合乘法的分配律,两个数的和与一个数相乘,可以先把他们与这个数分别相乘再相加,这叫乘法分配律。)用字母(a±b)×c=a×c±b×c (a、b、c为任意数)
3、观察第三道题,你认为做对的请举手,为什么?
(运用了乘法分配律的逆运算)
五、课堂小结
你能用最简练的语言表述出今天的收获吗?
六、练一练
1、把练习七第6题做在练习本上。
选作题:练习七第9题。
板书设计:
乘法分配律
两个数的和与一个数相乘,可以先把他们与这个数分别相乘再相加,这叫乘法分配律。
(a±b)×c=a×c±b×c (a、b、c为任意数)
《乘法分配律》教学设计4
知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)
10×37+10×63
10×(37+63)
(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
10×37+10×63=10×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的'规律。)
三、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)
(设计意图:学生用不同的方法列式计算,为探讨规律做准备。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?
5、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)
(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?
(a+b)×c=a×c+b×c
(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。
四、探索发展,应用规律
(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)
五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)
1、请大家根据运算定律在下面的_里填上适当的数。
(10+7)×6=______×6+______×6
8×(125+9)=8×______+8×______
7[]×48+7×52=______×(______+_______)
2、将得数相等的算式用线连起来。
3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?
六、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
《乘法分配律》教学设计5
—乘法分配律教学设计与反思
设计说明
当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。 教学设计
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。 教学目标
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表
达数学规律的意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一:创设情境导入
提问:长方形的面积怎样求?
指明回答
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)
学生动手操作
(课件出示两个长方形组合的动画)
二:自主探索,交流合作
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的.积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
三:实践运用,初步理解。
1、想想做做1
学生自主完成,组织交流。
第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是
12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)
2、想想做做2
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个
74,也就是74.
第四小题要和想想做做题1的第二小题做对比。
四:拓展延伸,内化新知
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小
学生反馈,引导说出可以重叠比较。学生动手实践
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。
想想做做题5
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。
问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对
乘法分配律延伸的理解与内化。
反思:
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。
《乘法分配律》教学设计6
教学内容
义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律
教材分析
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的`学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
学情分析
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
教学目标
1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
教学重点
理解乘法分配律的意义。
教学难点
发现与归纳乘法分配律。
教学准备
课件习题卡
教学过程
一、结合实事创设情景,引入新课
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?
3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?
二、合作交流,探索发现新知
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。
板书:乘法分配律
2、发现和归纳乘法分配律
(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结
同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?
四、分层练习,逐级达标
1、填一填:习题卡第一题
巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。
学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。
2、看一看:习题卡第二题
3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。
五、回顾课程,进行总结
同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?
板书设计
乘法分配律
(5+10)×24=5×24+10×24
(a+b)×c=a×c+b×c
25×(4+2)=25×4+25×2
a×(b+c)=a×b+a×c
习题卡
填一填
1、(32+25)×4=32×( )+25×( )
2、(64+12)×5=( )×5+( )×5
3、(7+6)×8=7868
4、(43+25)×2=
5、3×6+7×6=(+)
看一看
下面哪个算式是正确的?正确的画“√”,错误的画“×”
(19+28)×56=19×56+28
(7×3)×32=7×32+3×32
64×64+36×64=(64+36)×64
《乘法分配律》教学设计7
教学目标:
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。
2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、能够运用乘法的分配律进行简便计算。
重点、难点:
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
教学过程:
一、比赛激趣,提出猜想.
(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)
9×( 37+63) 9×37 + 9×63
(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×( 37+63) =9×37 + 9×63
(3)将学生的发现以他(她)的名字命名为“**猜想”。
【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
还有不一样的方法吗?谁来说说看?(生回答,师板书)
算式(28+22)×3 和28×3+22×3的每一步各表示什么?谁能说给大家听听?
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以( 35+25)×3=35× 3+25×3
师:再和前面的一组式子一起观察,
9×( 37+63)=9×37 + 9×63
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的.这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等,教案《《乘法分配律》教学设计》。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?
学生回报。
(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
齐声读两遍。
(4)对于乘法分配律,用字母来表示,感觉怎样。
引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。
三、加强应用、深化理解
1、瞻前顾后填一填。
(10+7)×6=□×6 + □× 6
8×(125+9)=8×□+ 8×□
7×48+7×52=□×(□ + □)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75) ( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,计算下列各题。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28 师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×4 10 ×4+6 10 ×4+ 6 × 4
5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9
3 ×25+7 ×25 3+7×25 (3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
四、总结:
1、回忆一下,这节课你学会了什么?
