七年级数学说课稿

时间:2025-08-25 19:32:30 说课稿 我要投稿

七年级数学说课稿优秀15篇

  作为一位杰出的教职工,有必要进行细致的说课稿准备工作,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?以下是小编整理的七年级数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

七年级数学说课稿优秀15篇

七年级数学说课稿1

  一、说教材

  首先谈谈我对教材的理解,《平面直角坐标系》是人教版初中数学七年级下册第七章7.1.2的内容,本节课的内容是平面直角坐标系及相关概念。有序数对在上一节已经进行了讲解,并且之前也学习了数轴的概念,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容为后面研究函数的图像提供了有力的基础。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。

  三、说教学目标

  根据以上对教材的分析以及对学情的'把握,我制定了如下三维教学目标:

  (一)知识与技能

  掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。

  (二)过程与方法

  在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。

  (三)情感态度价值观

  在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平面直角坐标系及相关概念。这种方法学生首次见到,难以理解,所以本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,那么我先提问:上节课学习的内容是什么?能否举一个例子。

  根据学生回答追问:有序数对所表示的位置如何直观表示?从而引出本节课的课题《平面直角坐标系》

  利用有序数对而不用数轴进行导入,是因为有序数对是上节课学习的内容,而数轴是上学期学习的内容,距离学生相对比较远。这样利用学生刚刚学过的知识进行导入,更好的从学生的角度出发,学生更容易接受。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。

  学生对于该问题能够根据之前的知识经验考虑使用数轴,我便和学生一起回顾数轴的三要素。接下来进一步引导:对于有序数对有两个数应该如何表示,进而转到用两个数轴。

七年级数学说课稿2

  一、教材地位,作用特点

  在学习本节课前,学生已在小学学过垂直的概念及画法,但由于是在小学四年级,学生接受几何知识能力较差,很多学生并不能真正理解垂直概念中所蕴含的识别与性质,因此在教学时我注重学生对概念本质的探索,而对于画法,学生多数没有掌握这一基本技能,所以我在教学时先让学生代表任意画两条垂直直线,再过直线外一点画垂线,然后共同总结规范画法步骤,然后再让学生练习,很好培养了学生这一基本技能,本节课还涉及到垂直的一些性质和点到直线距离的概念,这些知识的学习直接影响后续学习的情况,如画三角形的高,垂直的识别和性质的应用,垂线段、点到直线之间的距离、两点间的距离之间的联系与区别等,因此本节课垂直的教学极其重要。另外在教材处理上比其他版教材更注重情境性,生活性、探索性,本节课教学时可关注这些有利因素,完全可以克服学习接受难,几何语音叙述难,抽像几何图形难的特点,多让学生动手操作、感悟、交流,再恰当的使用多媒体,完全可以上出一节轻松活泼,有趣的课来,也能够让学生的三维目标均得以实现。

  二、教学目标

  1、能在具体情境中探索并理解垂直的概念,并学会符号表示和书写格式,从中体会数学于生活,感受定义概念的合理性、简洁性。

  2、探索并掌握画垂线的方法,从中培养学生自主探索的习惯和团结协作的意识。

  3、探索并了解垂线的一些性质,感悟实践出真知的哲理性。

  [设计意图]:目标的确定融合了三维目标,并没有把它们割裂开来,体现了在知识技能的学习过程中,达成情感态度价值观目标的设计思想

  三、教学重难点

  重点:垂直的概念及画法

  难点:垂直概念的探索与理解

  [设计意图]:理解垂直的概念,掌握画法是学生后续学习的基础和关健,学生在以后学习中出错均源于这两点学习的不到位,故如此确定重点,而对于概念的理解包含二个方面:性质与识别,学生不易理解,故须加强探索,如此确定难点。

  四、学习准备

  全班同学按成绩好中差与性格互补分成6—8组,每组6人。

  [设计意图]:方便学生分组讨论,利于提高活动的'有效性,也是对学习杜朗口的课堂教学精华的一个体现。

  五、过程设计

  (一)演示教具,揭示课题

  1、问题:小学学过两线之间有哪些位置关系?

  谁能到黑板上摆一摆

  2、学生代表摆教具

  3追问:垂直是不是相交?相交是不是垂直?

  4总结:垂直是相交的特例

  5引出课题:今天我们来进一步研究和学习垂直。

  [设计意图]:本节课垂直的知识点起源是相交线,让学生回顾,摆一摆,加深体会垂直是相交的特例,如此设计,既遵循了学生的认知规律,又是对小学知识系统的一次提升。

  (二)多个角度,探索概念

  1、认一认:欣赏画面,从中指出垂直线。。

  2、举一举:举生活中垂直的实例。

  3、折一折:用一张长方形纸挤出两条垂直的成本。

  4、想一想:上面我们从感性上再次认识了垂直,那么究意怎样给垂直下个定义呢?

  [设计意图]:通过以上活动,培养学生仔细观察,动手操作的能力,并感悟数学就在身边,同时也培养他们观察问题本质,勤于思考的数学思维习惯,同时激发他们对数学本质的思考。

  5、议一议:哪种说法最好?

  [设计意图]:可根据学生的不同回答,教师追问,并出示探索问题,从而加深对概念本质的理解,也为以后垂直的性质与识别的应用打下良好的知识基础,在这里学生的探索讨论远比教师的直接给出好得多,通过这个活动也培养了学生多方面的能力,可谓三维目标在此环节中得到了完美的融合。

  6、说一说:垂直的概念。

  7、记一记:默记1分钟。

  8、看一看:表示方法与用法。

  9、摆一摆:让学生分组用三角板组合摆放并指出垂直的线来。

  10、练一练:做2个小题目。

  (三)探索画法,总结性质

  1、问题:上面你已经学会了判断两线垂直的方法。那么你能画出两条互相垂直的线条吗?有几种方法?

  2、选3名学生用不同方法在黑板上画。

  3、师问:过直线外一点向已知直线画垂线,你会画吗?

  4、学生代表上黑板画,并说明画法,教师演示,共同总结方法。

  5、画一画

  6、议一议:经过一点有几条直线与已知直线垂直?

  [设计意图]:通过这个活动,既复习了垂线的多种画法,又让学生再此探索掌握了用三角板画垂直的方法,多让学生动手操作,直观感知,另于调动学生的学习积极性,也有利于知识的基本落实。

  (四)动手操作了解性质

  1、问题:过路如何走最短的路线?

  2、学生边走边说方法

  3、学生画出最短路线,并设计方法验证

  4、总结

  5、结合上述情境给出点到直线的距离的概念

  6、演示

  7、生活小常识的应用

  [设计意图]:用过马路引出垂直的性质远比跳远实例更具生活性,一般性,情趣性,也利于学生接受,而借助这个情境又引出了点到直线的距离,再借助的辅助演示,突破这一难点 ,而用跳运作为应用,又是对这一概念的巩固,也激发了学习积极性。

  六、练习

  课后练习

  七、小结

  1、让学生谈收获与体会,并质疑。

  2、出示本节课主要知识点,让学生体会。

  八、作业

  设计说明

  1、注重学生知识技能的培养,关注实效。

  让学生学会垂直的画法是后续学习的重要基础,但多年来学生学的并不好,甚至到了初三都未学会,根本原因在于教师教学时没有夯实这一基本功,设计时通过让学生先画再展示画法,再借助总结画法,再让学生画,再反馈等活动,确实让学生学会了画法,比小学的技能也有一个质的飞跃。

  2、注重学生探索能力的培养,关注三维。

  学生在小学基础上对于垂直的概念的理解并不到位,尤其对垂直的性质及识别不理解,也易混淆,这直接导致以后学习会出现以下问题:不知如何证明垂直,不会用性质。因此本节课设置一个探索活动,让学生去议一议哪种说法更好,从而规范格式,在这个活动中学生对于概念的理解和感悟会更深刻,记忆会更长远,也激发了学习欲望,培养了学生实事求是和自主探索的精神。

  3、加强动手能力的培养,关注操作。

  本节课中多让学生折一折、画一画、量一量,既培养了学生的动手操作能力,又利于学生对于知识的深刻理解。

  4、加强的精确使用,关注有效。

  仅为教学辅助手段,不可滥用,本节课只在情境引入、探索概念本质、规范画法、给出点到直线的距离的概念时使用,可谓把握重点,突破难点,既省时又激趣,而且没有冲淡数学课注重思考的本质特性。

  5、注重恰当创设情境

  本节课的情境创设融入逐个教学环节中,由于生活性、趣味性、欣赏性强,极大促进了课堂教学的有效性。

  6、因为本节课内容多且偏难,又重要,所以教学时可根据学生学习情况,调整为2课时。

  7、本设计力求体现与融合杜朗口课堂教学的精华。

七年级数学说课稿3

  一、教材分析:

  1、教材的地位和作用

  本节课题是新人教版义务教育课程教科书七年级·下册·第六章·第二节“平方根”第二课时的内容。是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是有助于了解n次方根的概念,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。

  2、教学目标

  ⑴、知识与技能

  帮助学生了解平方根的概念,会进行有关平方根的运算;理解算术平方根与平方根的联系和区别。

  ⑵、教学思考

  在具体问题中抽象出平方根的概念,培养学生的抽象概括能力。

  ⑶、解决问题

  通过举例使学生明确平方根是靠它的逆运算平方来进行,发展学生学习数学的能力。

  ⑷、情感态度与价值观

  通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识。

  3、教学重点、难点与关键:

  重点:平方根的概念和性质难点:平方根的概念和表示的理解。

  关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

  二、学情分析

  根据教学中学生身心发展特点,我从学生现有知识基础、学习现状等方面分析。

  1、学生的现有基础

  在“平方根”的学习中,学生在七年级时已学过了乘方的运算,上节课又学习了算术平方根的运算,初步理解了根号的表示,有助于本节的学习活动进行。

  2、学习的现状

  此阶段的学生具有很强的好奇心、强烈的“自我”和自我发展的意识,因此对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

  三、说教法与学法

  教法:

  (1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考.

