《比例的意义》教学设计

时间:2025-10-30 11:34:11 教学设计 我要投稿

《比例的意义》教学设计(锦集15篇)

  作为一名人民教师,可能需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。一份好的教学设计是什么样子的呢?以下是小编为大家整理的《比例的意义》教学设计,欢迎阅读与收藏。

《比例的意义》教学设计(锦集15篇)

《比例的意义》教学设计1

  教学目标

  1.使学生理解并掌握比例的意义和基本性质。

  2.认识比例的各部分的名称。

  教学重点

  比例的意义和基本性质。

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学过程

  一、复习准备。

  (一)教师提问复习。

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值。

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接。

  教师板书:4.5∶2.7=10∶6

  二、新授教学。

  (一)比例的意义(课件演示:比例的.意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  class=Normal vAlign=top width=166>

  时间(时)

  class=Normal vAlign=top width=166>

  2

  class=Normal vAlign=top width=166>

  5

  class=Normal vAlign=top width=166>

  路程(千米)

  class=Normal vAlign=top width=166>

  80

  class=Normal vAlign=top width=166>

  200

  >

  1.教师提问:从上表中可以看到,这辆汽车,第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等。因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例。

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来。

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例。

  (2)一个比例,等号左边的比和等号右边的比一定是( )的。

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(板书)

  2.练习:指出下面比例的外项和内项。

  4.5∶2.7=10∶6  6∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明。

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的外项积和内项积。

  5.教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质

  板书课题:加上“和基本性质”,使课题完整。

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

《比例的意义》教学设计2

  1.联系生活,从生活中引入,激发了学生学习兴趣。

  数学来源于生活,又服务于生活。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学的过程”。程老师从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有数学。如,新课开始时,程老师利用“张红想知道旗杆的高度”,从这样一个学生身边的.例子引入,不仅让学生感受了数学与生活的紧密联系,还有效地设置了悬念,激发了学生学好本节课知识的兴趣和决心。

  2.有效地处理教材,让学生亲身经历数学模型的形成过程。

  《比例的意义》这部分知识比较枯燥,也比较抽象,不易让学生直观的理解,与实际生活较远。而程老师处理的很好,把无声的、枯燥的教材进行了有声的、精彩的演绎。在这一节课中,程老师运用各种方法,通过对同一比例不同大小的国旗的长宽比例的探究,运用计算比值、课件演示、交流讨论、自主写出比例等等一系列的方法进行由浅入深地自主探索,实现了学生对“比例的意义”这一知识的真正理解和运用。

  3、服务于生活,回到生活中去,解决生活中的实际问题。

  在以上抽象出“数学模型”的基础上让学生进行拓展应用,体现“数学从生活中来,到生活中去的”思想,程老师在课的最后出示“大自然中的比例”,让学生利用学到的知识解决生活中的实际问题,既让学生感受了数学学习的价值,又和课的开始形成了呼应。圆满中结束本课的学习,学习效果很好。

《比例的意义》教学设计3

  教材分析

  这部分内容是在学生已经学习了比的意义,比的化简、求比值和比的应用的基础上学习的。通过本节课的学习,学生将掌握比例的意义,对学生学习比例的基本性质和正、反比例的意义和应用,乃至在初中继续学习有关正、反比例知识打好基础。

  学情分析

  1、本班现有学生92人,男生49人,女生43人。

  2、本班班额大,学生基础较差,所以我将比例的意义和基本性质这一学时的内容分成了两课时,本节课主要学习比例的意义。

  3、本节课我准备从生活情境出发,为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用多媒体教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

  教学目标

  1、知识与技能:理解比例的意义,认识比例各部分的名称。

  2、过程与方法:让学生经历探索比例的意义的过程,并能运用比例的意义,判断两个比能否组成比例,会组比例。

  3、情感态度与价值观情感目标:培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点和难点

  1、掌握比例的意义。

  2、应用比例的意义判断两个比能否组成比例,并能正确地组成比例。

  3、能根据一个比例写几个不同的比例。

  教学过程

  教学环节 教师活动 预设学生行为 设计意图

  一、复习

  1、什么叫比?怎样表示比?一辆汽车1小时行60千米,2小时行120千米,3小时行180千米,分别说出所行路程与所用时间的比,这些比表示的意义是什么?

  2、怎样求比值?求下面各比的比值,你发现了什么?