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。
《乘法分配律》教学设计8
一、教材依据
义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)
二、设计思想
“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。
在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。
三、教学目标:
1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;
2、理解和掌握乘法分配律并会用字母表示;
3、能够运用乘法分配律进行简便计算;
4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
四、教学重点:
引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。
五、教学难点:
乘法分配律的应用,进行一些简便计算。
六、教学准备
多媒体教学课件
七、教学过程
(一)情境导入,发现问题
昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?
课件出示:图片一共贴了多少块瓷砖?
(1)谁能估一估,贴了多少块瓷砖?
(2)谁来用自己的方法来验证估计是否正确?
还有不一样的方法吗?谁来说说看?(生口答,师板书)
板书:6×9+4×9(6+4)×9
=54+36=10×9
=90(块)=90(块)
(3)请同学们观察,看看有什么发现?(学生讨论,汇报)
(二)引导探究,发现规律
1、猜想、验证
(1)能不能利用你的发现举些例子来呢?
生:举例
(2)提出猜想:还有更多的算式吗?是不是所有的'算式都具有这一规律呢?
(学生小组合作尝试,进行探索)
2、概括、归纳
(1)说说你们刚才验证的情况。
生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。
生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。
生3……
生4……
(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?
问:我们能不能用一个式(字母)把乘法分配律表示出来呢?
生:(a+b)×c=a×c+b×c
(3)等号表示什么意思?(这个等式反过来也成立)
(三)加强应用、深化理解
我们发现了乘法分配律,它又有怎样的应用呢?
(课件分步出示练习)
1、填一填(课本49面练一练第一题)
2、请同桌同学合用研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
(1)学生讨论研究;
(2)汇报计算方法,重点说为什么这样算;
(3)小结:通过研究,应用乘法分配律可以使一些计算简便。
(四)巩固练习、解决问题
(课件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
2、下面这些题,能用简便方法计算吗?怎样计算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)课堂小结
1、说说今天我们研究了什么?
2、大家想一想,我们是怎样发现乘法分配律的呢?
3、乘法分配律有什么应用?
《乘法分配律》教学设计9
教学内容:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。教学重点:理解乘法分配律的特点。教学难点:乘法分配律的正确应用。教学过程:
一、复习回顾
(出示课件1)计算
25×4=
25×9×4=
18×25×4= 125×16=
75+25=
256×56+256×44=
师:请你说说25×9×4你是如何口算的?
最后一题,学生不会,师快速口算结果,形成悬念。
师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。
二、探究发现(出现课件2)
师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?
生:我发现有两个叔叔在贴瓷砖
生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。
师:你最想知道什么问题?
生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题)师:你能估计出工人叔叔一共贴了多少块瓷砖吗?生:我估计大约有100块瓷砖生:我估计大约有90块瓷砖。
师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)
师:谁来向大家介绍一下自己的做法?生:6×9+4×9(板书)
=54+36
=90分别算出正面和侧面贴的块数,再相加,就是贴的'总块数。生:(6+4)×9(板书)
= 10×9
=90(块)
因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。
师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?
生:我发现计算方法不同,但结果却是一样的。 6×9+4×9=
(6+4)×9(板书)
师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?