  (2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学.即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度.

  (3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享.

  学法:学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此学生的学法我定为小组交流合作法和自主学习法.这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台.

  四、教学程序:

  (一)创设情境,激发兴趣

  首先,我动画的形式,用多媒体示出问题情境:

  (1)()2=9,()2=9;()2=0.64,()2=0.64.

  (2)如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的;

  (3)如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的。

  总结得出平方根的概念:如果一个数的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根)。这样的设计,其目的是通过填空,与算术平方根比较引出平方根的概念,沟通二者之间的关系,与乘方相结合,培养学生的逆向思维能力。

  (二)合作交流,理解概念

  1、填空:

  (1)32=(),(-3)2=(),22=(),(-2)2=(),02=()

  (2)()2=&

  nbsp;9,()2=4,()2=0(3)有没有一个数的平方等于负数的?

  2、想一想

  (1)正数的平方根有()个,它们互为();(2)0有()个平方根,它是();

  (3)负数______平方根(填“有”或“没有”)

  (三)综合训练,突出重点

  1、出示例3求下例各数的平方根:

  (1)64;(2);(3)0.0004;(4)(-25)2;(5)11

  2、为了加深对平方根的理解,我出示课本P42页“想一想”:

  (1)()2=();()2=();()2=()(2)对于正数a,()2=()

  (四)课后小结

  (五)作业P47第3和第4题

  五、板书设计平方根

  平方根概念:……例3:---------------

  开平方概念:……解:(板演详细解题过程)……

  法则:……

  六、设计说明:

  (一)、指导思想:

  依据学生已有的基础及教材所处的`地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。

  (二)、关于教法和学法

  采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。(三)、关于教学程序的设计

  在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

  ①注重目标控制,面向全体学生,启发式与探究式教学。

  ②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

  ③注重师生间、同学间的互动协作,共同提高。

  ④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

七年级数学说课稿4

  数学说课稿初一各位专家、领导,下午好!今天说课的内容是湘教版数学七年级上册第二章第五节《整式的加法和减法》第1课时。我将从教材与学生、教学目标、教学过程三个方面来阐述对本课的设计:

  一、教材分析与学生分析

  1.教材分析

  本节课是在学习了有理数的运算以及代数式、整式的概念的基础上来进行的。合并同类项是本章的一个重点,首先合并同类项的运算是建立在有理数运算的基础之上,而熟练的整式加减运算又是各种式的运算的基础;其次,对法则的探索过程能使学生积累探索式的运算的基本经验,使学生体会到字母也可以参与运算,而且在运算中要遵循运算律,这为将来探究整式、分式的运算做好了思想方法上的准备。综上可知,这节课是一节承上启下,对学生的数学技能和数学思想都将产生重要影响的课。

  本课时内容分四个层级:第一,从实际问题中提出同类项概念及其合并问题;第二,探索合并同类项的方法,得到合并的法则;第三,运用法则化简多项式,训练学生的基本运算技能,向学生展示法则的运用价值;最后是练习,提供了与所学知识相对应的、形式活泼多样、有难易层次的练习和习题。

  通过以上分析,本课的重点应该是:1.经历探索合并同类项的过程,正确理解同类项概念和合并法则;2.运用合并同类项的法则化简多项式。

  2.学生分析

  从数的运算到含有字母的运算,学生的认知有了新的冲突。他们一方面感到好奇从而有较强的学习愿望,另一方面又受到自身抽象思维不足以及过分依赖操作、模仿的学习方式的影响,所以感到困难重重,经常会出现机械死板、不会变通、屡错屡犯等问题。针对这个现实,在教学设计时要特别注意结合现实生活、具体事例来帮助学生理解抽象的`数学概念,并设计足够的活动让学生经历数学知识的探索过程,引导学生从具体数的运算向抽象的字母运算转变,使学生感受到一个真实、鲜活的数学,而不是由枯燥的概念和繁琐的运算堆砌而成的数学。因此,本课的难点是理解同类项的概念,理解合并同类项的法则。

  二、教学目标设计

  1.知识技能:能识别多项式中的同类项,运用合并同类项的法则化简多项式。

  2.数学思考:通过法则的探索,进一步体会字母可以象数一样参与运算,运算时应遵循数的运算律;通过合并同类项,体会化繁为简的数学思想。

  3.问题解决:通过“同类项可以合并”这一问题的提出,以及法则的探究,培养学生发现问题和解决问题的能力

  4.情感态度:激发学生的求知欲,通过自主探究、合作交流培养独立思考、合作交流的能力,享受成功的喜悦、树立学习的信心。

  三、教学过程设计

  这是教学流程图

  首先,我用教材中的问题导入课题:

  如图,在一块长为x,宽为y的草地中间,挖了一个面积为的水池后,剩余草地的面积是多少?

  学生会写出两个不同的代数式和,我让学生分别解释各自的思维过程。这种思维上的差异,为新课的导入提供了一个很好的契机,我让学生讨论:“这两个式子有什么不同,它们相等吗,为什么?”在具体情境中,学生容易理解下面的运算,从而发现式子也是可以运算的,我引导学生继续思考:“离开这个具体情境,你会对式子进行运算吗?

  比如”这样顺势就导入了课题——整式的加法和减法.

  在这里,我运用变式来引起学生认知上的冲突,学生感到仿佛能做出来,又觉得有点似是而非,于是你一言我一语起了争论,这时我指出思考的方向:“字母也是数,因此对字母运算一定要遵循数的运算律,动脑筋中的运算用到了哪条运算律呢?”引导学生由直觉思维向抽象思维转变。

  待学生用分配律解释了动脑筋中的运算后,我指出:以上的运算实际上是运用分配律把多项式的项合并成了一项,再度引导学生思考:三个变式也能用分配律合并成一项吗?

  学生再次讨论后,得出以下结论:1.并不是所有的项都可以合并;2.只有字母部分完全相同的项才可以合并。

  至此,同类项的概念已是呼之欲出,这时我给出同类项和合并同类项的名称,让学生根据自己的理解给同类项下定义,注意多叫几个学生说说,各抒己见。通过这些活动,理解同类项这一难点已于无形中得到化解。

  正确识别同类项是合并同类项的前提,以往的经验告诉我学生不容易做到这点,所以我在深刻理解教材的基础上,做出了推迟给出概念、延长辨析过程的处理,目的在于引导学生关注分配律,让学生体会到字母也可以参与运算,使学生积累起探索数、式运算的基本经验,另一方面也促成了学生对同类项的深刻理解,而不是停留

  在表面的描述,为将来拓展到字母系数的同类项等留下发展的空间。当然探索和概括的过程也训练了学生的抽象思维能力,还使学生体会到了研究问题的一般方法,培养了创新意识。

  有了以上的探索经验,本课的另一个难点:理解合并同类项的法则,已经不难突破。我让学生思考教材中的“议一议”

  多项式x2y+3x+1-4x-5x2y-5中的同类项可以合并吗?

  x2y+3x+1-4x-5x2y-5

  =x2y-5x2y+3x-4x+1-5(交换律)

  =(x2y-5x2y)+(3x-4x)+(1-5)(结合律)

  =(1-5)x2y+(3-4)x+(-4)(分配律)

  =-4x2y-4x-4)

  讨论的过程中我特别注意询问每一步运算的依据,培养学生的探索精神和理性精神。完成后引导学生观察,合并后的多项式变简单了,但并不是一定要合并成一项,强调只有同类项才可以合并。

  学生运用刚刚领会到的方法解决了多项式中同类项的合并问题,一定很有成就感,盼望老师给出更多的问题,借着这个势头,我又提出新的任务:怎样在合并同类项时做到既快又准确呢?这就需要准确理解合并法则,并采取一些特别的书写方法来进行训练。

  于是进入运用新知巩固训练环节,我向学生展示教材例1,鼓励学生自己完成,并讨论合并的具体方法。

  例1合并同类项

  (1);(2)

  在学生练习和讨论时,教师要“耳听四方,眼观八路”,将学生中反馈的信息迅速纳入下一进程的教学活动中去。比如有的学生这样做第(2)题:

  ,还有不少学生概括合并的法则是“把同类项的系数相加减”,对此我做出补充说明:一是强调多项式中的项是通过加法连接而成的,所以中的“—”应视为项的系数的符号,二是根据分配律,合并时应把项的系数相加,而不是相加减。通过让学生自曝错误再辨析纠正错误,学生对法则的理解更透彻了,用起法则来也更得心应手了。

  接下来我又以例题2为例,教给学生具体的操作步骤:一画、二换、三并,三个步骤简明扼要,便于学生模仿训练,尽快形成基本技能,并且告诉学生,熟练后还可以省略一些步骤,做到口算。

  例2合并同类项

  (1);(2).

  解(1)-3x2-14x-5x2+4x2(2)xy3+x3y-2xy3+5x3y+9

  =-3x2-5x2+4x2-14x=xy3-2xy3+x3y+5x3y+9

  =(-3-5+4)x2-14=(1-2)xy3+(1+5)x3y+9

  =-4x2-14x-xy3+6x3y+9=

  训练中,学生学习能力、学习习惯千差万别,因此仍会出现各种错误,比如不能正确识别同类项,混淆运算符号与项的符号,有理数运算错误等等,对此教师要密切关注学生的解题情况,搜集学生中的错误作为新的学习资料,组织学生查错因,想对策,谈体会,充分利用课堂生成的学习资源,让学生互帮互学,将新知逐步内化。

  合并同类项:

  除了以上的例题和练习,教材还提出了多项式相等的概念,让学生再次体会合并同类项的价值,这就使得整个知识链更加完整了。教学中我这样设计:

  先提出问题:

  多项式与多项式相等吗?