  20∶252.7∶4.56∶10生回答。

  学生回答后,独立求出各比值,并交流汇报。复习旧知,为新知探究奠定基础。

  揭示

  课题这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题——比例的意义。学生打开数学课本48页。开门见山,直奔主题。

  探究

  比例的意义

  1、课件出示

  例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。

  列表如下:

  竹竿长(m)23...... 影子长(m)69......

  2、你能写出多少个有意义的比?并求出它们的比值。

  3、观察这些比,把能用等号连接的比用等号连接起来。

  4、教师板书

  3∶2=9∶6

  2∶6=3∶9

  强调:这些都是比例。

  引导学生用自己的语言说一说什么是比例。比例就表示两个比的比值相等的式子。

  5、2∶9和3∶6能组成比例吗?你是怎么知道的?

  6、指导学生说出“判断两个比能不能组成比例,要看他们的比值是否相等。”

  1、学生讨论,然后写出比,完成后汇报,并随意找出几个学生的作业进行展示。

  2、学生试写:

  2:3=6:9

  2:6=3:9

  3、学生合作探究:什么是比例?

  4、学生小组讨论:2∶9和3∶6能组成比例吗?并说出理由。

  1、生活情境导入,增强学生的学习兴趣,调动学生主动参与。

  2、让学生分享在主动参与、探究中获取知识的愉悦心情。

  3、学生在合作探究和小组讨论时,增强合作意识,培养自己解决问题的能力。

  认识比例的各个项

  1、课件出示:在一个比例中两端的两项叫外项,中间的两项叫内项。

  要求学生依据定义,分别找出3∶2=9∶6和2:6=3:9的内项和外项。

  介绍分数形式的'比例写法。

  学生小组合作探究,找出3∶2=9∶6和2:6=3:9

  的内项和外项。加深认识,学以致用。

  五、巩固练习

  1、请同学们用比例的意义判断一下,0。4∶25能否和1。2∶75组成比例?为什么?

  2、说一说比和比例有什么区别。

  3、在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。

  4、用下面的四个数组成比例:2,3,4和6(能组几个就组几个)。你能否写出几个不同的比例?

  5、下面的四个数可以组成比例吗?若不能,改变其中的任何一个数,使其能组成比例。2、3、4、5试试看,相信你一定能完成?

  1、学生独立完成。

  2、汇报答题情况。

  检测学生学习效果。

  六、比与比例的区别

  1、a÷b=a:b比就表示两个数相除,它们的商叫比值,应用比的意义可以求比值。

  2、比例a:b=c:d表示两个比相等的式子,叫做比例。应用比例的意义可以判断两个比是否可以组成比例。学生自己说出几个不同的比和比例,对比理解。加强新旧知识的联系和区别,巩固新知识。

《比例的意义》教学设计4

  教学内容:

  九年义务教育六年制小学数学第十二册P64——65

  教学目标:

  1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。

  2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:

  认识反比例的意义

  教学难点:

  掌握成反比例量的变化规律及其特征

  设计理念:

  课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。

  教学步骤教师活动学生活动

  一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?

  2、判断下面两种量是否成正比例?为什么?

  时间一定,行驶的路程和速度

  除数一定,被除数和商

  3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?

  4、导入新课:

  如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、探究新知1、出示例3的表格(略)

  学生填表

  2、小组讨论:

  (1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?

  (2)你能找出它们变化的规律吗?

  (3)猜一猜,这两种量成什么关系?

  3、全班交流

  学生初步概括反比例的意义(根据学生回答,板书)

  4、完成“试一试”

  学生独立填表

  思考题中所提出的问题

  组织交流,再次感知成反比例的量

  5、抽象表达反比例的`意义

  引导学生观察例3和“试一试”,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,反比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:x×y=k(一定)

  揭示板书课题。

  学生填表

  小组讨论、交流

  学生初步概括

  相互补充与完善

  独立填表

  交流汇报

  学生概括

  三、巩固应用1、练一练

  每袋糖果的粒数和装的袋数成反比例吗?为什么?

  2、练习十三第6题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第7题

  先独立思考作出判断,再有条理地说明判断的理由。

  4、练习十三第8题

  先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。

  5、思考:

  100÷x=y,那么x和y成什么比例?为什么?

