- 相关推荐
高中函数教案
作为一名教学工作者,有必要进行细致的教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?以下是小编为大家整理的高中函数教案,欢迎阅读与收藏。
高中函数教案1
我本节课说课的内容是高中数学第一册第二章第六节“指数函数”的第一课时——指数函数的定义,图像及性质。我将尝试运用新课标的理念指导本节课的教学。新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。我将以此为基础从教材分析,教学目标分析,教法学法分析和教学过程分析这几个方面加以说明。
一、教材分析
1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的`图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。
二、教学目标分析
基于对教材的理解和分析,我制定了以下的教学目标
1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用
2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力
3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。
三、教法学法分析
1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。
2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。
3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。
高中函数教案2
教学目标
知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。
能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。
德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。
教学重点:函数单调性的有关概念的理解
教学难点:利用函数单调性的概念判断或证明函数单调性
教具:多媒体课件、实物投影仪
教学过程:
一、创设情境,导入课题
[引例1]如图为20xx年黄石市元旦24小时内的气温变化图.观察这张气温变化图:
问题1:气温随时间的增大如何变化?
问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征?
[引例2]观察二次函数
的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和y值之间的变化规律。
结论:
(1)y轴左侧:逐渐下降;y轴右侧:逐渐上升;
(2)左侧y随x的增大而减小;右侧y随x的增大而增大。
上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。
二、给出定义,剖析概念
①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的'值
②单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。
注意:
(1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。当x1 f(x2)y随x增大而减小。几何解释:递增函数图象从左到右逐渐上升;递减函数图象从左到右逐渐下降。
(2)函数单调性是针对某一个区间而言的,是一个局部性质。
判断1:有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。
判断2:定义在R上的函数f (x)满足f (2)> f(1),则函数f (x)在R上是增函数。
函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。
训练:画出下列函数图像,并写出单调区间:
三、范例讲解,运用概念
具有任意性
例1:如图,是定义在闭区间[-5,5]上的函数出函数的单调区间,以及在每一单调区间上,函数的图象,根据图象说是增函数还减
注意:
(1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。
(2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。
例2:判断函数f (x) =3x+2在R上是增函数还是减函数?并证明你的结论。
分析证明中体现函数单调性的定义。
利用定义证明函数单调性的步骤。
高中函数教案3
一、教材分析:
本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》 的第一节,是学生在已掌握了一些基本函数的图象及其画法的基础上,进一步研究三角函数图象的画法.为今后学习正弦型函数 y=Asin (ωx+φ)的图象及运用数形结合思想研究正、余弦函数的性质打下坚实的知识基础.因此,本节课的内容是至关重要的,它对知识的掌握起到了承上启下的作用.
二、学情分析:
在初中学生已经学习过三步作图法(列表,描点、连线)——“描点作图”法,对于函数y=sinx,当x取值时,y的值大都是近似值,加之作图上的误差,很难认识新函数y=sinx的图象的真实面貌。因为在前面已经学习过三角函数线,这就为用几何法作图提供了基础。动手作出函数y=sinx和y=cosx的图象,学生不会感到困难。
三、教学目标:
依据教学大纲的要求,制订如下三维教学目标:
知识目标是:1.理解几何法作图原理(难点);
2.掌握五点法作图(重点);
3.了解三角函数图象的变换作图.
能力目标是:通过识记正、余弦曲线的形状特征,培养学生分析问题、
解决问题的能力;强化学生"数形结合"的数学思想.
发展目标是:教给学生灵活的思维方法,培养学生的学习兴趣和勇于
探索、勇于创新的精神,提高综合素质.
四、设计理念:
教无定法,贵在得法.诱思探究学科教学论认为:在教学思想上是启发式,在教学过程上是探究式,在教学价值上是发展式。德国教育学家第斯多惠也曾说过:教学的艺术不在于传授的本领,而在于激励、唤醒、鼓舞.为了充分调动学生学习的积极性和激发学生的参与、探究和体验的欲望,让他们既动脑又动手,充分让学生参与教学活动。同时利用多媒体电教手段提高学生的学习兴趣.采用启发、引导和学生探究、实践、体验相结合的教学方法;教给学生“多动手、勤动脑、敢猜想、善发现、重体验、促发展”的学习方法.体现“教师是主导,学生是主体”的教学原则.使学生不但“学会”而且“会学”,并逐步感受到数学的美,产生成就感,从而极大地提高对数学的学习兴趣.也只有这样做,才能适应素质教育下培养“创新型”人才的需要.
五、教学程序:
本节课的教学过程设计,主要是从“三性”即“课堂流程的可操作性,知识目标的可接受性,学生主动学习的积极性”考虑的,对整个教学过程作如下安排:
教学程序图如下:
第一部分:导入.先复习以前学过的函数图象的作法——描点法,再让学生观察波动图象演示仪,激起学生的兴趣.指出这种形状的曲线就是今天要研究的正、余弦函数的图象.如何作出该曲线呢?
以设问和探索的方式导入新课,创设情境,激发思维,让学生带着问题,有目的地参与下列教学活动.
第二部分:几何法作图.引导学生在单位圆中作出特殊角的三角函数线,并进行平移,描点作图.先作出 y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,再依据诱导公式一平移图象得出 y=sinx,x∈R的图象.同法得出 y=cosx,x∈R的图象.
第三部分:多媒体展示.教师利用多媒体展示用Flash动画制作的>课件,规范作图过程和步骤,统一认识y=sinx(x∈[0,2π])和y=cosx(x∈[0,2π]的图象,在此提醒学生在直角坐标系中,横、纵坐标轴的长度单位必须一致。否则画出的图象不是正弦函数的真实面貌。
第四部分:“五点法”作图.曲线形成后,让学生观察图象的形状特征,分析讨论,提炼出五个关键点,归纳出“五点法”作图步骤.
第五部分:总结.让学生自己总结本节课的重点、难点和学习目标,教师再补充.这样做,会检测出学生听课、分析、思考和掌握知识的情况,对本节课的教学起到画龙点睛的作用.
如此设计,联系了新旧知识,体现了从特殊到一般,再由一般到特殊的认知规律.在这种螺旋式上升的过程中,学生将通过自己的亲自动手实践,不仅学到本节课的知识,而且还将提高思维水平和认知能力.同时也体现了"教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展"的教学思想.同时在教学过程中配以多媒体>课件的展示,图文并茂,简洁明快,充分调动学生的各个感官,使学生学的生动,学的有趣,增大课堂容量,提高课堂效率.
为了突破几何法作图这个难点,制作了多媒体>课件,将 y=sinx,x∈R
和 y=cos x,x∈R图象的作法分解为三个问题来解决,降低了难度.通过展示>课件,生动形象地再现三角函数线的平移和曲线形成过程.使原本枯燥地知识变得生动有趣,激发学生的兴趣,调动学生的积极性(通过教学也的确是这样的').及时让学生跟着演示作图,提高学生的动手能力、模仿能力、创造能力.直观的动画,不仅使学生愉快地接受新知识,而且将激发学生的创造性思维和想象力,使学生充分发挥其思维潜能,拓展思维空间.
用“三步曲”来突出“五点法”作图这个重点.第一步设疑:“几何法作图.由于取点个越多,画出的图象也就比较精确,但也较为麻烦.在精确度要求不高的前提下,能否少定一些点,作出其简图呢?”问题的提出可以立刻抓住学生的好奇心,激起学生强烈的求知欲.第二步引导:让学生观察正弦函数 y=sinx,x∈[0,2π]和余弦函数y= cosx,x∈[0,2π]的图象,启发哪些点对决定图象的形状起着关键的作用呢?引导学生寻找出五个关键点.体现教师的主导作用;第三步小结:让学生分组讨论,互相补充,归纳出五点法作图步骤.教师对学生讨论的情况作出评价并指出作图应注意的问题,然后小结:“五点法”可以比较简捷地作出正弦、余弦函数的草图,对于以后研究正弦、余弦函数的性质将起到重要的作用.这样设计体现了“多动手、勤动脑、敢猜想、善发现”的学习方法,使学生真正成为教学的主体.