(学生举例,教师板书)
师:这几们同学举的例子符合要求吗?请在小组中验证一下。(小组汇报)
小组1:符合要求,因为每组中两个算式都是相等的。
小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。(板书用=连接算式)
师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。
小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。
小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配律。它是我们学习的关于乘法的第三个定律。
师:大家齐读一遍。
师:和同桌说一说自己对乘法分配律的理解。
师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。
(a+b)×c=a×c+b×c(出示课件4)师:这叫做乘法分配律(出示课件5)
三、巩固练习:
1、计算
(80+4)×25
34×72+34×28师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
2、判断正误
(25 + 7)×4 = 25 ×4 ×7×4(
)35×9 + 35 = 35×(9 + 1)
= 350—()
3、填一填
(12+40)×3=
× 3 +
×3
15×(40 + 8)= 15×
+ 15×
78×20+22×20=(
+
)×20
66×28 + 66×32 + 66×40
=(
+
+
)×
四、总结
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
《乘法分配律》教学设计10
乘法分配律
一、教学目标:
(一)知识目标:
使学生在解决实际问题的过程中发现并理解乘法分配律。
(二)智能目标:
使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
(三)情感目标
使学生能联系现实问题主动参与探索、发现和概括规律的学习尘埃,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点:在解决实际问题的过程中发现并理解乘法分配律
教学难点:自主发现规律,抽象归纳,并能用符号、语言或其他方式与同伴交流规律。
二、教法学法:启发式教学
三、教学准备:
多媒体课件投影仪主动参与,乐于探究
四、教学过程
(一)创设问题情境
五一就要举行艺术节的比赛了,为了这次艺术节,教师和同学们都花了很多的精力,这不,我们学校教舞蹈的老师正利用星期天,去为舞蹈组的小演员们挑选漂亮的演出服呢?(课件出示商店场景)
【设计意图】创设一个充满现实的问题情境,使学生认识到现实生活中蕴涵着大量的数学信息,并主动积极地带着自己的知识背景、活动经验和理解走进课堂。
(二)展开探索过程
1、初步感知
(1)提出要求:仔细观察,从图中你获得了哪些信息?
买这些些服装,叶老师一共要付多少元钱呢?你能列出综合算式吗?
(2)学生独立列式,教师巡视
(3)交流反馈:你是怎么想的,怎样列式
板书:65×5+45×5(65+45)×5
请生交流解题思路,并比较哪种解法更简便。
(4)列成等式
通过计算,我们发现这两种解法虽列式不同,但都能解决问题。那么我们在这两个算式之间用什么符号来表示它们的得数是相等的呢?
小结:虽然这两个算式样子不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。
2、类比展开
(1)提出类比问题:如果叶老师选择选择的是另两种服装,买的`数量都是6件、或8件的,你还能用两种方法来求一共要付多少元吗?
(2)要求:每一小组编一题,用两种方法列出综合算式,并计算出结果,比一比哪组完成得又快又好!
(3)学生小组合作完成,交流反馈,相机板书:
32×6+65×6(32+65)×6
32×8+65×8(32+65)×8
32×6+45×6(32+45)×6
32×8+45×8(32+45)×8
(4)观察算式,引导列成等式,仿照等式随意举例
像这样的情况,是偶然巧合还是有其中的规律呢?大家不妨再举几个例子,再算一算。
举例,小组交流,挑选几组板书。
【设计意图】从生活中的实际问题出发,在学生独立思考、探索的基础上引导有效的交流,在交流中相互启发,通过观察、类比列举使学生对乘法分配律有所初步感知,形成丰富的数学活动经验,而且也掌握了一学习数学的方法。
3、体验感悟
(1)观察这些算式,或小声地读一读这些算式,这中间隐藏着什么规律呢?学生有自己的语言描述发现的规律。
(2)修改算式,感悟规律
通过观察,同学们或多或少都发现了一些规律,现在老师给每个小组提供了一些算式,根据你刚才的观察,你觉得这些算式中,哪两个可以用等号连起来就把它们挑出来,如果有争议可以算一算来验证一下。
课件出示:
(3+4)×63×6+4×6
3×17+3×53×(17+5)
20×(5+13)20×5+5×13
(13+7)×413×4+7
(13+7)×413×4+7
交流反馈有哪几组等式。让生想办法修改那些不能组成等式的,使它们变成等式。
【设计意图】充分体现了学生学习的主体地位,学生通过解决问题,类比列举、观察感悟、反思纠错等多种学习活动,培养了学生的学习能力,生动活泼地建构起对数学富有个性理解的过程。
4、揭示规律
(1)游戏“交朋友”
课件出示:(80+20)×4,谁是它的好朋友?(80和20打着伞,一块去和4交朋友,4可最热情了,它和80握握手,又和20握握手,多公平啊,80和20高兴地把伞都丢掉了)
出示:6×(10+20),(A+100)×5,(42+45)×▲,请生帮它们交朋友。
(2)揭示规律
像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表
示??)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的和乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
任何事物都可以从正反两方面去看,你们反着读一读用字母表示的等式,你能给下面两个算式找到朋友吗?35×8+65×8 9×18+9×282
【设计意图】从数学的角度来看,数学要比生活更重要。数学毕竟不是生活经验的“照片”,而是对生活经验进行重组、加工,逐步抽象打手成数学模型,它反映的是事物之间的关系和规律,它来源于生活而又远远高于生活。所以,前面的教学环节是为了学生更好地理解和掌握数学知识,在学生有所感悟,但不能用规范的数学语言进行概括时,及时数学化,有效地引导学生小结规律,使教学目标得以顺利完成。
(三)巩固内化
1、根据乘法分配律,在__里填入合适的数
(1)、(15+23)×2=____×2+_____×2
(2)、(37+12)×16=37×____+12×____
(3)、___×___+___×___= ( 16+26)×8
(4)、(125+11)×8=____×____+____×_____
(5)、276×38+276×62=____×(___+___)
如果计算的话,(4)、(5)你会选择左边的算式还是右边的算式进行计算,为什么?