  6、同桌学生相互出题,进行判断并说明理由。

  讨论、交流

  独立完成,集体评讲

  说一说

  填一填,议一议

  讨论

  相互出题解答

  四、总结反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?课后你能与同学相互出题进行练习吗?

  评价总结

《比例的意义》教学设计5

  教学内容:青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。

  教学目标:

  1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。

  2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。

  教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  教学难点:自主探究比例的基本性质。

  教学过程

  一、导入

  1、谈话

  师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?

  生1:比的意义。

  生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  生3:比的前项除以后项,所得的商就是比值。

  ……

  (评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)

  二、合作探究,学习新知

  1、比例的意义

  师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?

  生:比例?(书:课题比例)

  师:看到这个课题你想知道什么?

  (预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)

  生:什么叫比例呢?

  生:(书)表示两个比相等的式子叫做比例。

  师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)

  师:你也能举出一个这样的例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?

  (老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。

  师:通过以上练习,你认为这句话中哪些词最重要?为什么?

  生1:两个比,不是一个比

  生2:相等,这个比必须相等

  生3:式子,不是两个等式是式子。

  师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?

  (1)0、8:0、3和40:15

  (2)2/5:1/5和0、8:0、4

  (3)8:2和15/2:15

  (4)3/18和4/24

  (学生独立判断,师巡视指导,然后汇报)

  师:先说能否组成比例,再说明理由,

  生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。

  同理教学:(2)2/5:1/5和0、8:0、4

  (3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。

  师:怎样改能使它组成比例呢?

  生:4:8=15/2:15或8:2=15:15/4

  同理教学(4)3/18和4/24

  师:像3/18和4/24是比例吗?

  师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?

  2、认识比例各部分的名称。

  师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?

  生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)

  师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?

  生:2和32是它的内项,16和4是它的外项。

  师:请同学们快速抢答老师指的数是比例的外向还是内项。

  生:(激烈抢答):外项、、、、、、

  师:同学们反应真快,分数的形式中哪些是比例的项呢?

  生:2和32是内项,16和4是外项。

  师:老师指分数比例学生抢答。

  3、探索比例的基本性质。

  师:同学们学得真不错,敢不敢和老师来个比赛?

  生:(兴趣高涨):敢!

  师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?

  师:谁来。

  生1:4:5,生2:8:9不能组成比例。

  生:对。

  师:服气吗?不服气咱们再来一次,

  生1:1、2:1、8,生2:3:5

  师:不能。对吗?

  生:对。

  师:老师又赢了,这回服气了吧。(学生点头)

  师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?

  生:想。

  师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:

  1、可以通过观察、算一算的方法进行研究。

  2、你能得出什么结论?)

  师:现在请将你的发现在小组里交流一下,看看大家是否同意。

  (学生讨论)

  师:哪个小组愿意将你们的发现与大家分享?

  生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。

  师:有道理,不错,还有其他发现吗?

  生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。

  师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)

  师:这是两个外项的积,(师板书:两个外项的积)

  (学生板书:16×4=64)

  师:这是两个内项的积,(师板书:两个内项的积)

  师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?

  师:其他组的同学同意他们这个结论吗?

  生:同意。

  (以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)

  师:真的所有的比例都是这样吗?怎么验证?

  生:可以多举几个例子看看。

  师:这是个好建议,那快点行动吧。(学生独立验证)

  生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、

  生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、

  师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的`发现。

  4、比和比例的区别

  师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)

  师:哪一组的代表来说一说。

  生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。

  生:比和比例形式不同。比是一个比,比例是两个比。

  生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。

  5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。

  三、巩固练习

  1、下面每组比能组成比例吗?

  (1)6:3和8:5(2)20:5和1:4

  (3)3/4:1/8和18:3(4)18:12和30:20

  生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。

  生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。

  师:怎样改一下使它们能组成比例?

  生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。

  生4:还可以把1:4改成4:1,也能组成比例。

  生5:第(3)个可以组成比例,因为3/4×3=1/8×18。

  生6:第(4)个可以组成比例,因为18×20=360,12×30=360。

  师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。

  2、填一填。

  2:1=4:()1、4:2=():3

  3/5:1/2=6:()5:()=():6

  师:最后一题还有没有别的填法?

  生1:5:(1)=(30):6

  生2:5:(30)=(1):6

  生3:5:(2)=(15):6

  生4:5:(15)=(2):6

  师:怎么会有这么多种不同的填法?