  莽撞的学生会脱口答出:不相等。

  这是因为学生对字母进行运算的意识还没有形成,对此我反问学生:2+3+5和1+6+3也不相等吗?

  学生受到启发,恍然大悟,马上想到相等与否要通过运算才能下结论。这种顿悟让学生把以往对数的运算经验迁移到了现在对式的运算中,因而能更好的体会到合并同类项的价值,强化了对式子进行运算的意识和能力。接下来我又通过教材中的练习再次强化和巩固。

  练习3.下列两个多项式是否相等?

  习题A组3.如果多项式与多项式(其中a,b,c是常数)相等,则a=______,b=______,c=______.

  在反思评价环节,我让学生从知识和课堂行为两方面进行反思评价:

  1.这节课你学到了哪些知识?和以前哪些知识有联系?所学知识有何用处?

  2.你是否主动积极地参与了小组讨论与学习,你发现自己或者小组成员有哪些地方需要改进?

  通过反思,培养学生良好的学习和思考习惯,倡导积极健康的学习风气。

七年级数学说课稿5

  各位专家、各位老师:

  大家好!

  今天我为大家讲的课题是《用坐标表示地理位置》。

  本课主要内容是让学生利用平面直角坐标系解决生活中确定地理位置的问题,让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题。密切联系生活实际,从实际的需要出发学习直角坐标系,让学生充分感受平面直角坐标系在解决实际问题中的作用。

  一、教材结构与内容简析

  本节内容在全书及章节的地位:《用坐标表示地理位置》是人民教育出版社义务教育课程标准实验教科书七年级下册第六章第二节第一课时内容。在此之前,学生已学习了有序数对和平面直角坐标系,这为过渡到本节的学习起着铺垫作用。本节内容是对平面直角坐标系引入实际运用部分,因此,也为后续学习函数等知识打下基础。

  数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图让学生经历观察、思考、探索、交流、实践、归纳等数学活动过程,培养学生动手操作、分析、解决实际问题的能力。

  二、教学目标的确定

  根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  教学目标

  知识技能

  1、能建立适当的直角坐标系,用坐标表示地理位置。

  2、根据比例尺进行图上距离与实际距离的换算。

  数学思考

  通过实例让学生体会直角坐标的思想,并能利用其解决一些简单的问题。

  解决问题

  能结合具体情境灵活运用坐标确定地理位置。

  情感态度

  1、通过确定旅游景点的位置,让学生认识数学与生活密切联系,提高学生学习数学的兴趣。

  2、通过学习建立直角坐标系有多种方法,让学生体会数学活动充满着探索和创造。

  3、初步形成认真参与、积极交流的主体意识。

  三、教学重点、难点分析

  本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

  重点:根据具体情境灵活选用直角坐标系,用坐标表示地点。

  难点:建立适当的直角坐标系,选取简便的方法解决问题。

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  四、教法选择与学法指导

  数学是一门培养人思维,发展人思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用“主动探索与引导发现”的教学方法。

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。引导学生观察、探索、发现一般规律。指导学生利用所学知识解决实际问题。

  五、教学程序及设想

  活动一情境引入。

  不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们的出行带来了很大的方便。你如何将地图中的“寿皇殿”、“万春亭”、“崇祯自缢处”和“东门”这几个地方用坐标表示出来呢?

  意图:把教学内容转化为具有潜在意义的问题,让学生产生强烈的兴趣,学生通过观察活动,可以看到,用坐标可以清楚地表示地理位置,由此引出建立适当的坐标系表示地理位置的内容。

  由此点题——本课的学习内容是:用坐标表示地理位置。

  活动二问题探究。

  根据以下条件画一幅示意图,标出学校和小刚家、小强家和小敏家的位置。

  小刚家:出校门向东走150m,再向北走200m。

  小强家:出校门向西走200m,再向北走350m。

  小敏家:出校门向南走100m,再向东走300m,最后向南走75m。

  请同学们分组讨论,你会画示意图,并且标记出学校、小刚、小强和小敏家的位置吗?

  学生分组讨论后得出:建立平面直角坐标系,用坐标来表示四者的位置。

  进一步问学生,如何建立平面直角坐标系呢?让学生一边动手实践操作,一边进行讨论分析。

  学生通过动手实践和分组讨论后发言:要建立平面直角坐标系首先要确定原点的位置,由题目我们可以确定以学校为原点,并取向东、向北为X轴、Y轴的正方向,这样做的好处是可以很容易地写出三个同学家的位置不会出错。

  学生继续手中的操作实践发现,四者的实际距离需要用进行适当的处理后转化成图上距离,也就是说要确定大小适中的平面直角坐标系的单位长度需要选定适当的比例尺。学生只有实际动手操作实践才能明确怎样的比例尺才叫“适当。

  学生继续在坐标系中描出小刚家、小强家和小敏家的位置,并在坐标系中写出他们的坐标和名称。

  教师在学生讨论交流的基础上引导学生发现

  并解决问题并将答案补充完整。

  意图:让学生经历由实际问题抽象出数学问题,通过对数学问题的研究解决实际问题的过程。这种方式密切联系生活实际,从实际的需要出发学习直角坐标系,让学生充分感受平面直角坐标系在解决实际问题中的作用。

  活动三过程归纳。

  请学生思考,通过以上的探究和交流,你能总结出用平面直角坐标系表示地理位置的一般过程吗?

  学生在独立思考的基础上分组活动,并进行归纳总结。

  利用平面直角坐标系表示平面内一些点的地理位置的一般过程如下:

  ⑴建立坐标系,选择一个适当的参照物为原点,并确定x轴和y轴的正方向。

  ⑵根据具体问题确定适当的比例尺,在坐标上标出单位长度。

  ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  让学生理解建立适当的直角坐标系关键是确定原点的位置,这要根据实际情况选择明显或者是熟悉的地点为原点,这样能够清楚地表明其他地点的位置。

  确定比例尺是画平面直角坐标系的重要环节,比例尺的确定要根据具体问题情况。

  确定坐标轴上的单位长度是建立直角坐标系的重要步骤。在建立直角坐标系表示地理位置时,要结合比例尺来确定坐标轴行的单位长度。

  意图:在归纳过程中,让学生充分活动起来,通过前面的观察、探究来进行总结。不要让学生死记硬背。

  活动四:能力训练。

  如图,这是某乡镇的示意图.试建立直角坐标系,用坐标表示各地的位置。

  比例尺:1:100000

  学生以分组竞赛的方式讨论如何解题。

  这个练习主要是针对“如何确定原点建立直角坐标系”。教师深入小组,并参与小组活动,及时了解学生情况。教师在电脑上演示学生在练习时出现最多的几种原点选取方式建立的.平面直角坐标系。

  意图:从学生已有的知识出发,给学生提供现实的、有意义有趣味的,富有挑战性的练习题,通过合作、竞赛的方式,激发学生学习的兴趣,引导学生在做练习的过程中,通过小组协作或自主探索来巩固知识和获得技能,掌握基本的数学思想方法。活动五:总结结论,强化认识。

  给学生2—5分钟时间,回忆思考本节课学习的主要内容,并尝试着用数学语言进行归纳描述。本节课主要学习了根据具体条件建立直角坐标系,利用坐标来表示地点的确切位置。并归纳了用平面直角坐标系表示地理位置的一般步骤:

  ⑴建立坐标系,选择一个适当的参照物为原点,并确定x轴和y轴的正方向。

  ⑵根据具体问题确定适当的比例尺,在坐标上标出单位长度。

  ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  意图:知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  大树(8,2)

  仙鹤(2,1)

  狮子(6,6)(2,1)(8,2)

  通过小结,学生反思学习和解决问题的过程。教师对学生的进步给予肯定和鼓励,树立学生学好数学的信心。了解学习效果,让学生经历运用知识解决问题的过程,给学生以获得成功体验的空间,激发学习积极性,建立学好数学的信心。

  活动六:布置作业。

  (1)第60页第5题、第61页第10题。

  (2)拓广探索:已知仙鹤的坐标为(2,1),大树的坐标为(8,2),而狮子的坐标为(6,6),你能在图中标出狮子的位置吗?

  意图:针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的

  六、设计说明

  本节课通过实际生活中的例子引入,借助多媒体动画直观形象的演示,激发学生学习的兴趣,激活他们的思维。采用“主动探索和引导发现”的教学方法,让学生学会通过建立平面直角坐标系来表示物体的地理位置。教学中要注意建立平面直角坐标系的关键是确定原点的位置,确定比例尺是画平面直角坐标系的重要环节,确定坐标轴上的单位长度是建立直角坐标系的重要步骤。

七年级数学说课稿6

  尊敬的各位评委,上午好!我说课的课题是《一元一次不等式组》。

  我从教材分析、学情分析、教学目标、教学手段、教学过程这五个方面来进行说明。

  一、教材分析

  《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。

  《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。

  《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

  《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的教学重点确定为一元一次不等式组的解法。

  数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。

  本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。

  二、学情分析

  从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

  基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。

  三、教学目标

  在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:

  1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

  2.了解一元一次不等式组及解集的概念。

  3.会利用数轴解较简单的一元一次不等式组。

  4.培养学生分析、解决实际问题的能力。

  5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。

  四、教学手段

  本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。

  五、教学过程

  本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。

  本节课我设计了五个活动。

  活动一、实际问题,创设情境

  问题1.

  小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地.后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克.

  (1)从跷跷板的状况你可以找出怎样的不等关系?

  (2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?

  我提出问题(1),学生独立思考,回答问题。

  考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。

  教师提出问题(2),学生小组合作、探索交流,回答问题。

  我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。

  这里是通过对数量关系的分析、抽象,突出数学建模思想的.教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。

  问题2.