应用:画出下列函数的简图:
(1)y=1+sinx x∈[0,2π];
(2)y=-cosx x∈[0,2π].
解:(1)按五个关键点列表:
利用正弦函数的性质描点画图(如下图).
(2)按五个关键点列表:利用余弦函数的性质描点作图(如下图).
反馈练习:
1.在同一坐标系中用五点法分别画出函数y=sinx,x∈[0,2π]和y=cosx,x[- , ]的简图.通过观察两条曲线,后者经过怎样平行移动就可以得到前者?
2.观察正弦函数和余弦函数,写出满足下列条件的x的区间:
(1)sinx>0 (2)sinx<0 (3)cosx>0 (4)cosx<0
(例题、练习都用>课件展示)
本节例题仍选用教材上的例题,但解答除“五点法”之外,又引导学生利用函数图象的平移对称变换来作图.通过一题多解,可帮助学生加深对知识的认知程度,培养灵活的思维方式.学会遇到新问题时,善于调动所学过的旧知识,运用新旧知识间的联系,增强分析问题和解决问题的能力.
反馈练习设计层次分明:练习1为巩固基础知识型,对课堂内容知识的再认识(五点作图及图象变换);练习2为提高能力型,是对正(余)弦函数图象的灵活运用,由易到难,体现因材施教重效果,循序渐进促发展的教学理念.
最后师生共同总结,强化数形结合的数学思想,使学生的理论达到发展和升华,能力达到提高,并为相关学科的学习做好铺垫,提高综合素质.
六、板书设计:(略)
七、布置作业:(略)
高中函数教案4
教学准备
1.教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依
赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示函数的定义域;
3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.
教学重点/难点
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学用具
多媒体
4.标签
函数及其表示
教学过程
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.
3、分析、归纳以上三个实例,它们有什么共同点;
4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).
注意:
①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.
师:归纳总结
(三)质疑答辩,排难解惑,发展思维。
1、如何求函数的定义域
例1:已知函数f(x)=+
(1)求函数的定义域;
(2)求f(-3),f()的值;
(3)当a>0时,求f(a),f(a-1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的.集合,函数的定义域、值域要写成集合或区间的形式.
例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.
分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.
所以s==(40-x)x(0<x<40)
引导学生小结几类函数的定义域:
(1)如果f(x)是整式,那么函数的定义域是实数集R.
2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.
(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.
(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数y=x相等?
分析:
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
解:
课本P18例2
(四)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.
(五)设置问题,留下悬念
1、课本P24习题1.2(A组)第1—7题(B组)第1题
2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.
课堂小结
高中函数教案5
一、教学目标
1、 知识与技能
(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、 过程与方法
通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、 情感态度与价值观
通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
二、教学重难点
重点: 感受周期现象的存在,会判断是否为周期现象。
难点: 周期函数概念的理解,以及简单的应用。
三、教学工具
投影仪
四、教学过程
【创设情境,揭示课题】
同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)
【探究新知】
1。我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)
(板书:一、我们生活中的周期现象)
2。那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:
①如何理解“散点图”?
②图1—1中横坐标和纵坐标分别表示什么?
③如何理解图1—1中的“H/m”和“t/h”?
④对于周期函数的定义,你的理解是怎样?
以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。
(板书:二、周期函数的概念)
3。[展示投影]练习:
(1) 已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。
求f(x+2T) ,f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。
(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=20xx,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=20xx
(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(—1+3)=f(—1)=—f(1)=—2
【巩固深化,发展思维】
1。请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。
2。例题讲评
例1。地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数
y=f(t)是不是周期函数?
例2。图1—4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的.距离y也是θ的周期函数。
例3。图1—5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。
3。小组课堂作业
(1) 课本P6的思考与交流
(2) (回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业
1。作业:习题1。1第1,2,3题。
2。多观察一些日常生活中的周期现象的例子,进一步理解它的特点。
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
1。作业:习题1。1第1,2,3题。
2。多观察一些日常生活中的周期现象的例子,进一步理解它的特点。
高中函数教案6
自读要求:
1、理解“记忆所蕴涵着的真谛”及“门槛”的象征意义。
2、体会两篇散文诗中所饱含的作者的思想感情,品味隽永的富有哲理的语言。
3、学习比喻、象征等手法的运用,认知散文诗的基本特点,初步学会对散文诗的欣赏。
学习重点:
从品味语言入手,通过两首散文诗的对比阅读,归纳散文诗的基本特点,进而欣赏两首散文诗的语言美、形式美、意境美。
◆ 自读程序
记忆
一、导语设计
前苏联作家高尔基的《海燕》运用象征的手法,使人们在鸟儿(海燕、海鸥、海鸭、企鹅……)“叽叽喳喳”的叫喊声中听出了革命先驱对暴风雨的渴望,看到了革命勇士搏击长空的雄姿,文章具有散文的形式美,更具有诗歌的意境美。这种诗歌散文化、散文诗歌化的文学体裁,人们称之为散文诗。今天我们再阅读两篇散文诗,了解体会这种文体。
二、整体感知——理解,感受结构美
首先明确本文是一篇散文诗,它具有诗一样优美的语言,优美的意境;同时又兼具散文的形散神聚的特点。
1,学生快速默读《记忆》,根据文章的内容,将其划分一下层次,理出作者的写作思路。
明确:
第一部分:1—7自然段,引出记忆的话题。以文学家的笔墨来表现记忆的社会本质。
第二部分:8—14自然段,谈到记忆,既涉及话题,又脱离话题。描述有关记忆的种种现象,进一步探讨记忆的社会本质。
第三部分:15—24自然段,用比喻性的说法正面回答什么是记忆。
第四部分:25—31自然段,描写各种人对待记忆的态度,或者说记忆在各种人身上的表现。
综合以上,本文围绕“记忆”展开话题,但却始终没有明确点出记忆到底是什么,。可见记忆不过是作者思想感情赖以表达的凭借,作者真正想表达的是对正义、对高尚情操的歌颂,对恶势力、对卑下行为的批判,但这写作意图藏而不露。
2,论“记忆所蕴涵着的真谛”。学生自由发言,回答文中“记忆”究竟指什么?进而初步了解作者所表达的观点态度。
明确:本文从记忆这一角度入手,对纷繁的社会现象和人们的种种品行作了概括而生动的描写,表达了对真善美的歌颂,对假恶丑的批判。从根本上说,这里的“记忆”,是广大人民心中判断是非曲直的客观尺度。
三、揣摩剖析——悟读,领悟意境美
1,理解“记忆嘛,没有重量……又可以使另一个人的灵魂贬值到零以下”这段话的含义。
明确:
“没有重量”——过去犯了错误,而又没有正确对待,那么犯错误的记忆就可以压得你匍匐在地;由于你刻苦学习从而取得了学习或工作的进步,学或工作进步的记忆就可以鼓舞你在理想的空间里飞翔。
“没有体积”——襟怀坦荡,光明磊落的做事的记忆,可以让人去拥抱整个世界;反之以小心眼处事,那么你的世界会很狭小。
“没有色彩”——做过的有损于社会的事情的记忆,就可以使人的心灵变得苍白幽暗;而对人民,对社会做出贡献的记忆,可以使人的内心世界绚丽辉煌。
“没有标价”——对人民对社会做出巨大贡献的的.记忆,可以让一个人生命价值上升到崇高境界,而做出严重危害社会危害人民的记忆,则可以是一个人的灵魂贬值到零以下。
1,轻声阅读“记忆没有体积……”这部分,讨论记忆对人有哪些影响。学生自由发言,回答作者从人生的哪些方面对人类品性作了剖析?你还能列举出哪些方面?
