初中数学教学设计

时间:2024-11-15 09:12:48 教学设计 我要投稿

(荐)初中数学教学设计

  作为一名教学工作者,就有可能用到教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。我们应该怎么写教学设计呢?下面是小编帮大家整理的初中数学教学设计,欢迎大家分享。

(荐)初中数学教学设计

初中数学教学设计1

  一、 内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平:

  在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  三、 教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

  数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

  (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

  角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

  和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

  四、 教育理念和教学方式:

  1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

  教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

  候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2、采用“问题情景—探究交流—得出结论—强化训练”的模式

  展开教学。

  3、教学评价方式:

  (1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

  动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

  揭示思维过程和反馈知识与技能的.掌握情况,使老师可以及时诊断学情,调查教学。

  (3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

  教学效果。

  五、 教学媒体 :多媒体

  六、 教学和活动过程:

  教学过程设计如下:

  〈一〉、提出问题

  [引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析问题

  1、[学生回答] 分组交流、讨论

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特点。

  (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  2、[学生回答] 总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  3、[学生回答] 完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题

  1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判断:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、小试牛刀

  ① (x+y)2 =______________;② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[学生小结]

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1) 公式右边共有3项。

  (2) 两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  〈六〉、学生自我评价

  [小结] 通过本节课的学习,你有什么收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业] P34 随堂练习 P36 习题

  七、课后反思

  本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准备

初中数学教学设计2

  一、教学设计:

  1 学习方式:

  对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两个三角形间最简单,最常见的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂直、平行的重要依据。因此必须熟练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,使学生经历从现实世界抽象出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

  2 学习任务分析:

  充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。

  3 学生的认知起点分析:

  学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。

  4 教学目标:

  (1) 学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。

  (2) 掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。

  (3) 培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。

  5 教学的.重点与难点:

  重点:三角形全等条件的探索过程是本节课的重点。从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了两个三角形全等的条件,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初一学生有一定的难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  6 教学过程

  教学步骤

  教师活动

  学生活动

  教学媒体(资源)和教学方式

  复习过渡

  引入新知

  创设情景

  提出问题

  建立模型

  探索发现

  归纳总结

  得出新知巩固运用

  及其推广

  反思小结

  提炼规律

  电脑显示,带领学生复习全等三角定义及其性质。

  电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道全等三角形三条边

  分别对应相等,三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是,是否一定需要六个条件呢?条件能否尽可能少吗?

  对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。

初中数学教学设计3

  一、教学内容

  跳绳比赛:求总和问题,求相差多少的问题,属人教版一年级数学下册第二单元中的知识。

  二、教学目标

  1、使学生能够正确解决简单的数学问题,初步学会列式解答求总和问题与相差多少的问题。

  2、培养学生积极参与数学学习活动的态度,对数学有好奇心和求知欲。

  3、初步认识到数学与人类生活的密切联系,培养学生应用数学的意识。

  三、教学重点:

  运用数学思想,在实践中解决问题

  四、教学难点:

  学会收集数学信息,用正确的方法来解决问题

  五、教具准备:自制多媒体课件

  六、教学过程:

  出示主题图,练习中的一个题目:

  (1)明确条件和问题,理解题意

  (2)选择有效的信息来解决问题

  第一个问题:要用到题目中的哪些信息?要用什么数学方法来解答?第二个问题:要用到题目中的'哪些信息?又要用什么数学方法来解答?

  七、回顾总结,强化解决问题的策略和步骤

  我们解决问题时,第一步要通过看图、看文字弄清楚知道了什么,问题是什么;第二步要弄清楚哪些信息和问题有关系,学会选择合适的信息解决问题;第三步要找到正确的方法解决问题。

初中数学教学设计4

  新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:

  一、教材分析:

  本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、

  二、教学目标:

  本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的'问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五、

  三、教学措施:

  1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质、

  2、把握学生思想动态,及时与学生沟通,搞好师生关系、

  3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、

  4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、

  5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、

  6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、

  7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:

  (1)课前预习习惯;

  (2)积极思考,主动发言习惯;

  (3)自主作业习惯;

  (4)课后复习习惯。

初中数学教学设计5

  一、案例实施背景

  教材为人教版义务教育课程标准实验教科书七年级数学(下册)。

  二、案例主题分析与设计

  本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  四、案例教学重、难点

  1.重点:对平行线性质的掌握与应用。

  2.难点:对平行线性质1的探究。

  五、案例教学用具

  1.教具:多媒体平台及多媒体课件.