  现有两根木条,一根长为10厘米,另一根长为30厘米,如果再找一根木条,用这三根木条钉一个三角形木框,那么第三根木条的长度有什么要求?

  教师提出问题,学生独立思考,回答问题。

  教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。

  设计意图:这是一个与三角形相关的问题,要

  求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。

  活动二、总结归纳,得出概念

  1.一元一次不等式组

  通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。

  即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组(linearinequalitiesofoneunknown)。 2.一元一次不等式组的解集

  同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。

  不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。

  师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。

  教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识,但是未必能够全面得出结论。因此,教师要耐心加以引导。

  通过学生的自主探究,合作交流,培养学生的总结归纳能力。

  活动三、解释应用、拓展延伸

  例题

  解下列不等式组,并把它们的解集在数轴上表示出来:

  师生活动:师生共同完成,教师板书。

  在对一元一次不等式意义理解的基础上,会解一元一次不等式组。(2)是对解一元一次不等式组的拓展延伸。

  练习1:

  用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么大约多少时间能将污水抽完?

  练习2:

  某次知识竞赛有50道选择题,评分标准为:答对一题得2分,答错一题扣1分,不答题不得分也不扣分,某学生4道题没答,但得分超过70分,他可能答对了多少道题?

  师生活动:教师展示多媒体课件,学生独立完成。

  设计意图:培养学生分析、解决实际问题的能力。

  练习3:

  求不等式组的解集。

  练习4:

  求不等式组的正整数解。

  师生活动:教师展示多媒体课件,学生独立完成。

  设计意图:这两道习题的设置让学生进一步理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组的解集。

  活动四、课堂小结

  我提出了三个问题:

  1.通过本课的学习,你学到了哪些新的知识?

  2.一元一次不等式组与不等式在解法和解集上有什么联系?

  3.在学习这些知识的过程中,你的经验与教训是什么?

  在学生回答的基础上,教师作如下的归纳总结:

  1.学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要,不等式组的知识源于生活实际,要学会分析现实世界中量与量的不等关系,解一元一次不等式组。

  2.将一元一次不等式组的解集在数轴上表示可以加深对一元一次不等式组解集的理解,也便于直观地得到一元一次不等式组的解集,体现了数形结合的数学思想方法。

  在课堂小结的过程中,教师提出问题,学生回答,互相补充.

  教学效果预估与对策:预计学生在利用本节知识解决所提出的问题的过程中,能够总结出经验和教训,有所收获。教师要加以引导,师生之间相互加以完善。

  设计意图:学生通过第一个问题,可以回顾出本节课所学到的知识;通过第二个问题,使学生在与一元一次不等式的对比中加深对一元一次不等式组的理解,并形成知识网络。通过第三个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。

  活动五、课后作业

  1.教材P53练习1、2、4;

  2.P55复习题A组5、6。

  教师布置作业,学生记录作业.

  估计大部分学生可以较为顺利完成作业1;作业2具有一定的难度,需要学生首先进行判断,如果思维上存在障碍,可降低思维难度。

  作业的设计,可以让学生巩固所学知识,让学生在这个环节中,进一步理解和体会数学建模思想在实际问题中的应用。

七年级数学说课稿7

  一、教材分析

  (一)教材的地位和作用

  方程是初等数学的基本知识,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。方程在实际问题中的应用,是中学阶段应用数学知识解决实际问题的重要开端,也是增强学生学习数学、应用数学意识的重要题材。本节教材主要起着承前启后的作用,可以说是小学与中学内容上的衔接点,方法上的分水岭。

  (二)教学内容

  “从算式到方程”新教材与原教材的显著区别:方程这一部分内容不是按照由定义到解法最后讲应用的纯数学体系编排,而是首先从实际问题出发,通过比较算术方法与方程求解的区别,体会方程的优越性,让学生认识到从算式到方程是数学的一大进步。然后再通过具体实际问题所列方程,介绍方程等概念。新教材的编写更加体现了数学的应用价值。

  (三)教学重点难点

  由于学生在小学阶段已习惯用算术方法解决实际问题,对列方程不太熟练,为了防止学生仍停留在列算式解题的低层上,所以本节重点确定为:让学生在讨论问题、解决问题的过程中,比较列算式与列方程在分析数量关系上的区别及列方程时相等关系的建立。而本节中学生可能感到困难的仍是实际问题相等关系的建立。

  二、目标分析

  依据课程标准的要求,确定以下目标:

  (一)知识与技能目标

  1。了解方程等基本概念。

  2。会根据具体问题中的数量关系列出方程。

  (二)过程与方法目标

  经历从具体问题中的数量相等关系列出方程的过程,体会并认识方程是刻画现实世界的一个有效的数学模型,渗透数学建模的思想。

  (三)情感目标

  让学生进一步认识到方程与现实世界的密切关系,感受数学的价值。培养学生获取信息,分析问题,处理问题的能力。

  三、教法与学法分析

  根据本节内容与现实生活联系较紧密的特点,教学中选取学生熟悉的、感兴趣的背景材料,充分调动学生的学习热情。并恰当设计各种问题,让学生在教师的引导下,通过小组讨论、相互交流、动手操作、自主探索等活动,获得知识,积累经验,体验成功,积极推行自主学习、合作学习、探究学习等新的学习方式,努力完成教师和学生在教与学活动中角色的转变。

  四、教学过程分析

  教学目标①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程

  ②初步具有解方程中的化归意识;

  ③培养言必有据的思维能力和良好的思维品质。

  教学重点用等式的性质解方程。

  知识难点需要两次运用等式的性质,并且有一定的思维顺序。

  教学过程(师生活动)设计理念

  复习引入解下列方程:

  (1)x+7=1.2;

  (2)在学生解答后的讲评中围绕两个问题:

  ①每一步的依据分别是什么?

  ②求方程的解就是把方程化成什么形式?

  这节课继续学习用等式的性质解一元一次方程。由于这一课时也是学习用等式的性质解方程,所以通过复习来引入比较自然。

  探究新知对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?

  例1利用等式的性质解方程:

  0.5x-x=3.4(2)

  先让学生对第(1)题进行尝试,然后教师进行引导:

  ①要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左边的0.5,怎么去?

  ②要把方程-x=2.9转化为x=a的形式,必须去掉x前面的“-”号,怎么去?

  然后给出解答:

  解:两边减0.5,得0.5-x-0.5=3.4-0.5

  化简,得

  -x=-2.9

  两边同乘-1,得

  x=-2.9

  小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化。

  你能用这种方法解第(2)题吗?

  在学生解答后再点评。

  解后反思:

  ①第(2)题能否先在方程的两边同乘“一3”?

  ②比较这两种方法,你认为哪一种方法更好?为什么?

  允许学生在讨论后再回答。

  例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米。现已做了80套成人服装,用余下的布还可以做几套儿童服装?

  在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?

  解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得

  80x×3.5+1.5x=355

  化简,得

  280+1.5x=355

  两边减280,得

  280+1.5x-280=355-280

  化简,得

  1.5x=75

  两边同除以1.5,得x=50

  答:用余下的布还可以做50套儿童服装。

  解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。

  问题:我们如何才能判别求出的答案50是否正确?

  在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355

  方程的左右两边相等,所以x=50是方程的解。

  你能检验一下x=-27是不是方程的解吗?不同层次的学生经过尝试就会有不同的收获:一部分学生能独立解决,一部分学生虽不能解答,但经过老师的引导后,也能受到启发,这比纯粹的老师讲解更能激发学生的积级性。

  这里补充一个例题的目的一是解方程的应用,二是前两节课中已学到了方程,在这里可以进一步应用,三是使后面的.“检验”更加自然。

  解题的格式现在不一定要学生严格掌握。

  课堂练习①教科书第73页练习第(3)(4)题。

  ②小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)

  建议:采用小组竞赛的方法进行评议

  小结与作业

  课堂小结建议:①先让学生进行归纳、补充。主要围绕以下几个方面:

  (1)这节课学习的内容。

  (2)我有哪些收获?

  (3)我应该注意什么问题?

  ②教师对学生的学习情况进行评价。

  ③思考题用等式的性质求x:-2x=-5x+7引发竞争意识,提高自我评价和自我表现的机会,以达到激发兴趣,巩固知识的目的。评价包括对学生个人、小组,对学生的学习态度、情感投入及学习的效果方面等。

  本课作业①必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3

  ②选做题:教科书第73页第4(3)题,第74页第10题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、力求体现新课程理念:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。本设计从新课的引人、例题的处理(包括解题后的反思)、反馈练习及小结提高等各环节都力求充分体现这一点。

  2、在传统的课堂教学中,教师往往通过大量地讲解,把学生变成任教师“灌输”的“容器”,学生只能接受、输入并存储知识,而教师进行的也只不过是机械地复制文化知识。新课程的一个重要方面就是要改变学生的学习方式,将被动的、接受式的学习方式,转变为动手实践、自主探索与合作交流等方式。本设计在这方面也有较好的体现。

  3、为突出重点,分散难点,使学生能有较多机会接触列方程,本章把对实际问题的讨论作为贯穿于全章前后的一条主线。对一元一次方程解法的讨论始终是结合解决实际问题进行的,即先列出方程,然后讨论如何解方程,这是本章的又一特点。本设计充分体现了这一特点。

七年级数学说课稿8

  一、说教材

  1、教材的地位和作用:

  科学记数法是义务教育课程标准实验教科书(浙教版),七年级上册第二章第二节的内容。在学生学习了有理数的加、减、乘、除、乘方等内容的基础上来学习的,本节课进一步学习大数的表示方法――科学记数法。科学记数法将在后几节近似数和有效数字中得以应用,也为科学记数法表示小数打下基础,本节课在实际生活中有广泛应用,同时也为学习科学中物理化学等知识的有力工具。

  2、说教学目标

  确立的依据:《数学课程标准》强调学生的数学活动,发展学生的数感,能用多种方式来表示数,能在具体的情境中把握数的相对大小关系,因此结合学生现有的对数学的认知情况,思维状况和学生学习过程的情感体验确立教学目标。

  知识目标:理解科学记数法的意义,并学会用科学记数法表示比10大的数。

  能力目标:积累数学活动经验,发展数感,进一步培养学生自主探究的.能力。

  情感目标:感受科学记数法的作用,培养团队精神,激发爱国热情。

  3、说教学重点和难点

  根据《数学课程标准》的要求及现阶段学生的学习实际能力确立重难点。

  重点:进一步感受大数,用科学记数法表示大数。

  难点:用科学记数法表示大数,提高学生归纳总结的能力。

  二、说教法

  为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。结合先进手段采用讲解法、演示法、讨论法实施教学。

  三、说学法

  指导在前一阶段,已指导学生进行自主学习,学生的能力有一定的提高,因此这一节将继续指导学生通过动手、动口、动脑等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

  四、说教学过程设计

  1、预习检测:

  (1)用科学记数法表示下列各数:

  230000; 15800…0(共31个0)

  (以下是选做题)

  (2)下列用科学记数法表示的数,原来各是什么数?