2,默读两个传说,轻读“嗯,只记得一己忧患的,是庸人。……才是勇士,真正的勇士!”讨论:两个传说表达了作者的什么观点?后面的议论表达了作者什么样的爱憎情感?
3,综合以上两大段,讨论:你体会到了作者什么样的心灵境界?
四、鉴别赏析——品读,欣赏形式美
1,声情并茂阅读“……而你,朋友,却执拗地望着我……他就永不会从后人的记忆中泯灭”。讨论:这一段语言有何特色?运用了哪些表达方式?通过哪些表现手法表达情感?
2,由此段推及全文,讨论语言、结构形式、体裁有何特色,从而掌握散文诗的一般特点。
五、迁移运用——练读,体验鉴赏美
1,自读《门槛》,揣摩“门槛”的象征意
2,讨论文中“俄罗斯的姑娘”具有怎样的性格特征。
3,比较《记忆》与《门槛》在语言、取材、表现手法、意境上的异同。
◆自读点拨
1、多方面的美感在《记忆》中的体现。
①情操美:见“自读程序”三。
②结构美:全文采用了层进式与错综分承式相结合的开放性创新结构。对“人生价值”这一永恒的话题,以一老者向年轻人谈话的形式,娓娓而谈,步步推进,赋予了有形的篇章以无限的联想空间。
③章法美:成功地运用了美学中“和谐”与“奇异”的原理,采用的是参照系方法。在关于“记忆真谛”方面,采用虚实参照,表现出奇异。
④语言美:化虚为实,变抽象说理为形象思考,极具感染力,不仅具有视觉美和听觉美,更具有灵觉美(使读者心灵受到感动)。形式上既有诗歌视觉整齐,听觉爽朗,富有气势的特点,又有散文“形散神聚”、意象广博、文化价值内涵丰富的特征,形象、生动、精练、深邃、隽永,富有哲理。
⑤意境美:文中化虚为实,又因实悟虚,以“记忆”作为审视“人生真谛”的载体,进行多层面、多视角的价值评判,从而构成了开阔的、积极向上的多视角意象和多层面意境。
2、强烈感情在《记忆》中的表现。
对记忆真谛揭示的全过程,鲜明地表现了作者的爱憎。首先是对“记忆”的价值评判中,四句名言,作者从忘却(记忆的反面)的角度表达了对忘恩负义和背叛的坚决否定。接着,在描述“记忆”时,以“重量”“体积”“色彩”“标价”为突破口,对理想远大、胸怀?宽阔、心灵绚丽、价值崇高的人生予以了充分的肯定;同时对胸无大志、心胸狭隘、心灵幽暗、价值低下的人生给予了彻底的批判。随后的设喻更是对勇于奉献精神的高度赞美。两个传说对流芳千古与遗臭万年的人生态度十分鲜明,加上反面的议论,使作者对庸人、叛徒、蠢货、懦夫的愤慨,和对智者、勇士的颂扬得到充分的体现,作者的感情也达到了高潮。
3、《记忆》与《门槛》在语言、取材、表现手法、情感、意境上有许多异同点 。
◆自读训练
课外阅读一篇散文诗,说说散文诗这种文体的一些特征。
高中函数教案7
一、教学目标
【知识与技能】
理解函数的概念,能对具体函数指出定义域、对应法则、值域。
【过程与方法】
通过对函数的学习,进一步体会集合与对应的数学思想方法。
【情感、态度与价值观】
在探索中感受到成功的喜悦,提高学习数学的兴趣。
二、教学重难点
【重点】函数的概念。
【难点】从具体实例中抽象出函数概念。
三、教学过程
(一)导入新课
带领学生复习初中阶段函数的概念,并举例说明,从而引出高中阶段对函数的学习。
(二)讲解新知
利用多媒体展示上一节的实例,例如:
(1)加油站储油罐的'储油量和高度的关系;
(2)高速公路总里程与年份的关系。引导学生分析归纳以上两个实例,变量分别是谁、变量的范围是什么、变量之间存在的关系是什么、这些例子有什么共同特点。
高中函数教案8
教材:已知三角函数值求角(反正弦,反余弦函数)
目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。
过程:
一、简单理解反正弦,反余弦函数的意义。
由
1在R上无反函数。
2在 上, x与y是一一对应的,且区间 比较简单
在 上, 的反函数称作反正弦函数,
记作 ,(奇函数)。
同理,由
在 上, 的反函数称作反余弦函数,
记作
二、已知三角函数求角
首先应弄清:已知角求三角函数值是单值的。
已知三角函数值求角是多值的。
例一、1、已知 ,求x
解: 在 上正弦函数是单调递增的,且符合条件的角只有一个
(即 )
2、已知
解: , 是第一或第二象限角。
即( )。
3、已知
解: x是第三或第四象限角。
(即 或 )
这里用到 是奇函数。
例二、1、已知 ,求
解:在 上余弦函数 是单调递减的,
且符合条件的角只有一个
2、已知 ,且 ,求x的值。
解: , x是第二或第三象限角。
3、已知 ,求x的`值。
解:由上题: 。
介绍:∵
上题
例三、(见课本P74-P75)略。
三、小结:求角的多值性
法则:1、先决定角的象限。
2、如果函数值是正值,则先求出对应的锐角x;
如果函数值是负值,则先求出与其绝对值对应的锐角x,
3、由诱导公式,求出符合条件的其它象限的角。
四、作业:
P76-77 练习 3
习题4.11 1,2,3,4中有关部分。
高中函数教案9
一、教学目标:
了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.
二、教学重点:
利用导数判断一个函数在其定义区间内的单调性.
教学难点:判断复合函数的.单调区间及应用;利用导数的符号判断函数的单调性.
三、教学过程
(一)复习引入
1.增函数、减函数的定义
一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
2.函数的单调性
如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.
在单调区间上增函数的图象是上升的,减函数的图象是下降的.
例1讨论函数y=x2-4x+3的单调性.
解:取x1<x2,x1、x2∈R,取值
f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差
=(x1-x2)(x1+x2-4)变形
当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号
∴y=f(x)在(-∞, 2)单调递减.判断
当2<x1<x2时,x1+x2-4>0,f(x1)<f(x2),
∴y=f(x)在(2,+∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2,+∞)单调递增。
能否利用导数的符号来判断函数单调性?
高中函数教案10
一、教学内容
本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。
二、教学目标
1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。
2、能够进行含有30°、45°、60°角的`三角函数值的计算。
3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。
三、过程与方法
通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富,教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.