  生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。

  3、用2、8、5、20四个数组成比例。

  师:你能用这四个数组成比例吗?

  师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?

  生:2和20做外项,8和5做内项时有4种:

  2:8=5:202:5=8:20

  20:8=5:220:5=8:2

  8和5做外项,2和20做内项时也有4种:

  8:2=20:58:20=2:5

  5:2=20:85:20=2:8

  四、课堂总结

  师:说一说,这节课你有哪些收获?

  生1:知道了比例的意义。

  生2:学习了比例的基本性质

  生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。

  师:这节课哪个地方给你留下的印象最深刻?

《比例的意义》教学设计6

  赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节

  课的个人看法:

  一、注重数学和生活的联系,课堂灵活开放。

  老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的`高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。

  二、如花微笑,温暖学生。

  这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。

  三、用问题引领学生,突出学生的主体地位。

  “如果已知正方形的边长,你能想到什么?”“你能用具体的数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

《比例的意义》教学设计7

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的关系怎样?

  生:答对的题目与最后的成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的'次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

《比例的意义》教学设计8

  教学内容:教科书第32~34页。

  教学目标:理解比例的意义,认识比例的基本性质,会判断两个比能否组成比例。

  教学过程

  一、复习

  1.什么叫做比?

  2.求出下面每个比的比值。

  12∶16 ∶    (板书)

  二、教学比例的意义

  出示教材第32页的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。

  把图变换成四面国旗的画面,每面国旗标注了长和宽的尺寸。

  选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。

  提问:根据求出的比值,你发现了什么?(两个比的比值相等)

  教师边总结边板书:因为这两个比的比值相等,所以我们可以写成一个等式:

  2.4∶1.6 = 60∶40 或= ←(板书)

  像这样由两个相等的比组成的式子我们把它叫做比例。我们已经知道组成一个比的两个数分别叫做这个比的前项与后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?

  四人小组讨论,教师巡视,给予指导。

  请小组汇报讨论结果,教师根据学生的'汇报,将组成的比例分类板书在黑板上。

  教师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的比值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。

  三、教学比例的基本性质

  师:观察黑板上的比例式,你能发现比例的内项与外项之间有什么关系吗?  教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。

《比例的意义》教学设计9

  【教学内容】

  反比例。(教材第47页例2)。

  【教学目标】

  1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。

  2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

  【重点难点】

  引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。

  【教学准备】

  投影仪。

  【复习导入】

  1。让学生说说什么是正比例,然后用投影出示下面的题。

  下面各题中哪两种量成正比例?为什么?

  (1)每公顷产量一定,总产量和公顷数。

  (2)一袋大米的重量一定,吃了的和剩下的。

  (3)修房屋时,粉刷的面积和所需涂料的数量。

  2。说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?

  教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。

  【新课讲授】

  1。教学例2。

  创设情境。

  教师:把相同体积的水倒入底面积不同的`杯子,高度会怎样变化?

  出示教材第47页例2的情境图和表格。

  请学生认真观察表中数据的变化情况,组织学生分小组讨论:

  (1)水的高度和底面积变化有关系吗?

  (2)水的高度是怎样随着底面积变化的?

  (3)水的高度和底面积的变化有什么规律?

  学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。

  教师板书配合说明这一规律:

  30×10=20×15=15×20=……=300

  教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。

  2。归纳反比例的意义。

  组织学生小组内讨论:反比例的意义是什么?

  学生小组内交流,指名汇报。

  教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  3。用字母表示。

  如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?

  学生探讨后得出结果。

  x×y=k(一定)

  4。师:生活中还有哪些成反比例的量?

  在教师的引导下,学生举例说明。如:

  (1)大米的质量一定,每袋质量和袋数成反比例。

  (2)教室地板面积一定,每块地砖的面积和块数成反比例。

  (3)长方形的面积一定,长和宽成反比例。

  5。组织学生将例1与例2进行比较,小组内讨论:

  正比例与反比例的相同点和不同点有哪些?