  4.315 ×103; 1.02 ×106

  (3)计算: (8.1 ×108) ÷ (9 ×105)

  8.56 ×102 – 2。1

  设计意图:

  通过课前预习检测完成的情况,检查学生自主学习的能力,了解学生对本节课的疑惑。

  2、创设情境导入问题:

  中国的国土面积约为960 0000平方千米

  07年第二季度美国摩托罗拉公司盈利—28000000美元

  我国煤的储藏量达6000 0000 0000吨

  天然气资源量约47 0000 0000 0000立方米

  上面各资料有出现较大的数据,这些数记录过程中容易出错,那么有没有其它较为简便的方法来记录以上这些数据呢?

  设计意图:

  创设情境,激发民族自豪感,体会大数”读””写”的困难,从而导出课题。

  3、探究新知

  通过刚才出现的大数引出问题一:以上各数有些什么特点?问题二:有没有简单的记数方式?引导学生回答。

  之后让学生观察回答10n的数的特征

  讲解如何把图中出现的大数转换成一个数(只带一位整数的数)与10的n次幂乘积的形式。进而引入概念科学记数法:一般地,一个大于10的数可以表示成a×10的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法(scientificnotation)。注意:(1)1≤a<10(2)n是正整数(3)对于负数的科学表示法,只需要将其绝对值用科学计数法表示,符号不变。

  设计意图:

  引出如何用科学记数法表示大数,通过表示方法总结出科学记数法的定义,并且能理解和掌握转换过程。真个板块也是本课的重点和难点处理掉,让学生感到自然过渡。这里体现了特殊到一般的认知规律。

  4、运用新知解决问题

  设计一个小游戏用科学计数法表示下列各数

  设计意图:

  玩是孩子的天性,让孩子在玩中去消化知识,采用”活动促发展”的基本思路,面向全体落实概念,营造课堂气氛,使每位同学积极投入,培养学生团结合作能力。

  5、探究归纳

  下列用科学记数法表示的数,原来各是什数?(指一般用十进制表示的数)

  设计意图:

  采用”自主探究”的形式,归纳总结反思,培养学生的概括归纳能力,逆向思维能力。

  6、实战演练:

  1、计算

  2、测脉膊(动手实践题)

  设计意图:

  巩固新知,培养学生计算能力,动手能力,解决问题的能力,让学生感受到数学来源于生活,数学就在我们身边,培养学生学习数学的兴趣,发展学生的数感。

  7、小结:成果发布会

  让学生畅所欲言,说说收获与体会。

  设计意图:

  帮助同学理清知识脉络,强化重点。

  8、布置分层作业

  1、用科学计数法表示下列叙述中较大的数

  2、应用题(选作)

  3、提高题(选作)

  设计意图:

  内化知识,培养全体,注重个性发展。

七年级数学说课稿9

  一、说教材:

  本节课主要是在学生学习了有理数概念的基础上,从表达方位这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二、说教学目标:

  知识与技能:使学生理解数轴的三要素,会画数轴;能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示。

  情感价值观:向学生渗透数形结合的数学思想,知道所有有理数可以在数轴上表示,培养学生对数学的学习兴趣。

  过程与方法:分层次教学,讲授、练习相结合。

  三、说教学重、难点:

  重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数。

  难点:正确理解有理数与数轴上点的对应关系。

  四、说学情:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五、说教学策略:

  由于七年级学生的'理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

七年级数学说课稿10

  第一课时说课说案

  一:教材分析:(说教材)

  1:教材所处的地位和作用:

  本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣

  以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。

  2:教育教学目标:

  (1)知识目标:

  (a)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。

  (b)

通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的.应用题。

  (2)能力目标:

  通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。

  (3)思想目标:

  通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

  3:重点,难点以及确定的依据:

  根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。

  二:学情分析:(说学法)

  1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。

  2:学生在列方程解应用题时,可能存在三个方面的困难:

  (1)抓不准相等关系;

  (2)找出相等关系后不会列方程;

  (3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。

  3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。

  4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。

  5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。

  三:教学策略:(说教法)

  如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:

  1:“读(看)——议——讲”结合法

  2:图表分析法

  3:教学过程中坚持启发式教学的原则教学的理论依据是:

  1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让

  学生大致了解列出一元一次方程解应用题的方法。

  2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,如例

  1中,不能把“设原来有x千克面粉”写成“设原来有x”。另外,在列方程中,各代数式的单位应该是相同的,如例1中,代数式“x”“—15%x”“42500

  ”的单位都是千克。在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。

七年级数学说课稿11

  我说课的内容是七年级《数学》上册《有理数的乘法》的第1课时。下面我主要从教材分析、教学目标、教法与学法、教学过程分析四个方面进行说课:

  一、 教材分析:

  1. 教学内容:

  本节教材设置了甲、乙两个水库的水位变化的现实情境,引导学生仔细观察一列算式的因数与积的变化规律,使他们自己发现、探索出有理数的乘法法则,并能用自己的语言描术,由有理数的乘法的练习中引出倒数的概念,进一步探索出几个不等于零的有理数乘法的法则及乘法运算律,使同学们真正地掌握有理数的乘法运算。

  2. 教材地位和作用:

  “有理数的乘法(1)”占有十分重要的地位,它是前几课的延伸与拓展,是有理数除法运算的基础,也为今后学习有理数四则混合运算奠定了基础,具有很重要的地位。

  二、 教学目标:

  1. 能力目标:经常探索有理数乘法法则,发展观察、归纳、猜想、验证等能力。

  知识目标:会运用有理数的乘法法则熟练地进行有理数的`乘法运算。

  2. 教学重难点:

  本节的重点即为经历探索有理数乘法法则运算律的过程,发展学生观察、归纳、猜测、验证等能力,使学生在理解记忆乘法法则的基础上会熟练地进行有理数的乘法运算。难点是确定多个不等于零的有理数相乘的积的符号,及有一个为零时积的情况。

  三、 教法与学法:

  1. 教法:

  采取师生互动方式,并将分析、观察、验证相结合。通过学生主动性学习,教师的指导,练习的巩固层层展开教学,激发学生的求知愿望,让学生更好地理解和接受新知识。

  2. 学法:

  事先让学生预习,有不懂的再在课堂上在教师引导下弄懂。学生在教师引导下进行观察、归纳、猜想、验证,并通过练习及时巩固新学知识,能熟练地进行乘法运算。

  四、 教学过程分析:

  1. 导入过程:

  利用课本的问题的案例来导入,既让学生感受数学与生活实际问题的联系,又让学生在解决问题的过程中回顾小学已学过的乘法知识,为后面学习负有理数的乘法做铺垫。

  2. 探索新知过程:

  首先,我引用课本的议一议和猜一猜中的两组式子,逐步引导学生发现其中规律,猜出结果,并自己归纳出乘法法则。其中利用导入中所书写的式子,节省课堂时间。

  对于例题的选取,我先了两个例题,例题共五个小题,我先示范做一个题,其余让学生尝试用刚学的知识自己解决,这样做的目的是先示范做题的步骤和格式,再查看学生是否能正确运用乘法法则进行计算。其中还利用例1引入有理数中倒数的概念。在例题的选取中,我还有意挑选了不同的题型的乘法计算题:例1是两个数相乘的,(1)小题是一负一正相乘,(2)小题是两个负整数相乘,(3)小题是两个负分数相乘的;例2是三个数相乘的,(1)小题含一个负数,(2)小题含2个负数。这样做既可让学生了解不同题型,也为后面的教学做了准备。我还利用例2的第2小题添加“0”改变题目,让学生了解有一个因数为0时,积是0,我认为这样不但让学生了解了知识,也节省了课堂时间。

  对于乘法中确定符号的问题,我引导学生通过对例题中式子的观察,以及对原有乘法知识的回顾,提示学生留意各个式子中负数的个数,引导学生发现规律,解决课本76页议一议中的积的符号的确定问题。

  3. 随堂练习:

  在课堂练习题的选取中,我也有意选择了多种题型加以巩固,并增加了一个两个数的和与第三个数相乘的题型,让学生再次了解要先计算小括号中的加法,明确此类题型的计算顺序。

  4. 小结:

  以提问的形式大致回顾本节所学的内容,主要问了三个问题:

  (1) 这节课我们主要学习了些什么内容?

  (2) 有理数的乘法法则是什么?

  (3) 什么样的数互为倒数?