2、判断下面各题是否正确,把错误的改正过来
(1)2×15+4×15=(2+4)×15??????()
订正:
(2)5×(20+6)=5×20+6????????()
订正:
(3)8×23+8×27=8×23+27????????()
订正:
(4)9×(6×4)=9×6+9×4????????()
订正:
3、应用题
一块长方形的桌面,长68厘米,宽32厘米。周长是多少厘米?(用两种方法解答,并说说你喜欢哪种方法)
*4、用简便方法计算(任选一题)
①(125+9)×8 ②128×31-28×31 ③43×5+46×5+11×5
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
【设计意图】练习的设计不仅紧紧围绕教学重点,而且注重练习的层次和坡度。基本练习形式多样,达到了双基训练扎实的效果。由于刚刚学习了乘法分配律,为使学到的知识能更好地纳入到原有的已有知识体系里,必须进行一定量的、针对性强、有实效的基本练习。
(四)总结回顾
今天这节课,你有什么收获,从中你得到什么启发?
【设计意图】“收获”既有知识的习得,也有情感上的感受及所得,反思的效果很明显。
(五)课堂作业
六、说板书设计
乘法分配律
例:短袖衫裤子夹克衫乘法分配律:
32元45元65元两个数的和与一个数相乘,可以把这65×5+45×5=(65+45)×两个数分别和这个数相乘,再相加。=325+225=110×5
=550(元)=550(元)
其他购买方案:
32×6+65×6=(32+65)×6
32×8+65×8=(32+65)×8
32×6+45×6=(32+45)×6
32×8+45×8=(32+45)×8
〔a+b〕×c=a×c+b×c
《乘法分配律》教学反思教学乘法分配律之后,发现学生的学习效果很不理想,特别是乘法分配律的运用,正确率很低。针对这种情况,我想,在教学中应该注意以下几个问题:
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。教学中通过“朝三暮四”的故事解决“这只猴子20天要吃多少个栗子?”这一问题,结合具体的故事情景,得到了(3+4)×20=3×20+4×20这一结果。这时老师往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等
的?”这里不仅要从解题思路的角度理解(3+4)×20=3×20+4×20是相等的,还要从乘法的意义的角度理解,即左边表示7个20,右边也表示7个20,所以(3+4)×20=3×20+4×20。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88 ①竖式计
算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89 ①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等
《乘法分配律》教学设计11
教学目标:
1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重难点:
发现并理解乘法分配律。
教学准备:挂图、小黑板。
教学流程:
一、创设情境,导入新课。
师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。
看看买什么衣服好看呢。
二、自主探索,合作交流。
1.出示:买5件夹克衫和5条裤子,一共要付多少元?
师问你打算怎样算?
生口答师板书:
(65+45)×565×5+45×5
请学生分别说清两道算式的含义。
2.师问猜想一下,这两道算式的结果会怎样?
要验证我们的算式是否正确,应该用什么方法?
生计算,个别板演。
证明这两道算式的结果是相等的`。
中间应用“=”接连。
3.生读算式(65+45)×5=65×5+45×5
师问等号两边的算式有什么相同和不同?
生同桌说一说,并汇报。
4.这两道算式相等是一种巧合还是有规律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
师问中间可以用“=”来连接吗?
5.小组讨论:这三组等式左边有什么特点?
右边有什么特点?
生汇报。
6.师问你能写出具有这样规律的等式吗?
生独立写一写,个别板书。
7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?