  学生交流、汇报后,引导学生归纳:

  相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

  不同点:正比例关系中比值一定,反比例关系中乘积一定。

  6。你还有什么疑问

  如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。

  反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。

  【课堂作业】

  1。教材第48页的“做一做”。

  2。教材第51页第9、10题。

  答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。

  (2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。

  (3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。

  2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。

  第10题:50 100 12

  【课堂小结】

  说一说成反比例关系的量的变化特征。

  【课后作业】

  1。完成练习册中本课时的练习。

  2。教材51~52页第8、14题。

  答案:

  2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。

  第14题:

  (1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。

  (2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。

  解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。

  从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。

  (3)斑马跑得快。

  第3课时反比例

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)

  正比例与反比例的相同点和不同点:

  相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。

  不同点:正比例关系中比值一定,反比例关系中乘积一定。

《比例的意义》教学设计10

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教学重点:

  认识反比例关系的意义,掌握成反比例量的变化规律及其特征。教学难点:能够比较有条理的叙述判断过程。教学过程

  一、谈话导入:

  师:上一节课我们研究了正比例关系,现在谁能说一说判断两个量是不是成正比例的依据是什么?指名说

  师:咱们一块做几道题判断一下。出示:

  1、除数一定,被除数和商

  2、单产量一定,总产量和面积

  3、加数一定,和和另一个加数

  4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据

  师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)

  二、学习

  师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)

  师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流

  学生自己填,在小组活动,师巡视学生台前展示交流

  师:这两个情境中的两个量有什么共同点?这和之前我们推测的一样吗?你能根据我们这两道题总结一下什么是反比例关系吗?指名说,出示大屏幕定义,齐读

  师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

  指名说,(大屏幕出示红色字)

  师:你能举出一些生活中成反比例的.关系的例子吗?指名举例,追问:相关联的量是哪两种?不变的量是什么?

  师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

  今天我们学习了反比例关系,大家想想它和我们之前研究的正比例关系有什么相同和区别?指名说出示表格,明确正比例和反比例的异同点。

  师:还记得正比例关系图象是什么样的吗?反比例关系也可以用图象来表示,(出示研究单中的两幅图),它和正比例关系图象有什么不同?对,它们是一条

  光滑的曲线。拿第二道题举例,你能看出杯子的底面积分别是40平方厘米,50平方厘米时,水的高度分别是多少吗?指名说

  师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

  三、练习

  1、书上51页8、9、10题,独立写,集体交流。

  2、书上51页11题,指名交流,说理。

  四、总结

  师:这节课你有什么收获?指名说

  师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

《比例的意义》教学设计11

  教学目标:

  1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。

  2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。

  3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。

  4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。

  教学重点:理解比例的意义和性质。

  教学难点:应用比例的意义和性质判断两个比能否组成比例。

  教学准备:多媒体课件一套。

  教学过程:

  一、渗透情感,导入新课

  1、媒体出示国旗画面,学生观察,激发爱国情操。

  天安门升国旗仪式

  校园升旗仪式

  教室场景

  签约仪式

  师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?

  2、媒体出示国旗的长和宽,并提出问题。

  天安门升国旗仪式:长5米,宽10/3米。

  校园升旗仪式:长2.4米,宽1.6米。

  教室场景:长60厘米,宽40厘米。

  签约仪式:长15厘米,宽10厘米。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?

  师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?

  3、学生探索,发现问题。

  师:每面国旗的大小不一样,但是它的`长和宽中却隐含着共同的特点,是什么呢?

  学生自主观察、计算,发现国旗的长和宽的比值相等。

  二、认识比例,发现特征

  1、引出比例,理解比例的意义。

  媒体出示操场上的国旗和教室里国旗长和宽。学生计算出两面国旗的长和宽的比值。

  并板书:2.4∶1.6 =3/2

  60∶40=3/2

  师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。

  并板书:2.4∶1.6 =60∶40

  2、认识比例,知道比例各项的名称。

  ⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。

  ⑵学生尝试说说什么叫比例。

  ⑶教学比例的各部分的名称。

  自学课本第34页的第一段话,初步认识比例各项的名称。

  出示其中一个比例,指出比例各部分的名称。

  学生说说自己写的比例的各项的名称。

  ⑷教学比例的另一种写法,学生尝试将自己写的比例换一种写法。

  ⑸判断下列几个比能不能组成比例。

  媒体出示,学生判断并说出理由。

  下面哪组中的两个比可以组成比例,把组成的比例写出来。

  ⑴6∶10和9∶15 ⑵20∶5和1∶4

  ⑶1/2∶1/3和6∶4 ⑷0.6∶0.2和3/4∶1/4

  ⑹思考:比和比例有什么联系和区别?