四、教学重点和难点
重点:进行含有30°、45°、60°角的三角函数值的计算
难点:记住30°、45°、60°角的三角函数值
五、教学准备
教师准备
预先准备教材、教参以及多媒体课件
学生准备
教材、同步练习册、作业本、草稿纸、作图工具等
六、教学步骤
教学流程设计
教师指导学生活动
1。新章节开场白。 1。进入学习状态。
2。进行教学。 2。配合学习。
3。总结和指导学生练习。 3记录相关内容,完成练习。
教学过程设计
1、从学生原有的认知结构提出问题
2、师生共同研究形成概念
3、随堂练习
4、小结
5、作业
板书设计
1、叙述三角函数的意义
2、30°、45°、60°角的三角函数值
3、例题
七、课后反思
本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。
高中函数教案11
教学目标
1.知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。
2.过程与方法
经历探索一次函数的应用问题,发展抽象思维。
3.情感、态度与价值观
培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值。
重、难点与关键
1.重点:一次函数的应用。
2.难点:一次函数的应用。
3.关键:从数形结合分析思路入手,提升应用思维。
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。
教学过程
一、范例点击,应用所学
例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的.函数关系式,并画出函数图象。
y=
例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨。B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨。y与x的关系式为:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂,发展潜能
由学生自我本节课的表现。
四、布置作业,专题突破
课本P120习题第9,10,11题。
板书设计
高中函数教案12
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高中函数教案13
一、说教材
《数学广角——集合》是人教版新课标数学三年级上册第九单元的知识,涉及了学生在生活和学习中经常遇到的问题:求两个集合的并集或交集的元素个数。(集合是比较系统、抽象的数学思想方法,也是数学中最基本的思想。)
本节课教材例1在学生积累了较丰富的学习生活经验的基础上借助学生熟悉的题材,向学生渗透集合的有关思想,使学生理解用直观图(集合圈)表示“重复现象”的方法,了解直观图(集合圈)各部分的意义,特别是重复部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。这样安排不仅可以提高学生学习的兴趣,激发学生的好奇心,而且还让学生体会到数学知识与生活的密切关联,逐渐学会从数学的角度看待身边的事物。
二、说学情
三年级学生从一年级开始学习数学时就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。例如在数数时,把1个人、2朵花、3枝铅笔用一条封闭的曲线圈起来表示,这样表示出的数学概念更直观、形象;而且在以后学习的平面图形之间的关系都用到了集合的思想,如把一堆图形按照一定的标准分类,这种分类思想就是集合理论的基础。但这些都只是单独的一个集合圈,学生不一定从集合的角度来思考并解决问题。
三、说目标
在设计本节课的教学时,以新课程理念为指导,将数学知识与学生实际生活有机结合,通过预学提示、自主探究、合作交流、操作实践等方式让学生经历数学知识生成的过程,从而达到感悟知识的目标。
基于以上认识,本节课在把握教材意图的基础上,目标定位如下:
1、通过预学观察图表、自主探究和合作交流等活动,让学生经历解决问题的过程,了解简单的集合知识,初步感受集合的意义,获得数学学习的体验。
2、使学生通过理解用直观图(维恩图)表示“重复现象”的方法,学会借助直观图(维恩图)运用集合的思想方法来解决较简单的实际问题,从而感受到数学与生活之间的相互联系。
3、通过课堂教学活动,让学生体验数学的价值,培养学生合作学习的意识和学习的兴趣,提高学生的观察能力、思考能力、创新能力、评价说理能力。
四、说重难点
本节课的重点是让学生感知集合的思想,并能初步运用集合的思想解决简单的实际问题;难点是对重复部分的理解。
五、说设计
1、把自主探究与有意义的接受学习有机结合。
学生对于“重复的人数要减去”是有经验的,因此在充分尊重学生经验认知的'基础上,放手让学生先自主探究,独立完成,再汇报交流。配合学生汇报,利用多媒体课件出示维恩图,运用讲授法引导学生认识并理解维恩图,并通过直观演示将两个集合圈合并的过程,引导学生讨论发现“集合中的元素是不能重复出现的”,体会集合元素的互异性;“集合元素的顺序可以不同”,体会集合元素的无序性。并让学生想一想说一说图中每一部分所表示的含义,尤其是“两项都参加的和参加这两项比赛的”,体会交集和并集的含义。
2、放手学生,让学生体会与交、并有关的计算。
学生在列式解答时,根据连线或维恩图,会列出多种方法。放手让学生尝试解决,并充分展示学生的方法,同时给予充分肯定。让学生结合维恩图体会各个算式所表示的含义,体会求“两个集合并集的元素个数”就是要将两个集合的元素个数相加后减去其交集的元素个数。突出基本的方法,加深学生对与交、并有关计算的体会和对集合知识的理解。
3、关注“冲突”,激发学生的探究欲望和兴趣。
提出需要解决的问题“参加这两项比赛的共有多少人?”后,学生的不同答案有可能引发“冲突”。抓住这一“冲突”,追问“你能确定有17人吗?”、“你能证明为什么不是17人吗?”,以此激发学生探究的欲望,让学生积极主动的投入解决问题的活动中去,用个性化的思考和处理问题的方式解决问题,为他们自主构建知识的意义提供保障。
4、培养学生收集、整理信息的意识和能力。
本着从实践中来到实践中去的原则,课堂上通过学生生活实际介绍了用维恩图表示集合及其交、并的方法,让学生亲身感知集合的思想,体验知识生成的过程,在过程中体验集合的思想,在过程中感悟重复,并顿悟重复问题的解决方法。让学生经历问题解决的数学化过程,获得数学学习体验。
5、培养学生思维的严谨严密性。
数学的教学,最重要的不是数学知识的教学,而是数学思维、数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。在教学过程,我注重培养学生思维的严谨严密性,如解读韦恩图的过程中,让学生表述各个部分的意思。大圈是表示“参加跳绳人数”和“参加踢毽人数”,而去掉了都参加的部分后是“只参加跳绳人数”和“只参加踢毽人数”,多了一个字“只”,虽然只有一字之差,但是意思完全不一样。还有“既参加跳绳又参加踢毽”让学生明白这是两种活动都参加的。
6、锻炼根据实际情况解决问题的能力。
具体情况,具体分析。课堂最后设计的课后思考题目对学生所学知识灵活运用的能力既是锻炼又是提高。
(四)巩固练习
通过三个练习,分层次的练习达到巩固。
1、基本练习:完成105页的1、2题
﹙1﹚理解集合圈里各部分的意义。会读集合圈中的信息,会按条件填写集合圈。完成105页的1题
﹙2﹚你从图上能很快地看出哪些信息?再算出语数有多少人?
2、解决问题:先分析题意,学生独立完成。再请学生汇报,全班交流。
(五)课堂小结
请学生谈收获,其他学生补充。最后,教师总结全课。
六、课堂上运用课件着重体现的数学思想方法有:
1、课件出示小动物回家,引入课堂,使课堂教学更加高效、生动、活泼。使带有一定强制性的教学过程转变成学生高效的自学,使儿童在小组合作中体验与情感结合起来,学生的学习兴趣高涨,注意力更加集中,思维更加活跃,从而更好地掌握知识、发展技能。
2、培养学生收集、整理信息的意识和能力。集合的抽象性是在它最终形成结论才具有的,而在结论形成过程中,必然以大量的具体内容为基础。本着从实践中来到实践中去的原则,课堂上我们让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,让学生在过程中体验集合的思想,在过程中感悟重叠,并领悟重叠问题的解决方法。让学生经历问题解决的数学化过程,获得数学?学习体验。
3、培养学生思维的严密性严谨性是数学学科的基本特征之一。
数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。数学思想贯穿整个数学体系的始终。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。严谨性是数学学科的基本特征之一。如课件出示韦恩图,引导学生填写、理解的过程中,让学生表述各个部分的意思。课堂上时时注重学生严密的思维。
另外一个体现就是:教学中要注意克服学生的思维定势。能促使学生发现问题,培养学生的质疑精神,长此以往,由质疑进而求异,突破传统观念,大胆创立新说。
根据实际情况解决问题的能力。谢谢大家!
高中函数教案14
一、教学目标
(一)知识教学点
知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式。
(二)能力训练点
通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力。
(三)学科渗透点
分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想。
二、教材分析
1。重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫。
2。难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点。由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了。
3。疑点:是否有继续研究直线方程的必要?