  5. 作业:

  作业我同样选取不同题型的五个计算题,目的是想查看学生学的效果如何,是否对哪类题型还留有疑问。

  6. 自我评价:

  这堂课我觉得满意的,是能够利用短暂的45分钟把要学的知识穿插在学与练当中,充分地利用了课堂有限的时间,并且能让学生边学边练,及时巩固。

  当然这堂课也有很多不足之处,我觉得自己对于课堂上学生做练习时出现的一些小问题处理还没有能够处理得很好,我应该吸取经验教训,再以后的教学中加以改进。

  另外对于多个有理数相乘时的符号问题,我觉得自己归纳得还不是很到位,我想解决的办法是在以后的练习中再做些补充,让学生加深理解。从中我也得到一个教训,再以后的教学工作中,我还应该多学习教学方法,多思考如何归纳知识点,才能更好地帮学生形成一个系统的知识系统!

七年级数学说课稿12

  一、教材分析

  平行线的判定是在学生对平行线有了初步认识及学习了三线八角之后引入的。它不但加深了对“角与平行线”的认识,而且为继续研究平行线的性质、三角形、四边形等知识打下坚实的“基石”,是几何说理的重要组成部分。在本节内容之前学生对两条直线相交或平行的认识,一般停留在直观、表象的层面。本章的任务就是引导学生由表及里,深入认识相交线和平行线的本质特征,通过操作,思考,归纳和推导得到平行线的判定方法,同时在这一过程中获得逻辑思维和说理表达的初步训练。

  二、学生分析

  我校学生整体的学习能力偏弱,因此逻辑思维能力也相对薄弱,文字语言、符号语言和图形语言之间的转换能力也比较薄弱。因此在本单元的教学中,我们将教学过程分成了体会感知几何说理表达,了解划分逻辑段、补充完善几何说理过程、独立完成几何说理过程三个阶段实施。同时,两课时的教学目标制定如下:

  三、教学目标

  第一课时:

  1.知道平行线的概念及表示方法;会过直线外一点画已知直线的平行线,体验并理解平行线的基本性质。

  2.在操作过程中,理解平行线的判定方法1:同位角相等,两直线平行。并会用这一基本事实进行初步的说理,从中感知推理的规则和过程。

  第二课时:

  1.利用平行线的判定方法,导出平行线的判定方法;

  2.初步会用平行线的判定方法来判定两直线平行,并进一步学习几何说理和表达;

  3.让学生体会“把新问题转化为已经解决的问题”所体现的化归思想;

  4.让学生参与推导过程,树立学习几何知识的信心,提高学习数学的热情。

  四、教学难点、重点

  第一课时:

  1、在操作过程中体验并理解平行线的基本性质,掌握平行线判定方法一。

  2、初步会用判定方法一判定两直线平行,初步学习几何说理和表达;

  第二课时:

  1.利用平行线的判定方法1,导出平行线的判定方法2、3;

  2.初步会用平行线的判定方法2、3来判定两直线平行,进一步学习几何说理和表达。

  五、教学设计过程

  第一课时:

一、复习

  1.同位角,内错角,同旁内角的概念。

  2.找出图中的同位角,内错角,同旁内角并指出他们分别是由哪两条直线被第三条直线所截得到。

  (通过复习相关知识,为后面学生想到同位角相等推出直线平行做铺垫)

  二、学习新课

  (一)概念学习

  1.问题的引入:

  在周围世界中到处可见平行线的形象,你能举出在周围所看到的形象为平行线的例子吗?

  (学生举例)

  (教师可适当补充举例)

  (直观感受平行)

  2.通过直观图形得出平行线概念:

  同一平面内不相交的两条直线叫做平行线,“平行”用符号“//”表示。

  提问:在同一平面内,两条不重合的直线有几种位置关系?

  如图:直线a和b是平行线,也称它们互相平行,记作“a∥b”,读作“a平行于b”

  3.如何画平行线呢?

  操作1:利用直尺和三角尺画已知直线的平行线。

  (通过此问题的研究,让学生在自己动手操作的过程中,掌握画已知直线平行线的常用方法,同时为引出平行线判定方法一做准备。)

  4.思考1:过直线a外一点P画直线a的'平行线,可以画几条?

  操作2:用平移三角尺的方法画出经过点P且平行于a的直线b。

  通过操作的结果得出以下的性质:

  (1).平行线基本性质:过直线外一点有且只有一条直线与已知直线平行。

  (通过此问掌握平行公理,同时巩固画已知直线平行线的方法)

  5.思考2:在画平行线中,三角尺起什么作用?

  (教师可提示引导,在三角尺平移的过程中那些量不变)

  (构成三线八角图,能否借助于相关角的大小关系来判定两直线平行)

  画直线a的平行线b时,直尺所在的直线截a、b所得的同位角∠1和∠2的大小相等

  (2).导出平行线判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。(简单地说成:同位角相等,两直线平行)

  符号语言表示:

  如图:因为∠1=∠2

  所以a//b(同位角相等,两直线平行)

  (熟悉文字语言、符号语言、图形语言的相互转化)

  (二)应用新知

  1、填空,如图:

  (1)如果∠1=∠B,那么_____//______。

  (2)如果___________,那么AD//BC。

  (本题是定理的直接运用,(1)为填结论,2)为填条件,通过此题熟悉定理的简单运用)

  2、如果同一平面内的两条直线垂直于同一条直线,那么这两条直线平行吗?

  (1)答:____________(写平行或不平行)

  (2)根据图示,说明直线a与直线b平行的理由。

  解:因为a⊥c,b⊥c()

  所以∠1=______,∠2=______(垂直的意义)

  得∠1=∠2(等量代换)

  所以a_______b()

  结论:同一平面内垂直于同一条直线的两条直线平行。(可以作为今后说理的依据)

  3、如图,如果∠1=110°,∠2=70°,那么AB//CD吗?为什么?

  解:将∠1的邻补角记作∠3,则∠1+∠3=180°(邻补角的意义)

  因为∠1=110°()

  所以∠3=180°-∠1=70°(等式性质)

  又因为∠2=70°()

  得∠2_____∠3()

  所以AB//CD()

  (此两题为定理的简单运用,第一题需要由垂直得出同位角相等的结论,第二题由邻补角的关系得出同位角相等,进而满足定理条件,推出直线平行。此两题讲解时,老师要做简要分析,如:第一题问要推直线平行,需要什么条件,第二题可问由∠1=110°,可推出那些角等。同时,教师要进行逻辑段的划分,让学生有获得体验感悟。为了降低难度,此两题以填空的形式呈现。)

  4、如图,已知D、B、C在一直线,CE平分∠ACD,∠2=∠B,那么AB//CE吗?为什么?

  (此题结合角平分线的性质推出同位角相等,进而证明平行,整体逻辑段较少,因此尝试让学生自己说理表达,书写逻辑段,老师结合学生实际情况做适当指导讲解)

  三.课堂小结

  1.平行线的概念;

  2.判定两条直线平行的第一种方法;

  3.平行线的基本性质;

四.作业

  1、如图,已知点P是三角形ABC的边BC上的一点。

  (1)过点P画PD平行于AB,交AC于点D。

  (2)过点P画PE平行于AC,交AB于点E。

  2、下列图中不能判断直线a与b平行的是()

  3、如图,已知∠1=∠2=∠3,请填写理由,说明AB//CD,EF//MN。

  解:因为∠1=∠2()

  ∠1=∠4()

  所以∠2=∠4()

  得AB//CD()

  因为∠1=∠3()

  又_____________(对顶角相等)

  得______________(等量代换)

  所以____________(同位角相等,两直线平行)

  4、如图,已知∠D=80°,∠BED=80°,能判定AB//CD吗?并说明理由。

  5、如图,直线l与直线a,b,c分别相交,且∠1=∠2=∠3

  (1)从∠1=∠2可以得出那两条直线平行?为什么?

  (2)从∠1=∠3可以得出那两条直线平行?为什么?

  (3)b∥c吗?为什么?

  练习说明:

  五道练习题中,第一题主要用于巩固练习画平行线的方法。后面四道练习题主要是对判定定理一的应用,难度逐步提高。第二题是定理的简单运用,需要学生通过邻补角、对顶角等关系转化成同位角相等的条件,但不需要进行说理表达,主要考察学生对定理的理解情况。第三题是在熟悉定理的前提下,考察学生说理表达、逻辑推理的能力,但以填空形式呈现,使难度降低。第四、五题是在第二、三题的基础上让学生自己尝试独立书写说理过程。同时,第五题本是书本上的例题,我放在习题中的目的是为了让学生有充足的时间研究,为第二课时引出判定定理二、三做铺垫。

  第二课时:

一、复习引入

  1.“三线八角”的研究:两条直线被第三条直线所截,在形成的八个角中根据位置关系的不同,出现了“同位角、内错角、同旁内角”这三种角。

  2.上节课中,学习了判定两条直线平行的基本方法,简单的说:同位角相等,两直线平行

  二、新课

  今天,继续来研究平行线的判定问题,引出课题。

  请同学们猜想:除了同位角相等,两直线平行,还有其它的判定两条直线平行的方法吗?