  学生自主思考,集体交流,了解比例和比的联系和区别。

  3、自主练习,发现比例的基本性质。

  ⑴媒体出示

  8∶4=()∶() 15:10=()∶4 12∶()=()∶5

  媒体依次出示三道题,学生独立完成并思考:为什么这样填?你有其它的发现吗?

  ⑵师提出问题:在一个比例中,它们项有什么特点?

  ⑶学生观察以上式子,自主思考,尝试发现比例的基本性质。

  ⑷集体交流,发现性质。

  学生自主交流,发现:在比例里,两个外项的积等于两个内项的积。

  ⑸观察自己写的其它几个比例,验证发现。

  ⑹小结性质

  学生尝试用完整的数学语言说一说自己的发现。

  媒体出示学生的发现,教师指出这就是比例的基本性质。

  三、巩固练习,提高认识

  1、基本练习

  判断,媒体出示

  应用比例的基本性质,判断下面哪组中的两个比可以组成比例

  ⑴6∶3和8∶5 ⑵0.2∶2.5和4∶50

  ⑶1/3∶1/6和1/2∶1/4 ⑷1.2∶3/4和4/5∶5

  2、拓展练习。

  比一比,谁写得多。

  在1、2、3、4、5、6、7、8、9这九个数中,任选四个数组成比例,并说说是怎样写出来的。

  四、总结全课,升华认识

  学生回顾全课,说说比例的意义和基本性质。

  板书设计:

  比例的意义和基本性质

  2.4∶1.6 =3/2

  60∶40=3/2

《比例的意义》教学设计12

  第一课时比例的意义

  教学内容:

  比例的意义(教材第40页的内容)

  教学目标:

  1、理解和掌握比例的意义。

  2、了解比和比例的区别与联系。

  2、能用比例的意义判断两个比能否组成比例。

  教学重难点:

  1、认识比例,理解比例的意义。

  2、在已有知识的基础上,结合实例引出新的知识。

  教具准备:

  情景图、多媒体课件、习题卡。

  教学过程:

  一、导入

  出示课题:比例

  看到课题你想到了以前学过的什么知识?(生1,生2等回答)

  我们已经了解了比的这些知识,请做下面练习。

  求下面各比的比值。

  18:453:52.7:4.5

  求完比值你觉得哪些比有联系?

  【设计意图:通过复习比单关的有关知识。唤起学生对已有知识的回忆,为新知的学习做好准备。】

  “例”在汉语词典里的解释为符合某种条件。今天这两个比的比值一样,能不能用等号连接呢?

  师:相机板书:3:5=2.7=4.5?

  今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?

  板书完整课题:比例的意义

  二、揭题示标。

  预设:生:1、比例的意义是什么?

  生:2、比例的意义有什么作用?

  (师趁机板书在黑板右上角)

  【设计意图:通过让学生读课题,提问题,明确本节课的学习目标,做到有的放矢。同时培养了学生的问题意识。】

  本节课我们就来完成这两个目标:

  三、自主探索

  出示:中华人民共和国国旗国旗是我们中华民族的标志和象征,神圣不可侵犯,你在什么地方见过国旗?

  【设计意图:对学生同时进行思想品德教育和爱国教育】

  生各抒己见。

  你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。

  自学指导:

  1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。

  2、发现了什么有趣的现象?

  3、把你的发现尝试用算式写下来。

  (5分钟后,期待你精彩的分享)

  【设计意图:充分利用教材中的主题图设计教学情景,设置悬念,国旗为什么形状相似却大小不一,这其中的奥秘何在?不仅激发了学生的学习兴趣,更能让学生通过形象的感受大小不同的国旗的变化。从而直观地感受比例的本质内涵。】

  (二)自学

  学生认真看书自学,教师巡视,督促人人都在认真地思考。

  (三)汇报分享

  谁愿意把你的结果和大家分享?师相机板书

  (1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…

  原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。

  我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。

  【设计意图:放手,让学生计算出每面国旗长和宽的比值。从中发现它们的比值相等,可以用等号连起来,自然而然地引出比例,然后让学生阅读课本,初步感受比例的意义】

  师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。

  生:…

  师:你能根据自己的'理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。

  出示“比例的意义”概念

  擦去开始板书中的“?”并把比例可用分数形式表示板书出来

  【设计意图:这一环节的设计,让学生通过观察,交流,思考等活动,充分感知比例的意义,并用自己的语言说出自己对比例意义的理解】

  师:你能说一说组成比例要具备哪些条件吗?