三、活动设计
启发、思考、问答、讨论、练习。
四、教学过程
(一)复习一次函数及其图象
已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上。初中我们是这样解答的:∵A(1,2)的坐标满足函数式,
∴点A在函数图象上。
∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上。
现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会。)讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式。简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系。
(二)直线的方程
引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗?
一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是。一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应。
以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解。这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线。
上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的.解与直线上的点是一一对应的。
显然,直线的方程是比一次函数包含对象更广泛的一个概念。
(三)进一步研究直线方程的必要性
通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究。
(四)直线的倾斜角
一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α。特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°。
直线倾斜角角的定义有下面三个要点:
(1)以x轴正向作为参考方向(始边);
(2)直线向上的方向作为终边;
(3)最小正角。
按照这个定义不难看出:直线与倾角是多对一的映射关系。
(五)直线的斜率
倾斜角不是90°的直线。它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示,即
直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率。
(六)过两点的直线的斜率公式
在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的。当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的。怎样用P2和P1的坐标来表示这条直线的斜率?
P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q。那么:
α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)
综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:
对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(七)例题
例1如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率。
∵l2的倾斜角α2=90°+30°=120°,
本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板。
例2求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角。
∴tgα=-1。∵0°≤α<180°,∴α=135°。
因此,这条直线的斜率是-1,倾斜角是135°。
讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可通过直线上的两点的坐标求得。
(八)课后小结
(1)直线的方程的倾斜角的概念。(2)直线的倾斜角和斜率的概念。
(3)直线的斜率公式。
五、布置作业
1。(练习
六、板书设计
直线方程的点斜式、斜截式、两点式和截距式
高中函数教案15
整体设计
教学分析
本节通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响,讨论函数y=Asin(ωx+φ)的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.这节是本章的一个难点.
如何经过变换由正弦函数y=sinx来获取函数y=Asin(ωx+φ)的图象呢?通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系.
本节课建议充分利用多媒体,倡导学生自主探究,在教师的引导下,通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在.
三维目标
1.通过学生自主探究,理解φ对y=sin(x+φ)的图象的影响,ω对y=sin(ωx+φ)的图象的影响,A对y=Asin(ωx+φ)的图象的影响.
2.通过探究图象变换,会用图象变换法画出y=Asin(ωx+φ)图象的简图,并会用“五点法”画出函数y=Asin(ωx+φ)的简图.
3.通过学生对问题的自主探究,渗透数形结合思想.培养学生的独立意识和独立思考能力.学会合作意识,培养学生理解动与静的辩证关系,善于从运动的观点观察问题,培养学生解决问题抓主要矛盾的思想.在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观.
重点难点
教学重点:用参数思想分层次、逐步讨论字母φ、ω、A变化时对函数图象的形状和位置的影响,掌握函数y=Asin(ωx+φ)图象的简图的作法.
教学难点:由正弦曲线y=sinx到y=Asin(ωx+φ)的图象的变换过程.
课时安排
2课时
教学过程
第1课时
导入新课
思路1.(情境导入)在物理和工程技术的许多问题中,都要遇到形如y=Asin(ωx+φ)的函数(其中A、ω、φ是常数).例如,物体做简谐振动时位移y与时间x的关系,交流电中电流强度y与时间x的关系等,都可用这类函数来表示.这些问题的实际意义往往可从其函数图象上直观地看出,因此,我们有必要画好这些函数的图象.揭示课题:函数y=Asin(ωx+φ)的图象.
思路2.(直接导入)从解析式来看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系?从图象上看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系?接下来,我们就分别探索φ、ω、A对y=Asin(ωx+φ)的图象的影响.
推进新课
新知探究
提出问题
①观察交流电电流随时间变化的图象,它与正弦曲线有何关系?你认为可以怎样讨论参数φ、ω、A对y=Asin(ωx+φ)的图象的影响?
②分别在y=sinx和y=sin(x+)的图象上各恰当地选取一个纵坐标相同的点,同时移动这两点并观察其横坐标的变化,你能否从中发现,φ对图象有怎样的影响?对φ任取不同的值,作出y=sin(x+φ)的图象,看看与y=sinx的图象是否有类似的关系?
③请你概括一下如何从正弦曲线出发,经过图象变换得到y=sin(x+φ)的图象.
④你能用上述研究问题的方法,讨论探究参数ω对y=sin(ωx+φ)的图象的影响吗?为了作图的方便,先不妨固定为φ=,从而使y=sin(ωx+φ)在ω变化过程中的比较对象固定为y=sin(x+).
⑤类似地,你能讨论一下参数A对y=sin(2x+)的图象的影响吗?为了研究方便,不妨令ω=2,φ=.此时,可以对A任取不同的值,利用计算器或计算机作出这些函数在同一坐标系中的图象,观察它们与y=sin(2x+)的图象之间的关系.
⑥可否先伸缩后平移?怎样先伸缩后平移的?
活动:问题①,教师先引导学生阅读课本开头一段,教师引导学生思考研究问题的方法.同时引导学生观察y=sin(x+)图象上点的坐标和y=sinx的图象上点的坐标的关系,获得φ对y=sin(x+φ)的图象的影响的具体认识.然后通过计算机作动态演示变换过程,引导学生观察变化过程中的不变量,得出它们的横坐标总是相差的结论.并让学生讨论探究.最后共同总结出:先分别讨论参数φ、ω、A对y=Asin(ωx+φ)的图象的影响,然后再整合.
图1
问题②,由学生作出φ取不同值时,函数y=sin(x+φ)的图象,并探究它与y=sinx的图象的关系,看看是否仍有上述结论.教师引导学生获得更多的关于φ对y=sin(x+φ)的图象影响的经验.为了研究的方便,不妨先取φ=,利用计算机作出在同一直角坐标系内的图象,如图1,分别在两条曲线上恰当地选取一个纵坐标相同的点A、B,沿两条曲线同时移动这两点,并保持它们的纵坐标相等,观察它们横坐标的关系.可以发现,对于同一个y值,y=sin(x+)的图象上的点的横坐标总是等于y=sinx的图象上对应点的横坐标减去.这样的过程可通过多媒体课件,使得图中A、B两点动起来(保持纵坐标相等),在变化过程中观察A、B的坐标、xB-xA、|AB|的变化情况,这说明y=sin(x+)的图象,可以看作是把正弦曲线y=sinx上所有的点向左平移个单位长度而得到的,同时多媒体动画演示y=sinx的图象向左平移使之与y=sin(x+)的图象重合的过程,以加深学生对该图象变换的直观理解.再取φ=,用同样的方法可以得到y=sinx的图象向右平移后与y=sin(x)的图象重合.
如果再变换φ的值,类似的情况将不断出现,这时φ对y=sin(x+φ)的图象的影响的铺垫已经完成,学生关于φ对y=sin(x+φ)的图象的影响的一般结论已有了大致轮廓.
问题③,引导学生通过自己的'研究认识φ对y=sin(x+φ)的图象的影响,并概括出一般结论:
y=sin(x+φ)(其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.
问题④,教师指导学生独立或小组合作进行探究,教师作适当指导.注意提醒学生按照从具体到一般的思路得出结论,具体过程是:(1)以y=sin(x+)为参照,把y=sin(2x+)的图象与y=sin(x+)的图象作比较,取点A、B观察.发现规律:
图2
如图2,对于同一个y值,y=sin(2x+)的图象上点的横坐标总是等于y=sin(x+)的图象上对应点的倍.教学中应当非常认真地对待这个过程,展示多媒体课件,体现伸缩变换过程,引导学生在自己独立思考的基础上给出规律.(2)取ω=,让学生自己比较y=sin(x+)的图象与y=sin(x+)图象.教学中可以让学生通过作图、观察和比较图象、讨论等活动,得出结论:把y=sin(x+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),就得到y=sin(x+)的图象.