  2.学具:三角尺、量角器、剪刀。

  六、案例教学过程

  1.创设情境,设疑激思

  ⑴播放一组幻灯片。

  内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。

  ⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  ⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。

  ⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。

  2.数形结合,探究性质

  ⑴画图探究,归纳猜想。

  教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,填写结果:

  第一组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第二组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第三组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第四组:同位角( )( ) 角的度数( )( ) 数量关系( )

  教师提出研究性问题二:

  将图中的.同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  ⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想

  ⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  3.引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。

  教师活动:评价学生的研究成果,并引导学生说理

  因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)

  又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)

  所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)

  教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  4.实际应用,优势互补

  ⑴(抢答)课本P21 练一练

  1、2及习题5.3

  1、3.

  ⑵(讨论解答)课本P22 习题5.

  32、

  4、5.

  5.课堂总结:

  这节课你有哪些收获?

  ⑴学生总结:平行线的性质

  1、

  2、3.⑵教师补充总结:

  ①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。

  ②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质

  1、

  2、3的表述)。

  ④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

  6 .作业。学习与评价: P 2 3 6 ( 选择);P24

  7、12(拓展与延伸)。

  七、教学反思

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:

  1.教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。

  2.学的转变

  学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。

  3.课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!

初中数学教学设计6

  公式

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的.数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例

  公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察→分析→推导→计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书:公式

  师:小学里学过哪些面积公式?

  板书:S=ah

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

初中数学教学设计7

  在初中的数学教学过程中,函数教学是比较难的章节,我们该如何设计我们的教学过程呢?下面我来谈谈我的一些很浅的看法:首先函数是刻画和研究现实世界变化规律的重要模型,也是初中数学里代数领域的重要内容,它在初中数学中具有较强的综合性。在教学中,学生常常觉得函数抽象深奥,高不可攀,老师也觉得函数难讲,讲了学生也理解不了,理解了也不会解题。事实果真如此难教又难学吗?下面我谈谈在教学设计方面一些方法和实践。

  一、注重类比教学

  不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法,利用类比的思想进行教学设计实施教学,可称为类比教学.在函数教学中我们期望的是通过对前面知识的学习方法的传授,达到对后续知识的学习产生影响,使学生达到举一反三,触类旁通的目的,让学生顺利地由学会到会学,真正实现教是为了不教的目的有经验的老师都会发现,初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。因此采用类比的教学方法不但省时、省力,还有助于学生的理解和应用。是一种既经济又实效的教学方法。下面我就举例说明如何采用类比的`方法实现函数的教学。

  首先是正比例函数,它是一次函数特例,也是初中数学中的一种简单最基本的函数。但是,我们有些教师却因为正比例函数过于简单,而轻视。匆匆给出概念,然后应用。等到讲到一次函数、反比例函数、二次函数又感到力不从心,学生接受起来概念模糊,性质混乱,解题方法不明确。造成这种困扰的原因是因为忽视正比例函数的基础作用,我们应该借助正比例函数这个最简单的函数载体,把函数研究经典流程完整呈现,正所谓麻雀虽小,五脏俱全。再学习其他函数时,在此基础上类比学习,循序渐进,螺旋上升。例如:

  《正比例函数》教学流程

  (一)环节一:概念的建立

  通过对问题的处理用函数y=200x来反映汽车的行程与时间的对应规律引入新课。学生自觉思考教师提问,共同得出每个问题的函数关系式。引导学生观察以上函数关系式的特点得出正比例函数的描述定义及解析式特点。

  (二)环节二:函数图象

  这个环节是教学的重点,由学生先动手按列表——描点——连线的过程画函数y=2x和y=-2x的图象,相互交流比较然后教师利用多媒体展示画函数图象的过程并通过比较使学生正确掌握画函数图象的方法。

  (三)环节三:探究函数性质

  让学生观察函数图象并引导学生通过比较来归纳正比例函数的性质,这个环节是本课的难点,教师要引导学生从图象的形状,从左往右的升降情况,经过的象限及自变量变化时函数值的变化规律。这几个方面来归纳,最终得出正比例函数的性质。

  (四)环节四:概念的归纳

  将观察、探究出的函数图象的特征、函数的性质等做出系统的归纳。

  二、注重数形结合的教学

  数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

  函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。在借助图象研究函数的过程中,我们需要注意以下几点原则:

  (1)让学生经历绘制函数图象的具体过程。首先,对于函数图象的意义,只有学生在亲身经历了列表、描点、连线等绘制函数图象的具体过程,才能知道函数图象的由来,才能了解图象上点的横、纵坐标与自变量值、函数值的对应关系,为学生利用函数图象数形结合研究函数性质打好基础。其次,对于具体的一次函数、反比例函数、二次函数的图象的认识,学生通过亲身画图,自己发现函数图象的形状、变化趋势,感悟不同函数图象之间的关系,为发现函数图象间的规律,探索函数的性质做好准备。

  (2)切莫急于呈现画函数图象的简单画法。首先,在探索具体函数形状时,不能取得点太少,否则学生无法发现点分布的规律,从而猜想出图象的形状;其次,教师过早强调图象的简单画法,追求方法的最优化,缩短了学生知识探索的经历过程。所以,在教新知识时,教师要允许学生从最简单甚至最笨拙的方法做起,渐渐过渡到最佳方法的掌握,达到认识上的最佳状态。

  (3)注意让学生体会研究具体函数图象规律的方法。初中阶段一般采用两种方法研究函数图象:一是有特殊到一般的归纳法,二是控制参数法。

  函数是一个整体,各个具体函数是函数的特例,研究方法应是相同的,通过类比和数形结合的方法,对比性质的差异性,将具体函数逐步纳入到整个函数学习中去,这也符合教材设计的螺旋式上升的理念。这样自然使二次函数变得难着不难,水到渠成。

  关于待定系数法,首先要让学生理解感受到待定系数法的本质:对于某些数学问题,如果已知所求结果具有某种确定的形式,则可引进一些尚待确定的系数来表示这种结果,通过已知条件建立起给定的算式和结果之间的恒等式,得到以待定系数为元的方程或方程组,解之即得待定的系数。待定系数法在确定各种函数解析式中有着重要的作用,不论是正、反比例函数,还是一次函数、二次函数,确定函数解析式时都离不开待定系数法。因此我们要重视简单的正比例函数、一次函数的待定系数法的应用。要在简单的函数中讲出待定系数法的本质来,等到了反比例函数和二次函数及综合情况,学生已能形成能力,自如使用此方法,这时就是技巧的点拨。

初中数学教学设计8

  关注课堂教学设计,注重课堂的开放性、生成性和创新性的教学设计是营造一个宽松和谐的学习环境必要手段。教师必须把课的主动权放给学生,自己和学生在课堂上都要“活”起来,让学生敢想、敢问、敢做。教师要为学生提供充分发展个性的机会,充分尊重、理解、信任他们,这样才能激发他们的上进心,主动参与数学学习活动。

  教师要优化问题情境,让学生亲近数学,在数学教学中要不失时机地创造问题情境,诱发学生的学习积极性,促进学生思维的可持续发展,为学生学习数学做好充分的心理准备。

  一、问题设计要有生活性

  数学来源于生活,教师问题的设置要让学生感觉到数学就在他们的周围。如学习“菱形的性质”一节时,教师带了一个可伸缩的衣帽架展现给同学们,将它伸缩成各种形状的菱形,并说固定在墙上既美观又实用,为学生提供了和谐的气氛。这样就强化了学生的感性认识,从而达到了学生对数学的理解。

  二、问题设计要有挑战性

  课堂提问是课堂教学中教师、学生、教材相互交流、相互撞击的重要双边教学形式,是教师有较高智能和较高教学水平的具体体现。对课堂提问的原则、功能、技巧的认识程度决定于教师课堂教学能动性的差异,直接影响着课堂教学效果和学生思维的成败。因此,教师在教学中要根据教学内容、学生的年龄特征,创设新奇的、具有神秘色彩的问题情境。

  三、问题设计要有发现性

  问题情境要不断激发学生的学习动机,使学生处于“奋发”的状态中,给学生提供思维的空间,让他们学会自主学习,变“学会”为“会学”。如几何题“三线合一定理”,它叙述了高线、中线、角平分线在等腰三角形内三者之间的关系规律,这一节课开始可在复习高线、中线、角平分线概念的基础上提出一系列问题:

  (1)三角形一边上的高线(中线、角平分线)有什么性质?

  (2)等腰三角形一边上的高线(中线、角平分线)有什么性质?