  (学生有了第一课时的经验,同时,作业的最后一题中就隐含了内错角相等,可推出两直线平行的结论,学生就有可能从内错角、同旁内角这两类角的特殊关系考虑,老师可做适当提示。)

  可能结论:①内错角相等,两直线平行;②同旁内角互补,两直线平行;③同旁内角相等,两直线平行

  逐一说理:如图①已知直线a、b被直线l所截,∠1=∠2,试说明a∥b。

  如图②已知直线a、b被直线l所截,∠1∠2=180°,试说明a∥b。

  结合图形③(反例),说明第三种猜测错误:

  归纳、总结部分:

  到现在为止,学过了三种判定两条直线平行的方法:①同位角相等,两直线平行;内错角相等,两直线平行;③同旁内角互补,两直线平行。

  符号语言表示:

  如图:因为∠1=∠2

  所以a//b(同位角相等,两直线平行)

  因为∠2=∠3

  所以a//b(内错角相等,两直线平行)

  因为∠2+∠4=180°

  所以a//b(同旁内角互补,两直线平行)

  (在此环节中学生体验猜想——说理——归纳的过程,初步体会说明一个命题正确需要说理,说明一个命题错误,只要举一个反例。同时,学生进一步体会说理表达的基本形式。进一步熟悉文字语言、符号语言、图形语言的相互转化)

 三、应用新知

  1.如图直线a、b被直线l所截,已知①∠1=∠2,②∠2=∠3,③∠1∠4=180°,试说明a∥b。

  解:∵∠1=∠2(已知)

  ∴a∥b()

  ∵∠2=∠3(已知)

  ∴a∥b()

  ∵∠1∠4=180°(已知)

  ∴a∥b()

  2.如图,已知∠1=40°,∠B=40°,试说明DE∥BC。

  解:∵∠1=40°(已知)

  ∠B=40°(已知)

  ∴∠=∠()

  ∴DE∥BC()

  3.如图,已知∠B=50°,∠1=130°,试说明:AB∥CD。

  解:∵∠B=50°()

  ∠1=130°()

  ∴∠1∠B=°

  ∴AB∥CD()

  4.如图,已知∠1=115°,∠2=65°,那么AB∥CD吗?为什么?

  (第一题是定理的直接运用,起到巩固三个定理,进一步明确定理的条件及结论的作用。二、三两题是定理的简单应用,需要学生结合图形,分析条件,判断运用三个定理中的哪一个定理解决问题。比如第三题可以用判定2,也可用判定3,就可以做一个比较优劣。同时以填空的形式降低难度,学生在这两题中进一步体会说理表达的基本规范,教师进一步指导学生认识逻辑段的划分。第四题三个判定定理都能运用,灵活性较大,因此让学生自己尝试解决,先让学生进一步尝试独立书写说理过程,其次,将学生的不同解法展现,拓宽学生思路,相互学习。)

四、课堂小结

  1.学习了判定两条直线平行的三种方法;

  2.会运用它们判定两条直线平行。

  五、作业

  1、填空:如图,(1)如果∠1=∠2,那么_____//_____。

  (2)如果∠3=∠4,那么_____//____。

  (3)如果∠5=∠6,那么____//_____。

  (4)如果∠7=∠8,那么____//_____。

  2、填空:如图,(1)因为∠A=∠3(已知)

  所以_______//________()

  (2)写出两个能得到BC//DE的条件_________。

  (3)若∠1=70°,当∠5=______时,BC//DE。

  3、如图,直线l分别与直线a、b相交,已知∠1=110°,∠2=70°。

  (1)填写a//b的理由。(解法一)

  解:把∠1的邻补角记为∠3,则∠1+∠3=180°(邻补角的意义)。

  因为∠1=110°,()

  所以∠3=180°-∠1=70°,又因为∠2=70°,得∠2=∠3()

  所以a//b()

  (2)填写a//b的理由。(解法二)

  解:把∠1的对顶角记为∠4,则∠1=∠4()。

  因为____________,(已知)

  所以____________,(等量代换)

  又因为∠2=70°,得_________________(等式性质)

  所以a//b()

  (3)请尝试用“同位角相等,两直线平行。”说明a//b。

  4、如图,已知∠1=∠3,BE平分∠ABC,要说明DE//BC,请按照正确的说理顺序把下面几句话重新排列,并说明每一步的理由。

  (1)因为∠1=∠3

  (2)所以∠2=∠3

  (3)因为BE平分∠ABC

  (4)所以DE//BC

  (5)所以∠1=∠2

  5、如图,已知∠C=∠D,∠D=∠1试说明:AC∥DF,DB∥EC

  (选作)6、如图,在△ABC中,DE垂直BC,∠FEG=90°,∠1=∠2,那么AB//EG吗?并说明理由。

  练习说明:

  第一题是对定理的直接运用,但要考察学生在较复杂的图形中找出符合条件的基本图形。第二题,在第一题的基础上提高要求,需要学生结合图形自己找出证题的条件。第三题是把练习册上的一道练习改编所得,其中第(1)题没变,主要填写各步的理由,而第(2)题则和第(1)题相反,给出理由,补全步骤。第(3)问则是全部自己书写,但明确方法,三个问题层层递进,逐步加深。同时,第三题有和课堂练习4基本相同,只有数字不同,这也是对课堂学生学习情况的一种检验。第四题综合运用了角平分线的性质和判定定理2,但是给出了说理的所有步骤,要求排出正确步骤,有了一定的指导性,既引导学生在分析过程中形成正确思路,又一定程度降低了难度。第五题在前面的基础上更进一步,要求学生独立完成,对说理过程的规范表达有要求。第六综合性较强,涉及垂直的定义,同角的余角相等,内错角相等等,对学生的逻辑推理及书面表达能力的要求都比较高,因此,留作选做题。

七年级数学说课稿13

  我说的课题是整式的加减,源于义务教育课程标准实验教科书八年级(上册)第15章第2课时。下面我将从“教什么”、“怎样教”和“为什么这样教”来阐述我这节课的教学设计。

  一、教材分析:

  1、教材所处的地位及作用:

  本节课源于义务教育课程标准实验教科书八年级(上册)第15章第2课时,是在结合学生已有的生活经验,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。“合并同类项”这一知识点是整式部分的核心,因为它是本章重点“整式加减”的基础,其法则以及去括号与添括号的法则应用是整式加减的重点。同类项这一节的教学内容有同类项的概念、合并同类项法则及其运用,其法则的应用是整式加减的基础,另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的.运算。可以说合并同类项是有理数加减运算的延伸与拓广。因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

  2、学生情况分析:(正确说明学生已有认知结构与新内容之间的关系,明确学生可能遇到的难点)

  八年级学生理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。因此,我们要营造轻松、和谐的课堂气氛,充分激活学生的探索欲望,让学生在教师创设的情境中充满好奇地学,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想、在评价中逐步形成数学价值观。

  本课要注意发挥本节内容承前起后的作用,在小学和七年级,已经学习了用字母代替数,列代数式表示现实世界中简单的数量关系,根据数量关系列方程和解方程,有了这些基本知识,学生已经对整式的加减具有了一定的感性认识但在学习本课重点——同类项的概念、合并同类项的法则及应用时特别要处理好本课教学难点——正确判断同类项;准确合并同类项。

  二、教学目标:

  (正确阐述通过教学,学生在“双基”、数学能力、理性精神等方面所能得到的发展,并说明其依据)

  1.知识目标:

  (1)使学生理解多项式中同类项的概念,会识别同类项。

  (2)使学生掌握合并同类项法则。

  (3)利用合并同类项法则来化简整式。

  2.能力目标

  (1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。

  (2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。会利用合并同类项的知识解决一些实际问题。

  (3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。

  3.情感态度与价值观:

  (1)在整式的加减运算中体会数学的简洁美。

  (2)在探索规律的过程中,激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦,增强学数学的信心。

  三、教学重点、难点:

  根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:

  重点:同类项的概念、合并同类项的法则及应用。

  难点:正确判断同类项;准确合并同类项。

  四、教学方法、手段

  1、教学设想

  突出以学生的“数学活动”为主线,激发学生学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主

  探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验。

  2、教学方法

  利用引导发现法、讨论法,引导学生从具体生活情境及已有的知识和生活经验出发,营造自主探索与合作交流的氛围,提出问题,共同在实验、演示、操作、观察、练习等活动中运用多媒体来提高教学效率,验证结论,激发学生的求知欲,培养探索能力、创新意识。

  3、教学手段

  利用多媒体创设教学情境,引导学生观察、探索、发现、归纳来激发学生学习兴趣、激活学生思维,以利于突破教学重点和难点,提高课堂教学效益。新课标提倡教学中要重视现代教育技术、要引导学生独立思考、自主探索与合作交流,让学生掌握知识的发生发展过程,主动去获得新的知识,学会获取知识的方法,因而在教学中创设情境让学生乐意并全身心投入到现实的、探索性的数学活动中去。

  五、设计理念

  1、采用“问题情境—建立模型—解释、应用与拓展”的模式展开教学,让学生经历知识的形成与应用过程,从而更好地理解数学知识,掌握其思想方法和应用技能。

  2、改变学生的学习方式,教师引导学生主动地从事观察、实验、猜测、验证、推理、交流、反思等数学活动,鼓励学生自主探索与合作交流,使学生主动地获取知识,积累数学活动经验,学会探索,学会学习。

  3、关注学生的情感与态度,实施开放性教学,让学生获得成功的体验。

  六、教学程序

  为达到教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性、自觉性、积极性,本节课教学程序设计如下:

  展开探究活动

  交流探究成果

  继续深层探究

  启发探究欲望

  教学

  程序---------------------

  自主探究

  合作交流

  提炼升华

  主动入境

  学生----------------------------

  活动

  导入提示

  导评反馈

  拓展延伸

  导入情境

  教师---------------------活动

  七、教学过程设计

  1、提出问题,创设情境

  (1)、复习单项式及其系数和次数,多项式及其次数。

  (2)、以传位游戏引入新课。这个结果是怎么得到的?这和运用乘法的分配律有何关联?