当取ω为其他值时,观察相应的函数图象与y=sin(x+)的图象的关系,得出类似的结论.这时ω对y=sin(ωx+φ)的图象的影响的铺垫已经完成,学生关于ω对y=sin(ωx+φ)的图象的影响的一般结论已有了大致轮廓.教师指导学生将上述结论一般化,归纳y=sin(ωx+φ)的图象与y=sin(x+φ)的图象之间的关系,得出结论:
函数y=sin(ωx+φ)的图象可以看作是把y=sin(x+φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的倍(纵坐标不变)而得到.
图3
问题⑤,教师点拨学生,探索A对图象的影响的过程,与探索ω、φ对图象的影响完全一致,鼓励学生独立完成.学生观察y=3sin(2x+)的图象和y=sin(2x+)的图象之间的关系.如图3,分别在两条曲线上各取一个横坐标相同的点A、B,沿两条曲线同时移动这两点,并使它们的横坐标保持相同,观察它们纵坐标的关系.可以发现,对于同一个x值,函数y=3sin(2x+)的图象上的点的纵坐标等于函数y=sin(2x+)的图象上点的纵坐标的3倍.这说明,y=3sin(2x+)的图象,可以看作是把y=sin(2x+)的图象上所有的点的纵坐标伸长到原来的3倍(横坐标不变)而得到的通过实验可以看到,A取其他值时也有类似的情况.有了前面两个参数的探究,学生得出一般结论:
函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作是把y=sin(ωx+φ)上所有点的纵坐标伸长(当A>1时)或缩短(当0 由此我们得到了参数φ、ω、A对函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象变化的影响情况.一般地,函数y=Asin(ωx+φ)(其中A>0,ω>0)的图象,可以看作用下面的方法得到:先画出函数y=sinx的图象;再把正弦曲线向左(右)平移|φ|个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍,这时的曲线就是函数y=Asin(ωx+φ)的图象.
⑥引导学生类比得出.其顺序是:先伸缩横坐标(或纵坐标),再伸缩纵坐标(或横坐标),最后平移.但学生很容易在第三步出错,可在图象变换时,对比变换,以引起学生注意,并体会一些细节.
由此我们完成了参数φ、ω、A对函数图象影响的探究.教师适时地引导学生回顾思考整个探究过程中体现的思想:由简单到复杂,由特殊到一般的化归思想.
讨论结果:①把从函数y=sinx的图象到函数y=Asin(ωx+φ)的图象的变换过程,分解为先分别考察参数φ、ω、A对函数图象的影响,然后整合为对y=Asin(ωx+φ)的整体考察.
②略.
③图象左右平移,φ影响的是图象与x轴交点的位置关系.
④纵坐标不变,横坐标伸缩,ω影响了图象的形状.
⑤横坐标不变,纵坐标伸缩,A影响了图象的形状.
⑥可以.先伸缩后平移(提醒学生尽量先平移),但要注意第三步的平移.
y=sinx的图象
得y=Asinx的图象
得y=Asin(ωx)的图象
得y=Asin(ωx+φ)的图象.
规律总结:
先平移后伸缩的步骤程序如下:
y=sinx的图象
得y=sin(x+φ)的图象
得y=sin(ωx+φ)的图象
得y=Asin(ωx+φ)的图象.
先伸缩后平移的步骤程序(见上).
应用示例
例1 画出函数y=2sin(x-)的简图.
活动:本例训练学生的画图基本功及巩固本节所学知识方法.
(1)引导学生从图象变换的角度来探究,这里的φ=,ω=,A=2,鼓励学生根据本节所学内容自己写出得到y=2sin(x-)的图象的过程:只需把y=sinx的曲线上所有点向右平行移动个单位长度,得到y=sin(x-)的图象;再把后者所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y=sin(x-)的图象;再把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)而得到函数y=2sin(x-)的图象,如图4所示.
图4
(2)学生完成以上变换后,为了进一步掌握图象的变换规律,教师可引导学生作换个顺序的图象变换,要让学生自己独立完成,仔细体会变化的实质.
(3)学生完成以上两种变换后,就得到了两种画函数y=2sin(x-),简图的方法,教师再进一步的启发学生能否利用“五点法”作图画出函数y=2sin(x-)的简图,并鼓励学生动手按“五点法”作图的要求完成这一画图过程.
解:方法一:画出函数y=2sin(x-)简图的方法为
y=sinxy=sin(x-)
y=sin(x-)
y=2sin(x-).
方法二:画出函数y=2sin(x-)简图的又一方法为
y=sinxy=sinx
y=2sinxy=2sin(x-)=2sin(x-).
方法三:(利用“五点法”作图——作一个周期内的图象)
令X=x-,则x=3(X+).列表:
X
π
2π
X
2π
5π
Y
2
-2
描点画图,如图5所示.
图5
点评:学生独立完成以上探究后,对整个的图象变换及“五点法”作图会有一个新的认识.但教师要强调学生注意方法二中第三步的变换,左右平移变换只对“单个”x而言,这点是个难点,学生极易出错.对于“五点法”作图,要强调这五个点应该是使函数取最大值、最小值以及曲线与x轴相交的点.找出它们的方法是先作变量代换,设X=ωx+φ,再用方程思想由X取0,,π,,2π来确定对应的x值.
变式训练
1.2007山东威海一模统考,12 要得到函数y=sin(2x+)的图象,只需将函数y=sinx的图象( )
A.向左平移个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变
B.向右平移个单位,再把所有点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变
D.向右平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变
答案:C
2.2007山东菏泽一模统考,7 要得到函数y=2sin(3x)的图象,只需将函数y=2sin3x的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
答案:D
例2 将y=sinx的图象怎样变换得到函数y=2sin(2x+)+1的图象?
活动:可以用两种图象变换得到.但无论哪种变换都是针对字母x而言的由y=sin2x的图象向左平移个单位长度得到的函数图象的解析式是y=sin2(x+)而不是y=sin(2x+),把y=sin(x+)的图象的横坐标缩小到原来的,得到的函数图象的解析式是y=sin(2x+),而不是y=sin2(x+).
解:方法一:①把y=sinx的图象沿x轴向左平移个单位长度,得y=sin(x+)的图象;②将所得图象的横坐标缩小到原来的,得y=sin(2x+)的图象;③将所得图象的纵坐标伸长到原来的2倍,得y=2sin(2x+)的图象;④最后把所得图象沿y轴向上平移1个单位长度得到y=2sin(2x+)+1的图象.
方法二:①把y=sinx的图象的纵坐标伸长到原来的2倍,得y=2sinx的图象;②将所得图象的横坐标缩小到原来的,得y=2sin2x的图象;③将所得图象沿x轴向左平移个单位长度,得y=2sin2(x+)的图象;④最后把图象沿y轴向上平移1个单位长度得到y=2sin(2x+)+1的图象.
点评:三角函数图象变换是个难点.本例很好地巩固了本节所学知识方法,关键是教师引导学生理清变换思路和各种变换对解析式的影响.
变式训练
1.将y=sin2x的图象怎样变换得到函数y=cos(2x-)的图象?
解:y=sin2x=cos(-2x)=cos(2x-).
在y=cos(2x-)中以x-a代x,有y=cos[2(x-a)-]=cos(2x-2a-).根据题意,有2x-2a-=2x-,得a=-.