  (3)在同一个三角形中作一边高线、中线、角平分线(这边所对的顶角)是怎样的?由此层层展开论证,开辟了知识的新领域,激发了学生求知的新兴趣。

  四、问题设计要有针对性

  一个好的问题情境有助于问题的解决,有助于唤起学生对教学目标的情感,增强目标意识。无病呻吟的设计非但不能使学生领悟要领,相反更容易使他们误入歧途。因此,问题情境的设置要触及问题的本质,要针对教材、针对学生。

  五、问题设计要有实效性

  教师不管学生回答的问题质量如何,都应该给予肯定,使学生经历一次获得结论的'过程,培养他们的逻辑思维能力。有些教师在讲述专题内容时,基本直接告诉学生已有的结论或解决问题的程序,而不是启发引导学生参与知识的发生、经历探索活动的过程,因此在许多课堂教学中问题教学的偏差仍普遍存在,使得数学问题教学的误区在不同程度上影响着学生的潜能的开发,缺乏问题情境的实效性。

  复习提问中教师要善于设疑,问题的形式要新颖、富有情趣,为学生所喜闻乐“答”。

  从提问的内容角度看,课堂教学提问要做到四忌:

  (1)重点处发问点拨,切忌不痛不痒;

  (2)要间接问有关知识,切忌离题太远;

  (3)巩固性知识提问,要归类记忆,切忌肤浅零杂;

  (4)难点反复设疑,要深入浅出,切忌散乱无序。

  总之,提问的技巧按课堂题材的不同应丰富多样、精心设计,使学生在课堂提问中迸发出创造的火花。好的课堂教学应该有宽松和谐的学习气氛,使学生在学习过程中产生丰富的情感体验,对学习数学产生兴趣,也会有积极主动的参与热情。教师生动的语言、和蔼的态度、富有启发性和创造性的问题、有探索性的活动等都可以为学生创造和谐的环境。课堂提问不应是孤立地单项使用,而应有机结合地使用各种技巧提问,才能发挥课堂提问的作用。提问的过程不仅是诱导学生参与,它必须使学生给出其回答的理由,要对学生进行思维训练,让学生学会思考问题、解决问题,从而真正学会学习。

初中数学教学设计9

  一、案例实施背景

  本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

  二、案例主题分析与设计

  本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

  时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

  2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

  四、案例教学重、难点

  1、重点:正确运用科学记数法表示较大的数

  2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数

  五、案例教学用具

  1、教具:多媒体平台及多媒体课件、图片

  六、案例教学过程

  一、创设情境,兴趣导学:

  1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

  2、展示课本第63页图片,现实中,我们会遇到一些比较

  大的数,如世界人口数、地球的半径、光速等,读写这样大的数有一定的困难。

  师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

  (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

  生1:答:13.7亿,640万,3亿。

  师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗? 生:不好用。(让学生意识到以前所学的方法不够用了) 师:接下来我们一起来探索新的记数方法。

  分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

  二、尝试探索,讲授新课:

  1、探索10n的特征

  计算一下102、103、104、105、1010你发现什么规律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

  (观察并思考,小组讨论)

  (1)结果中“0”的个数与10的指数有什么关系?

  (2)结果的位数与10的指数有什么关系?

  2、练习:将下列个数写成只有一位整数乘以10n的形式。

  (1)500(2)3000(4)40000

  师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。 分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的.简便记数方法——科学记数法。

  4、科学记数法:

  像上面这样,把一个大于10的数表示成 a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

  (思考,小组讨论)

  10的指数与结果的位数有什么关系?

  分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

  三、巩固新知,知识运用:

  1、将下列各数写成科学记数法形式。

  (1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米? 分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

  (观察并思考,小组讨论)

  5、如何将一个用科学记数法表示的数写成原数?

  a×10n将a的小数点向右移动n位原数

  分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

  练习:人体内约有2.5×10 5个细胞,其原数为多少个?