  生:…

  师:根据你的理解,请看主题图,你还能找出哪些比组成比例?学生先独立思考,再小组合作,交流探究。通过这节课的学习,你找到了设计国旗的奥秘了吗?

  生:…

  【设计意图:学生概括出比例的意义后,没有就此终止,而是让学生通过小组合作交流,给学生足够的时间空间,让学生进一步探讨。寻找解决问题的有效途径,让学生的数学思维得到提升。通过收集学生写出的比例,不难发现,任意两面国旗的长与宽之比,宽与长之比,长于长之比,宽与宽之比都可以组成比例,国旗的尺寸中就隐含着这个秘密】

  四、当堂检测(牛刀小试)

  下面各比能组成比例吗?你是怎样判断的?请写出计算过程。

  (1)3:7和9:21

  (2)15∶3和60∶12

  五、当堂训练:

  1、把下面的式子进行归类:

  (5)72:8=3X3(6)3.6:6=0.6

  比:()

  比例:()

  思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?

  2、判断:

  (1)、有两个比组成的式子叫做比例。()

  (2)、如果两个比可以组成比例,那么这两个比

  的比值一定相等。()

  (3)、比值相等的两个比可以组成比例。()

  (4)、0.1∶0.3与2∶6能组成比例。()

  (5)、组成比例的两个比一定是最简的整数比.()

  六、拓展提升(思绪飞扬)

  1、写出比值是7的两个比,并组成比例。

  2、12的因数有(),从12的因数中挑选4个数组成比例是()。

  3、有两种蜂蜜水:第一种,用2杯蜂蜜和10杯水调配制而成;第二种,用3杯蜂蜜和15杯水调配制而成。那种更甜呢?你能用今天所学知识判断出来吗?

  设计意图:通过设计不同层次的练习,让学生掌握组成比例的思路和方法,使不同层次的学生思维都得到发展,从而加深对比例的意义的理解和掌握

  七、全课总结

  今天这节课你有什么收获?

  八、课堂作业

  第43页第2、3题。

  九、抽查清。(每组4号同学完成)

  判断下面每组中的两个比能不能组成比例。

  30:5和48:812:0.4和3:5

  十、板书设计

  比例的意义

  表示两个比相等的式子叫做比例。

  比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  十一、教学反思:

  本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:

  1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的引出比例,这样的设计符合学生的认知规律。

  2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。

  3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。

  4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。

  5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。

《比例的意义》教学设计13

  教学内容:比例的意义

  教学目标:使学生理解比例的意义,能应用比例的意判断两个比能否成比例。

  教学重点:比例的意义。

  教学难点:找出相等的比组成比例。

  教学过程:

  一、旧知铺垫

  1、什么是比?

  (1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

  300:5=60:1

  (2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

  1.2:1.4=12:14=6:7

  2.求下面各比的比值。

  12:16:4.5:2.710:6

  二、探索新知

  1.教学例1。

  (1)实物投影呈现课文情境图。(不出现国旗长、宽数据)

  ①说一说各幅图的情景。

  ②图中有什么相同之处?

  (2)你知道这些国旗的长和宽是多少吗?

  ①出现各图中国旗的长、宽数据。

  ②测量教室里国旗的长、宽各是多少厘米。

  (3)(指教室里的国旗)这面国旗的长和宽的比值是多少?

  学生回答教师板书:

  60:40=

  (3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?

  ①学生回答长、宽比值。

  2.4:1.6=

  ②两面国旗的长和宽的比值相等。

  板书:2.4:1.6=60:40

  也可以写成=

  (5)什么是比例?

  在这一基础上,教师可以明确告诉学生比例的意义,并板书:

  表示两个比相等的式子叫做比例。

  (6)找比例。

  师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?

  过程要求:

  ①学生猜想另外两面国旗长、宽的比值。

  ②求出国旗长、宽的比值,并组成比例。

  ③汇报。

  如:5:=15:10=

  5:=15:105:=2.4:1.6

  ==

  2.做一做。

  完成课文“做一做”。

  第1题。

  (1)什么样的比可以组成比例?

  (2)把组成的比例写出来。

  (3)说一说你是怎么找的。

  (4)同学之间互相交流,检验各自所写的比例。

  第2题。

  (1)学生独立写比例,看谁写得多。

  (2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。

  3.课堂小结。

  (1)什么叫做比例?