所以将y=sin2x的图象向左平移个单位长度可得到函数y=cos(2x-)的图象.
2.如何由函数y=3sin(2x+)的图象得到函数y=sinx的图象?
方法一:y=3sin(2x+)y=sin(2x+)
y=sin(x+)y=sinx.
方法二:y=3sin(2x+)=3sin2(x+)y=3sin2x
y=sin2xy=sinx.
3.2007山东高考,4 要得到函数y=sinx的图象,只需将函数y=cos(x-)的图象( )
A.向右平移个单位 B.向右平移个单位
C.向左平移个单位 D.向左平移个单位
答案:A
知能训练
课本本节练习1、2.
解答:
1.如图6.
点评:第(1)(2)(3)小题分别研究了参数A、ω、φ对函数图象的影响,第(4)小题则综合研究了这三个参数对y=Asin(ωx+φ)图象的影响.
2.(1)C;(2)B;(3)C.
点评:判定函数y=A1sin(ω1x+φ1)与y=A2sin(ω2x+φ2)的图象间的关系.为了降低难度,在A1与A2,ω1与ω2,φ1与φ2中,每题只有一对数值不同.
课堂小结
1.由学生自己回顾总结本节课探究的知识与方法,以及对三角函数图象及三角函数解析式的新的认识,使本节的总结成为学生凝练提高的平台.
2.教师强调本节课借助于计算机讨论并画出y=Asin(ωx+)的图象,并分别观察参数φ、ω、A对函数图象变化的影响,同时通过具体函数的图象的变化,领会由简单到复杂、特殊到一般的化归思想.
作业
1.用图象变换的方法在同一坐标系内由y=sinx的图象画出函数y=sin(-2x)的图象.
2.要得到函数y=cos(2x-)的图象,只需将函数y=sin2x的图象通过怎样的变换得到?
3.指出函数y=cos2x+1与余弦曲线y=cosx的关系.
解答:1.∵y=sin(-2x)=sin2x,作图过程:
y=sinxy=sin2xy=sin2x.
2.∵y=cos(2x-)=sin[+(2x-)]=sin(2x+)=sin2(x+),
∴将曲线y=sin2x向左平移个单位长度即可.
3.∵y=cos2x+1,
∴将余弦曲线y=cosx上各点的横坐标缩短到原来的倍,再将所得曲线上所有的点向上平移1个单位长度,即可得到曲线y=cos2x+1.
设计感想
1.本节图象较多,学生活动量大,因此本节设计的主要指导思想是充分利用信息技术工具,从整体上探究参数φ、ω、A对函数y=Asin(ωx+φ)图象整体变化的影响.这符合新课标精神,符合教育课改新理念.现代教育要求学生在富有的学习动机下主动学习,合作探究,教师仅是学生主动学习的激发者和引导者.
2.对于函数y=sinx的图象与函数y=Asin(ωx+φ)的图象间的变换,由于“平移变换”与“伸缩变换”在“顺序”上的差别,直接会对图象平移量产生影响,这点也是学习三角函数图象变换的难点所在,设计意图旨在通过对比让学生领悟它们的异同.
3.学习过程是一个认知过程,学生内部的认知因素和学习情景的因素是影响学生认知结构的变量.如果学生本身缺乏学习动机和原有的认知结构,外部的变量就不能发挥它们的作用,但外部变量所提供的刺激也能使内部能力引起学习.
(设计者:张云全)
第2课时
导入新课
思路1.(直接导入)上一节课中,我们分别探索了参数φ、ω、A对函数y=Asin(ωx+φ)的图象的影响及“五点法”作图.现在我们进一步熟悉掌握函数y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的图象变换及其物理背景.由此展开新课.
思路2.(复习导入)请同学们分别用图象变换及“五点作图法”画出函数y=4sin(x-)的简图,学生动手画图,教师适时的点拨、纠正,并让学生回答有关的问题.在学生回顾与复习上节所学内容的基础上展开新课.
推进新课
新知探究
提出问题
①在上节课的学习中,用“五点作图法”画函数y=Asin(ωx+φ)的图象时,列表中最关键的步骤是什么?
②(1)把函数y=sin2x的图象向_____平移_____个单位长度得到函数y=sin(2x-)的图象;(2)把函数y=sin3x的图象向_______平移_______个单位长度得到函数y=sin(3x+)的图象;(3)如何由函数y=sinx的图象通过变换得到函数y=sin(2x+)的图象?
③将函数y=f(x)的图象上各点的横坐标伸长到原来的2倍,再向左平移个单位长度,所得到的曲线是y=sinx的图象,试求函数y=f(x)的解析式.
对这个问题的求解现给出以下三种解法,请说出甲、乙、丙各自解法的正误.(多媒体出示各自解法)
甲生:所给问题即是将y=sinx的图象先向右平移个单位长度,得到y=sin(x-)的图象,再将所得的图象上所有点的横坐标缩短到原来的,得到y=sin(2x-),即y=cos2x的图象,∴f(x)=cos2x.
乙生:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(x+φ)的图象,再将所得的图象向左平移个单位长度,得到y=Asin(x++φ)=sinx,∴A=,=1,+φ=0,
即A=,ω=2,φ=-.∴f(x)=sin(2x-)=cos2x.
丙生:设f(x)=Asin(ωx+φ),将它的图象上各点的横坐标伸长到原来的2倍,得到y=Asin(x+φ)的图象,再将所得的图象向左平移个单位长度,得到y=Asin[(x+)+φ]=Asin(x++φ)= sinx,
∴A=,=1,+φ=0.
解得A=,ω=2,φ=-,
∴f(x)=sin(2x-)=cos2x.
活动:问题①,复习巩固已学三种基本变换,同时为导入本节课重、难点创设情境.让学生回答并回忆A、ω、φ对函数y=Asin(ωx+φ)图象变化的影响.引导学生回顾“五点作图法”,既复习了旧知识,又为学生准确使用本节课的工具提供必要的保障.
问题②,让学生通过实例综合以上两种变换,再次回顾比较两种方法平移量的区别和导致这一现象的根本原因,以此培养训练学生变换的逆向思维能力,训练学生对变换实质的理解及使用诱导公式的综合能力.
问题③,甲生的解法是考虑以上变换的“逆变换”,即将以上变换倒过来,由y=sinx变换到y=f(x),解答正确.乙、丙两名同学都是采用代换法,即设y=Asin(ωx+φ),然后按题设中的变换得到两次变换后图象的函数解析式,这种思路清晰,但值得注意的是:乙生的解答过程中存在实质性的错误,就是将y=Asin(x+φ)的图象向左平移个单位长度时,把y=Asin(x+φ)函数中的自变量x变成x+,应该变换成y=Asin[(x+)+φ],而不是变换成y=Asin(x++φ),虽然结果一样,但这是巧合,丙同学的解答是正确的
三角函数图象的“逆变换”一定要注意其顺序,比如甲生解题的过程中如果交换了顺序就会出错,故在对这种方法不是很熟练的情况下,用丙同学的解法较合适(即待定系数法).平移变换是对自变量x而言的,比如乙同学的变换就出现了这种错误.
讨论结果:①将ωx+φ看作一个整体,令其分别为0, ,π, ,2π.
②(1)右, ;(2)左, ;(3)先y=sinx的图象左移,再把所有点的横坐标压缩到原来的倍(纵坐标不变).
③略.
提出问题
①回忆物理中简谐运动的相关内容,并阅读本章开头的简谐运动的图象,你能说出简谐运动的函数关系吗?
②回忆物理中简谐运动的相关内容,回答:振幅、周期、频率、相位、初相等概念与A、ω、φ有何关系.