  七、教学反思:

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

  地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

初中数学教学设计10

  一、 基本情况分析

  1、学生情况分析:

  通过上学期的努力,我班多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于我班一些学生数学基础太差,学生数学 成绩两极分化的现象没有显着改观,给教学带来很大难度。设法关注每一个学生,重视学生的全面协调发展是教学的首要任务。本学期是初中学习的关键时期,教学 任务非常艰巨。因此,要完成教学任务,必须紧扣教学目标,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。九年级毕业班总复习教 学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。经过与外校九年级数学教学有丰富经验的教师请教交流, 特制定以下教学复习计划。

  2、教材分析:

  本学期教学内容共四章,第二十六章、二次函数主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的 综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。

  第二十七章、相似

  本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。

  第二十八章、锐角三角函数

  本章主要是探究直角三角形的三边关系,三角函数的概念及特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的'概念。

  第二十九章、投影与视图

  本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。

  二、 教学目标和要求

  1、 知识与能力目标知识技能目标

  理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,掌握锐角三角函数有关的计算方法。理解投影与视图在生活中的应用。

  2、过程与方法目标

  通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  3、情感、态度与价值观目标

  (1)进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教。

  (2)通过体验探索的成功与失败,培养学生克服困难的勇气。

  (3)通过小组交流、讨论有关的数学知识,培养学生的合作意识和交流能力。

  (4)通过对实际问题的分析和解决,让学生体会数学的价值,培养学生的应用意识和对数学的兴趣。

  三、 提高教学质量的主要措施

  l、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试卷,也让学生学会认真学习。

  2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

  3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。

  4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。

  5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

  6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对要给予奖励。

  7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。

  8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课,不断学习他人之长处。

初中数学教学设计11

  【教学目标】

  使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示;向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。【内容简析】

  本节课是数轴的第一课时,在学生学了有理数概念的基础上,从标有刻度的温度计来表示温度高低这个事实出发引出数轴画法和用数轴上点表示数的方法,可以使学生借助图形的直观来理解有理数的有关问题,突出知识的产生过程,也为以后学习实数奠定基础。本节的重点是掌握数轴的概念和画法,明确其三要素缺一不可。数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。【流程设计】

  一、情景创设

  温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?

  数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。

  二、新知探索

  1.请学生阅读新课思考:

  ①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。②数轴要具备哪三个要素?

  ③原点表示什么数?原点右方表示什么数?原点左方表示什么数? ④表示+2的点在什么位置?表示-3的点在什么位置?

  ⑤原点向右0.5个单位长度的a点表示什么数?原点向左11个单位长度的b点表示什么数?

  2.数轴的画法

  师生共同总结数轴的画法步骤:

  第一步:画一条直线(通常是水平的直线),在这条直线上任取一点o,叫做原点,用这点表示数0;(相当于温度计上的0℃。)

  第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)

  第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)

  在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,?,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,?。

  3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

  原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。

  三、范例共做

  例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里? 分析:原点、正方向、单位长度这数轴的三要素缺一不可。解答:都不正确,

(1)缺少单位长度;

(2)缺少正方向;

(3)缺少原点;

(4)单位长度不一致。

  例2:把下面各小题的数分别表示在三条数轴上:

  (1)2,-1,0,?32,+3.5(2)-5,0,+5,15,20;

  (3)-1500,-500,0,500,1000。

  分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。这样画出的图形较合理、美观。

  例3:借助数轴回答下列问题

  (1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;

  (2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。

  解答:观察数轴易知:

  (1)有最小的正整数,它是1,没有最大的正整数;

  (2)没有最小的负整数,有最大的负整数,它是-1. 例4:比较–3,0,2的大小。

  分析一:先在数轴上分别找到表示–3、0、2的点,由“右边的数总比左边的数大”得到–3<0<2;

  分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出–3<0<2。

  四、检测反馈

  1.判断下图中所画的数轴是否正确?

  2.下面数轴上的'点a、b、c、d、e分别表示什么数?

  3.将-

  3、1.5、21、-

  6、2.25、1、-

  5、1各数用数轴上的点表示出来。224.画一条数轴,并在上面标出下列的点。

  ±100

  ±200

  ±300 提示:1.图(1)是数据标注错误;图(2)的画法是正确的,在以后的学习中会遇到。

  五、小结提高

  1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;

  2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。

  六、课后思考

  1.一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?(1)向右移动11个单位长度,再向左移动2个单位。2(2)向左移动3个单位长度,再向左移动2个单位长度。

  2.数轴上表示3和-3的点 离开原点的距离是多少?这两个点的位置有什么不同? 3.数轴上到原点的距离是5的点有几个?它们分别表示什么数?