生写一写,个别板演。
8.揭题:乘法分配律
(a+b)×c=a×c+b×c
9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。
三、巩固练习,拓展应用。
想想做做:
1.在口里填上合适的数,在○里填上运算符号。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
强调:乘法分配律,可以正着用,也可以反着用。
2.横着看,在得数相同的两个算式后面画“√”
(28+16)×728×7+16×7
15×39+45×39(15+45)×39
74×(20+1)74×20+74
40×50+50×9040×(50+90)
3.算一算,比一比,每组中哪一道题的计算比较简便。
(1)64×8+36×825×17+25×3
(64+36)×825×(17+3)
让学生体会乘法分配律可以使计算简便。
4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。
生独立完成并汇报。
5.你能根据下图列出两
道综合算式吗?
上面的两道算式能组成一个等式吗?
四、全课小结
师问今天你有什么收获?和你的小伙伴说一说。
五、课堂作业
《补充习题》第26页。
《乘法分配律》教学设计12
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。
2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一、创设情境,谈话导入
谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)
二、自主探究,合作交流
1、交流算法,初步感知。
提问:从图中你获得了哪些信息?
再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师板书,让学生读一读。
谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5。
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
启发:比较这两个等式,它们有什么相同的地方?
2、深入体验,丰富感知。
引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?
要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。
学生举例并组织交流。
3、揭示规律。
提问:像这样的等式,写得完吗?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]
三、实践运用,巩固内化
1、“想想做做”第1题。
谈话:下面我们利用乘法分配律解决一些简单的问题。
出示“想想做做”第1题,让学生在书上填一填。
学生完成后,用课件反馈。
2、“想想做做”第2题。
你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。
回答第2小题时,让学生说一说理由。
3、“想想做做”第3题。(略)
四、梳理知识,反思总结
提问:今天这节课,你有什么收获?有什么感受想对大家说?
五、布置作业
“想想做做”第4、5题。
[说明]
数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的.算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。
《乘法分配律》教学设计13
《乘法分配律的运用》教学设计及反思
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
(一)复习准备
1.口算:
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一
做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的`因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此
要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
《乘法分配律》教学设计14
【教学目标】
1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
2、能根据算式各自的特征,选择使用、灵活计算。
3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!
4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!
【教学重点】
深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。
【教学难点】
1、能根据算式各自的特征,选择使用、灵活计算。
2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的转化能力!
【教学过程】
环节
教师活动
学生活动
设计意图
一、回顾引入
1、我们昨天学了……,请写出依据(字母表达式)
2、看着这个字母表达式,你想说点什么?
1、学生一起回答省略部分
2、学生各自在自己草稿本上写出字母表达式
3、让学生充分表达!
以忆引练,为接下来的练习做知识铺垫准备!
二、开展练习
分别出示:
1、基础题
(1)选择题
(2)填空题
(3)用简便方法计算
1、口答选择题
2、笔写填空题
3、比赛方式完成简便计算
1、通过选择和填空两种题型,让学生进一步体会乘法分配律的.现实意义及其算式结构。
2、训练准确简便计算能力,也是巩固新课掌握的计算方法
小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。
2、提高题(计算各题,怎样简便就怎么算)。
1、先标出你认为能够简便计算的题
2、动笔计算,并验证自己的观察
养学生观察力、细心力、分析力、和计算灵活性。
小结:一看、二想、三算
3、拓展题(能快速算出下面各题吗?)。
用作选做题:做你会计算的题
训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要
小结:变看似不能简便计算为能够简便计算
三、全课总结
1、涵盖小结内容
2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。
《乘法分配律》教学设计15
教学目标:
1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2.培养学生简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁。
3.使学生在数学活动中获得成功的体验,进一步增强学习数学的兴趣和自信心。
教学过程:
一、创设情境
师(出示教材第54页的情景图):从图中你能获得哪些信息?“单价”一词是什么意思?
师:买5件夹克衫和5条裤子,一共要付多少元?你们能列综合算式独立解答吗?试试看。(教师巡视,了解学生是采用什么方法解答的,并请两名用不同方法解答的学生上台板演)
[设计意图:借助学生的生活经验,创设学生感兴趣的买衣服情境,激发学生的学习积极性和主动性。同时在学生原有知识的基础上,通过引导学生认真审题、仔细分析,自主探索解决问题的方法,自然生成了不同的解题思路和算法,为后续学习奠定了基础。]
二、深入探索
1.交流两种算法的实际意义。
(1)师:“(65+45)×5”谁会读?“65+45”算的是什么?这样的钱在实际生活中叫做――(一套)你能用图在黑板上贴出来表示一套吗?(指名一人上黑板贴模型图)
师:这样贴,能明显地看出是一套吗?谁能上来纠正?