活动:教师引导学生阅读并适时点拨.通过让学生回忆探究,建立与物理知识的联系,了解常数A、ω、φ与简谐运动的某些物理量的关系,得出本章开头提到的“简谐运动的图象”所对应的函数解析式有如下形式:y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是T=,这是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公式f==给出,它是做简谐运动的物体在单位时间内往复运动的次数;ωx+φ称为相位;x=0时的相位φ称为初相.
讨论结果:①y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.
②略.
应用示例
例1 图7是某简谐运动的图象.试根据图象回答下列问题:
(1)这个简谐运动的振幅、周期和频率各是多少?
(2)从O点算起,到曲线上的哪一点,表示完成了一次往复运动?如从A点算起呢?
(3)写出这个简谐运动的函数表达式.
图7
活动:本例是根据简谐运动的图象求解析式.教师可引导学生再次回忆物理学中学过的相关知识,并提醒学生注意本课开始时探讨的知识,思考y=Asin(ωx+φ)中的参数φ、ω、A在图象上是怎样反映的,要解决这个问题,关键要抓住什么.关键是搞清φ、ω、A等参数在图象上是如何得到反映的让学生明确解题思路,是由形到数地解决问题,学会数形结合地处理问题.完成解题后,教师引导学生进行反思学习过程,概括出研究函数y=Asin(ωx+φ)的图象的思想方法,找两名学生阐述思想方法,教师作点评、补充.
解:(1)从图象上可以看到,这个简谐运动的振幅为2 cm;周期为0.8 s;频率为.
(2)如果从O点算起,到曲线上的D点,表示完成了一次往复运动;如果从A点算起,则到曲线上的E点,表示完成了一次往复运动.
(3)设这个简谐运动的函数表达式为y=Asin(ωx+φ),x∈[0,+∞),
那么A=2;由=0.8,得ω=;由图象知初相φ=0.
于是所求函数表达式是y=2sinx,x∈[0,+∞).
点评:本例的实质是由函数图象求函数解析式,要抓住关键点.应用数学中重要的思想方法——数形结合的思想方法,应让学生熟练地掌握这种方法.
变式训练
函数y=6sin(x-)的振幅是,周期是____________,频率是____________,初相是___________,图象最高点的坐标是_______________.
解:6 8π (8kπ+,6)(k∈Z)
例2 若函数y=Asin(ωx+φ)+B(其中A>0,ω>0)在其一个周期内的图象上有一个最高点(,3)和一个最低点(,-5),求这个函数的解析式.
活动:让学生自主探究题目中给出的条件,本例中给出的实际上是一个图象,它的解析式为y=Asin(ωx+φ)+B(其中A>0,ω>0),这是学生未遇到过的教师应引导学生思考它与y=Asin(ωx+φ)的图象的关系,它只是把y=Asin(ωx+φ)(其中A>0,ω>0)的图象向上(B>0)或向下(B<0)平移|B|个单位.由图象可知,取最大值与最小值时相应的x的值之差的绝对值只是半个周期.这里φ的确定学生会感到困难,因为题目中毕竟没有直接给出图象,不像例1那样能明显地看出来,应告诉学生一般都会在条件中注明|φ|<π,如不注明,就取离y轴最近的一个即可.
解:由已知条件,知ymax=3,ymin=-5,
则A=(ymax-ymin)=4,B= (ymax+ymin)=-1,=-=.
∴T=π,得ω=2.
故有y=4sin(2x+φ)-1.
由于点(,3)在函数的图象上,故有3=4sin(2×+φ)-1,
即sin(+φ)=1.一般要求|φ|<,故取+φ=.∴φ=.
故所求函数的解析式为y=4sin(2x+)-1.
点拨:这是数形结合的又一典型应用,应让学生明了,题中无图但脑中应有图或根据题意画出草图,结合图象可直接求得A、ω,进而求得初相φ,但要注意初相φ的确定.求初相也是这节课的一个难点.
变式训练
已知函数y=Asin(ωx+φ)(其中A>0,ω>0)一个周期的图象如图8所示,求函数的解析式.
解:根据“五点法”的作图规律,认清图象中的一些已知点属于五点法中的哪一点,而选择对应的方程ωxi+φ=0,,π,,2π(i=1,2,3,4,5),得出φ的值.
方法一:由图知A=2,T=3π,
由=3π,得ω=,∴y=2sin(x+φ).
由“五点法”知,第一个零点为(,0),
∴·+φ=0荭=-,
故y=2sin(x-).
方法二:得到y=2sin(x+φ)同方法一.
由图象并结合“五点法”可知,(,0)为第一个零点,(,0)为第二个零点.
∴·+φ=π荭=.
∴y=2sin(x-).
点评:要熟记判断“第一点”和“第二点”的方法,然后再利用ωx1+φ=0或ωx2+φ=π求出φ.
2.2007海南高考,3函数y=sin(2x-)在区间[,π]上的简图是( )
图9
答案:A
知能训练
课本本节练习3、4.
3.振幅为,周期为4π,频率为.先将正弦曲线上所有的点向右平行移动个单位长度,再在纵坐标保持不变的情况下将各点的横坐标伸长到原来的2倍,最后在横坐标保持不变的情况下将各点的纵坐标缩短到原来的倍.
点评:了解简谐运动的物理量与函数解析式的关系,并认识函数y=Asin(ωx+φ)的图象与正弦曲线的关系.
4..把正弦曲线在区间[,+∞)的部分向左平行移动个单位长度,就可得到函数y=sin(x+),x∈[0,+∞)的图象.
点评:了解简谐运动的物理量与函数解析式的关系,并认识函数y=sin(x+φ)的图象与正弦曲线的关系.
课堂小结
1.由学生自己回顾本节学习的数学知识:简谐运动的有关概念.本节学习的数学方法:由简单到复杂、特殊到一般、具体到抽象的化归思想,数形结合思想,待定系数法,数学的应用价值.
2.三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,这种题目的解题的思路是:如果函数同名则按两种变换方法的步骤进行即可;如果函数不同名,则将异名函数化为同名函数,且需x的系数相同.左右平移时,如果x前面的系数不是1,需将x前面的系数提出,特别是给出图象确定解析式y=Asin(ωx+φ)的题型.有时从寻找“五点法”中的第一零点(,0)作为突破口,一定要从图象的升降情况找准第一零点的位置.
作业
把函数y=cos(3x+)的图象适当变动就可以得到y=sin(-3x)的图象,这种变动可以是( )
A.向右平移 B.向左平移 C.向右平移 D.向左平移
解:∵y=cos(3x+)=sin(-3x)=sin[-3(x-)],
∴由y=sin[-3(x-)]向左平移才能得到y=sin(-3x)的图象.
答案:D
点评:本题需逆推,教师在作业讲评时应注意加强学生逆向思维的训练.如本题中的-3x需写成-3(x-),这样才能确保平移变换的正确性.
设计感想
1.本节课符合新课改精神,突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索及发现问题、分析问题和解决问题的能力.注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一.
2.由于本节内容综合性强,所以本节教案设计的指导思想是:在教师的引导下,让学生积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.新课改要求教师在新的教学理念下,要勇于,更要善于把问题抛给学生,激发学生探求知识的强烈欲望和创新意识.教学的目的是以知识为平台,全面提升学生的综合能力.
【高中函数教案】相关文章:
指数函数教案06-13
一次函数教案07-07
函数的奇偶性教案人教版07-13
《函数的概念》说课稿12-12
函数概念说课稿11-28
一次函数教案【实用15篇】07-07
函数的概念教学反思04-03
《对数函数》说课稿06-22
《对数函数》说课稿12-22