  2、导入新课

  由课本上的探究引导学生分析得出同类项的概念再让学生试着写出两个项是同类项的例子,这就引导学生主动参与课堂活动。

  由具体的例子4x22x73x8x2-2得出在多项式中遇到同类项,可以运用交换律,结合律,分配律进行合并同类项。把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。

  合并同类项的法则:

  (1)、同类项的系数相加,所得结果作为系数。

  (2)、字母和字母的指数不变。

  做一做:

  (1)、求5x2y,-2xy2,-2xy2,4x2y的和

  (2)、求5x2y-2xy2,-2xy24x2y的和

  (3)、求5x2y-2xy2,-2xy24x2y的差

  从而总结出整式加减的一般步骤:(1)如果有括号,那么先去括号(2).如果有同类项,再合并同类项。

  补充做一些练习,巩固怎样合并同类项。再在合并同类项的基础上做一些化简求值的练习,最后以一题:“已知A=2a22b2-3c2,B=3a2-b2-2c2,C=c22a2-3b2,当a=1,b=2,c=3时,求A-BC的值.”有一学生说,题中给出b=2,c=3是多余的,他说的有道理吗?为什么?”来结束新课内容。

  3、小结

  引导学生进行小结,本课学到了哪些知识?

七年级数学说课稿14

  我说课的内容是华师大版九年义务教育七年级教科书代数第一册第二章第二节“数轴”的第一课时内容。

  一:教材分析:

  本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二:教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下;

  1.使学生理解数轴的三要素,会画数轴。

  2.能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

  3.向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三:教学重难点确定:

  正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

  四:学情分析:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五:教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环

  (一)、温故知新,激发情趣

  (二)、得出定义,揭示内涵

  (三)、手脑并用,深入理解

  (四)、启发诱导,初步运用

  (五)、反馈矫正,注重参与

  (六)、归纳小结,强化思想

  (七)、布置作业,引导预习

  六:教学程序设计:

  (一)、温故知新,激发情趣:

  首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

  (1)零上5°c用5表示。

  2)零下15°c用-15表示。(3)0°c用0表示。然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?

  答案是肯定的,从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的'准备。

  (二)、得出定义,揭示内涵:教师设问:到底什么是数轴?如何画数轴呢?

  (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

  (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表

  (3)选取单位长度,标数(这里说明任选适当

  的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。画完数轴后教师引导学生讨论:“怎样用数学语言来描述数轴?”

  (通过教师的亲切的语言启发学生,以培养师生间的默契)

  通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。至此,我们将一个具体的事物“温度计”经过抽象而概括为一个数学概念“数轴”,使学生初步体验到一个从实践到理论的认识过程。

  (三)、手脑并用,深入理解:

  1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?a、b、c、d、e、f、a、b、c三个图形从数轴的三要素出发,d和f是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

  2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如“很好”“很规范”“老师相信你,你一定行”等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

  我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

  (四)、启发诱导,初步运用:

  有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。安排课本23页的例1,利用黑板上的例题图形让学生来操作,教师提出要求:

  1、要把点标在线上

  2、要把数标在点的上方通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

  (五)、反馈矫正,注重参与:

  为巩固本节的教学重点让学生独立完成:

  1、课本23页练习1、2

  2、课本23页3题的(给全体学生以示范性让一个同学板书)为向学生进一步渗透数形结合的思想让学生讨论:

  3、数轴上的点p与表示有理数3的点a距离是2,(1)试确定点p表示的有理数;

  (2)将a向右移动2个单位到b点,点b表示的有理数是多少?

  (3)再由b点向左移动9个单位到c点,则c点表示的有理数是多少?先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

  (六)、归纳小结,强化思想:

  根据学生的特点,师生共同小结:

  1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

  (七)、布置作业,引导预习:

  为面向全体学生,安排如下:

  1、全体学生必做课本25页1、2、3

  2、最后布置一个思考题:与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?(来引导学生养成预习的学习习惯)

  七:板书设计:(略)

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢.

七年级数学说课稿15

  我是来自××中学的×××。我的说课稿内容是合并同类项。下面我就教 材分析、教法、学法、教学程序、教学评价五个方面进行设计说明。

  一、教材分析

  ㈠地位、作用

  本节课在学习了单项式、多项式及其有关概念之后,以同类项的概念、合并同类项的法则及其运用为教学内容。合并同类项是整式运算的基础,而整式的运算对学好初中数学有着十分重要的作用。

  ㈡教学目标

  ⒈知识目标:①理解同类项的概念,并能辨别同类项;② 掌握合并同类项的法则,并能熟练运用。

  ⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力。

  ⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到 一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育。

  ㈢重点、难点

  重点是同类项的概念、合并同类项的法则及其运用法则进行计算。

  难点是同类项定义的归纳、概括。

  二、教法

  根据本节教材内容和学生的实际水平,为更有效地突出重点、突破难点,按照学生的认识规律,遵循“教师为主导、学生为主体、训练为主线”的'指导思想,我将采用探究发现法、多媒体辅助教学等方法,教学中精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,并适时运用多媒体演示,激发学生探索知识的欲望,以此来达到他们对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养学生的思维能力。

  三、学法

  根据学法自由性原则,让学生在教师创设的问 题情景下,通过教师的启发点拨,在学生的积极思考努力下,自由参与知识的发生、发展、发现的过程,使学生掌握知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

  四、教学程序

  ㈠新课引入

  新课的开始,是课堂教学的一个重要环节。如果在新课伊始能吸引学生的注意力,引起他们浓厚的兴趣,激发强烈的求知欲望,就可以使学生愉快而主动地去接受新知识,从而取得课堂教学的理想效果。所以一开始上课,我用大屏幕显示一道实际生活中的问题,学生通过探究讨论解决问题,由此导出本节课的主题,同时为学习新课做好铺垫。

  ㈡探索新知

  本节课第一个重要环节是同类项的概念,既是重点也是难点。为突出重点,突破难点,我设计了活动1:学生仔细观察、独立思考后,分组讨论,互相交流,然后每组派一名代表发言,概括这两组单项式的特征。教师倾 听学生交流,在学生概括出上述几组单项式的特征之后,提出同类项的概念,再由学生概括出同类项 的定义。由教师补充:几个常数项也是同类项。这样,学生直接参与到同类项概念产生的过程,不仅能够有效地促使学生理解同类项的含义,而且能使学生体验获得成功的喜悦,同时培养和提高学生归纳、抽象概括的能力。

  为巩固同类项的概念,我设计了一道判断题,由学生一个个单独完成,并简单阐述理由,让学生充分发表意见,关注每一个学生。通过这个活动加深对同类项概念的理解,为后面合并同类项打好基础。

  另外还设计一道开放性题目,让学生自己动手写出两组 同类项,组内交流写出的项是否符合要求,教师深入学生中间,参与指导,帮助加深理解同类项 的含义,扩展学生的思维空间,培养学生的抽象思维能力和发散思维能力。

  第二个重要环节是合并同类项的法则。通过设计问题串,引导学生获取新知。问题1,实际上是引例中的两个等式,通过学生观察,容易得出结论,左边两项系数之和等于右边的系数,明确同类项相加成为一项的方法,使学生对合并同类项有个初步认识。为克服学生对这个认识可能存在的疑点,我设计了问题2,学生展开讨论,教师深入学生中间,参与学生讨论,指导学生探究,验证上述认识的正确性,体现了获取知识不仅要有观察、归纳、猜想过程,还必须有验证过程。打消疑点之后,提出问题3,有上面两个问题做基础,学生极易回答这个问题,教 师抓住时机,让学生总结概括合并同类项的法则,再次培 养和提高学生的归纳概括能力。

  ㈢巩固新知

  在这个环节中我设计了三道题。

  第一题:学生判断、理解只有同类项 才能合并,教师加以指导。本次活动中,教师应重点关注①学生对同类项的概念是否混淆不清,能否正确辨别问题。②是否在正确辨别 后只重视系数而忽略了字母和字母的指数。③对一些同类项的变式能否正确的辨别。通过这道练习,培养学生运用知识的能力,进一步巩固同类项的含义和合并同类项的方法,为本节课的应用做好铺垫。

  第二题:是一道实际应用题。学生小组讨论、交流,首先明确要解决什么问题,并围绕这个问题开展探究,寻找解决问题的方法。教师引导学生观察,帮助学生展示大小两个长方体纸盒的模型,并深入小组,倾听学生交流,指导学生探究。学生在掌握同类项的概念和合并同类项的法则后,通过解决一个实际问题,体现了“学数学、用数学”的基本理念,并让学生体会到数学是解决实际问题的重要工具,增强应用数学的意识。

  第三题:把学生分为两组,一组直接代入计算,另一组先化简再代入计算。通过比较让学生充分认识新知识的优越性,能够使学生积极主动运用新知识解决问题。

  ㈣课堂小结

  学生分组讨论、归纳,学生代表发言。教师倾听, 并对学生发言给予充分鼓励和肯定,调动学生主动参与的意识,让学生感受到集体合作的重要性。

  ㈤布置作业

  为减轻学生的课业负担,从课本中调选了两道题。第一题是合并同类项,既能巩固同类项的概念,又可利用合并同类项的法则进行计算,起到巩固新课的目的。第二题是实际应用题,进一步培养学生运用所学知识解决实际问题的能力,增强运用数学意识。学生通过独立思考,完成课后作业,老师批改,做好批改记录,及时反馈学生学习的效果,便于进行课堂教学优化。

  ㈥板书设计

  体现了新知识的产生过程,便于学生理解掌握知识,并加深记忆。

  五、教学评价

  整个教学过程遵循“由特殊到一般、再由一般到特殊”这一认识规律,教师始终是学生 学习活动的引导者、激励者、协调者、服务者,给学生留出足够的活动时间与空间,设计的各个教学环节有利于引发学生的学习兴趣,有利于学生由浅入深、循序渐进地掌握知识,形成能力,获得技巧,使他们在主动探索发现之中建构自己的知识,形成素质。

【七年级数学说课稿】相关文章:

七年级数学说课稿05-15

七年级数学说课稿08-25

七年级数学说课稿11-15

“用数学”数学说课稿01-05

数学说课稿05-16

数学说课稿09-04

数学活动说课稿11-14

数学广角说课稿09-13

《数学广角》说课稿12-04

数学说课稿10-12