  (2)一个比例式可以改写成几个不同的比例式?

  三巩固练习

  完成课文练习六第1~3题。

  四作业

  课后记:

  教学内容:比例的基本性质

  教学目标:

  1.使学生进一步理解比例的意义,懂得比例各部分名称。

  2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

  3.能运用比例的基本性质判断两个比能否组成比例。

  教学重点:比例的基本质性。

  教学难点:发现并概括出比例的基本质性。

  教学过程:

  一、旧知铺垫

  1.什么叫做比例?]

  2.应用比例的意义,判断下面的比能否组成比例。

  0.5:0.25和0.2:0.4:和5:2

  :和:0.2:和1:4

  3.用下面两个圆的有关数据可以组成多少个比例?

  如(1)半径与直径的比:=

  (2)半径的比等于直径的比:=

  (3)半径的比等于周长的比:=

  (4)周长与直径的比:=

  二探索新知

  1.比例各部分名称。

  (1)教师说明组成比例的四个数的名称。

  板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:2.4:1.6=60:40

  内项

  外项

  (2)学生认一认,说一说比例中的外项和内项。

  如::=:

  外内内外

  项项项项

  2.比例的基本性质。

  你能发现比例的.外项和内项有什么关系吗?

  (1)学生独立探索其中的规律。

  (2)与同学交流你的发现。

  (3)汇报你的发现,全班交流。

  板书:两个外项的积是2.4×40=96

  两个内项的积是1.6×60=96

  外项的积等于内项的积。

  (4)举例说明,检验发现。

  如::0.5=1.2:

  两个外项的积是×=0.6

  两个内项的积是0.5×1.2=0.6

  外项的积等于内项的积。

  如果把比例改成分数形式呢?

  如:=

  2.4×40=1.6×60

  等号两边的分子和分母分别交叉相乘,所得的积相等。

  (5)归纳。

《比例的意义》教学设计14

  老师执教的《正比例的意义》这课,对我感受很深。

  一.结合生活实际

  周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。

  二.突出学生的.主体地位

  周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。

  三.练习设计具有阶梯性

  周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。

  建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。

《比例的意义》教学设计15

  比例的意义和基本性质

  1、教学内容:

  科教版数学第十二册第74~76页

  2、教材分析:

  比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的`思想,而且可以用来解决日常生活中一些具体的问题。教学内容:

  教材第30.31页比例的意义和比例的基本性质,完成第31页练一练和练习六第1~5题。

  教学目标:

  会判断两个比成不成比例,使学生理解比例的意义和性质。教学重点:

  使学生理解比例的意义和性质。教学难点:

  培养学生初步的综合和概括能力。教具准备:电脑课件。教学过程:

  一、复习旧知:

  1、同学们,你们知道吗?我国有着悠久的青铜器铸造史,先秦古籍《考工记》中就有这样记载:(请同学读)。(出示鼎和鉴的图片。)

  除了青铜器铸造史令我们骄傲,我们国家还有闻名世界的四大发明,它们是什么?那你们知道火药是怎样制造的吗?(指名读)从刚刚的这些资料中有我们学过的数学知识吗?

  2、关于比你知道哪些知识呢?(板书意义、名称和基本性质)。

  二、引入新课:

  (一)教学意义

  1、出示3:5:40:7.5:3。你能把这几组比分分类吗?小组讨论,汇报。(有两种可能:一种是按照形式来分,一种是按照比值来分)板书按照比值来分的情况:3:5和24:40、:和7.5:3。既然它们的比值是相等的,因此我们可以用什么符号来连接呢?(等号)

  2、指出:像这样表示两个比相等的式子叫做比例。

  3、那么我们怎么去判断两个比能不能组成比例呢?

  4、教学例1:

  根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次第二次

  买练习本的钱(元)2买的本数3

  5、出示结果。

【《比例的意义》教学设计】相关文章:

《比例的意义》教学设计05-29

比例的意义教学设计05-07

比例的意义教学设计10-23

《比例的意义》教学设计09-05

比例的意义教学设计10-08

《比例的意义》教学设计10-30

《比例的意义》优秀教学设计10-02

《正比例的意义》教学设计01-17

[精选]比例的意义教学设计3篇06-11

比例的意义教学设计15篇[优秀]10-23