师:“再乘5”是什么意思?谁上来贴出另外几套衣服?
师:想一想,这一题为什么能这样做呢?
师(小结):如果夹克衫和裤子的`件数不同,那就不能这样做。
[设计意图:利用摆模型衣服,巧妙地帮助学生理解算式各部分的含义,促进了形象思维和抽象思维的互助互补,为学生初步感知乘法分配律建立了清晰的表象,有效地拓展了学生思维的广度和深度。同时,让学生读算式并小结出由于两种衣服数量相同才能采用这种方法,都是为后面概括规律做好铺垫。]
(2)提问:“65×5+45×5”是什么意思?
2.建立等式,初步感知。
师:这两道算式算出的都是什么?算出的结果怎样?在数学上我们可以用什么符号来连接?〔板书:(65+45)×5=65×5+45×5)〕
师:谁能读一读这个等式?你们发现这个等式的两边有什么联系吗?
3.类比展开,体验感悟。
师:你们能模仿这个等式再举一个这样的例子吗?再算一算,两边的算式是不是相等?(指名举例,挑选几组等式板书)
师:刚才大家举出了这么多类似的例子,左右两边的算式都是相等的,看来这里面一定有内在的规律。
师(出示算式):读一读这些等式,左边的算式都有什么特点?再想一想,右边的算式与左边的算式有什么联系?(小组互相讨论一下)
[设计意图:学生对乘法分配律本质的理解,需要经历一个主动探索、体验感悟、发现规律的过程。在教师提供素材的基础上,让学生自己举出例子,追求素材的丰富性和多样性。在模写的过程中,学生是自己验证自己发现的规律,使学生的主体地位得以充分体现。通过让学生“读一读”,有效降低了概括的难度。学生在多次观察、比较、讨论的基础上总结规律,水到渠成。]
4.揭示规律,理解意义。
(1)师:两个数的和同第三个数相乘,等于这两个加数分别同第三个数相乘,再把所得的乘积相加,这就是乘法分配律。(板书课题:乘法分配律)
(2)师:“乘法”我们大家都懂,“律”就是规律,那“分配”二字作何解释呢?
师:括号外的数既要与第一个加数相乘,又要与第二个加数相乘,这就是“分配”。
(3)提问:如果用字母a、b、c表示这三个数,这个规律可以怎样写?[板书:(a+b)×c=a×c+b×c]
(4)师:这既然是一个等式,左边的算式和右边的算式相等,那么反过来看,右边的算式和左边的算式也应该怎么样?也就是说,这个规律反过来看可以吗?
(5)师(小结):通过刚才的研究,谁再来说一说,什么是乘法分配律?
[设计意图:通过对“分配”二字的分析,让学生更加深刻地理解了乘法分配律的意义,也体现了设计的精细和独到。同时,引导学生理解乘法分配律的可逆性,为后面的练习做好了充分的准备。]
三、巩固内化
1.做“想想做做”第1题。
(1)让学生独立完成前两题,并说说自己是怎样想的。(第2小题要让学生明确:在求两积之和的算式中,有相同的乘数,这个相同的乘数可以放在括号的外面)
(2)让学生完成后两题,并要求说说是怎样填、怎样想的。
2.做“想想做做”第2题。
(1)让学生独立完成,并交流是怎样想的。
(2)第3小题要提醒学生注意74×1可直接写成74,第4小题可以让学生再分别说说题中的两个式子分别和怎样的算式相等。
3.下面每组中两道题的计算结果相同吗?哪一题的计算比较简单?
(1)64×8+36×8 (2)12×30+12×5
(64+36)×8 12×(30+5)
师:看来,运用乘法分配律还能进行简便计算,这是我们下节课将要进一步研究的内容。
[设计意图:合理地安排练习,体现了教学的扎实,并让学生初步感知了乘法分配律对于计算的简便,同时激发了学生对后续学习的兴趣。]
四、总结提升
【《乘法分配律》教学设计】相关文章:
乘法的分配律教学设计03-17
《乘法分配律》教学设计05-19
乘法分配律教学设计优秀03-22
乘法分配律教学设计(15篇)01-17
乘法分配律教学设计15篇12-22
乘法分配律教学设计通用15篇01-17
乘法分配律教学设计(集锦15篇)03-07
乘法分配律教学设计集合15篇03-31
乘法分配律教学设计(集合15篇)03-31