  4.某数轴的单位长度是1cm,若在这个数轴上随意画一条长100cm的线段ab,则线段ab盖住的整数点有()

  a.99个或100个

  b.100个或101个

  c.99个或101个

  d.99个、100个或101个

初中数学教学设计12

  一、教学目标:

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.能够利用二次函数的图象求一元二次方程的近似根。

  二、教学重点

  利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  三、教学方法:

  启发引导合作交流

  四:教具、学具:

  课件

  五、教学媒体:

  计算机、实物投影。

  六、教学过程:

  [活动1]检查预习引出课题

  预习作业:

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

  师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

  [活动2]创设情境探究新知

  问题

  1.课本p16问题.

  2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

  (结合预习题1,完成课本p16观察中的题目。)

  师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

  二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

  二次函数y=ax2+bx+c的

  图象和x轴交点

  两个交点

  一个交点

  没有交点

  教师重点关注:

  1.学生能否把实际问题准确地转化为数学问题;

  2.学生在思考问题时能否注重数形结合思想的应用;

  3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

  设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

  [活动3]例题学习巩固提高

  问题:例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

  师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

  教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

  设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

  [活动4]练习反馈巩固新知一元二次方程一元二次方程ax2+bx+c=0ax2+bx+c=0的根两个相异的实数根两个相等的实数根没有实数根根的判别式δ=b2-4acb2-4ac > 0b2-4ac = 0b2-4ac < 0

  问题:(1)p97.习题1、2(1)。

  师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。

  教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。

  设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。

  [活动5]自主小结,深化提高:

  1.通过这节课的学习,你获得了哪些数学知识和方法?

  2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。

  师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。

  设计意图:

  1.题促使学生反思在知识和技能方面的收获;

  2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的`发展。

  [活动6]分层作业,发展个性:

  1.(必做题)阅读教材并完成p97习题21。2:3、4.

  2.(备选题)p97习题21。2:5、6

  设计意图:分层作业,使不同层次的学生都能有所收获。

  七、教学反思:

  1.注重知识的发生过程与思想方法的应用

  《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。

  探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方

  法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。

  2.关注学生学习的过程

  在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。

  3.强化行为反思

  “反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。

  4.优化作业设计

  作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。

初中数学教学设计13

  第1章反比例函数

  反比例函数

  教学目标

  【知识与技能】

  理解反比例函数的概念,根据实际问题能列出反比例函数关系式.

  【过程与方法】

  经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力.

  【情感态度】

  培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值.

  【教学重点】

  理解反比例函数的概念,能根据已知条件写出函数解析式.

  【教学难点】

  能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想.

  教学过程

  一、情景导入,初步认知

  1.复习小学已学过的反比例关系,例如:

  (1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)

  (2)当矩形面积一定时,长a和宽b成反比例,即ab=S(S是常数)

  2、电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,请你用含R的代数式表示I吗?

  【教学说明】对相关知识的复习,为本节课的学习打下基础.

  二、思考探究,获取新知

  探究1:反比例函数的概念

  (1)一群选手在进行全程为3000米的比赛时,各选手的平均速度v(m/s)与所用时间t(s)之间有怎样的关系?并写出它们之间的关系式.

  (2)利用(1)的关系式完成下表:

  (3)随着时间t的变化,平均速度v发生了怎样的变化?

  (4)平均速度v是所用时间t的函数吗?为什么?

  (5)观察上述函数解析式,与前面学的一次函数有什么不同?这种函数有什么特点?

  【归纳结论】一般地,如果两个变量x,y之间可以表示成y=(k为常数且k≠0)的形式,那么称y是x的反比例函数.其中x是自变量,常数k称为反比例函数的比例系数.

  【教学说明】先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看作函数,了解所讨论的函数的表达形式.探究2:反比例函数的自变量的取值范围思考:在上面的问题中,对于反比例函数v=3000/t,其中自变量t可以取哪些值呢?分析:反比例函数的自变量的`取值范围是所有非零实数,但是在实际问题中,应该根据具体情况来确定该反比例函数的自变量取值范围.由于t代表的是时间,且时间不能为负数,所有t的取值范围为t>0.

  【教学说明】教师组织学生讨论,提问学生,师生互动.

  三、运用新知,深化理解

  1.见教材P3例题.

  2.下列函数关系中,哪些是反比例函数?

  (1)已知平行四边形的面积是12cm2,它的一边是acm,这边上的高是hcm,则a与h的函数关系;

  (2)压强p一定时,压力F与受力面积S的关系;

  (3)功是常数W时,力F与物体在力的方向上通过的距离s的函数关系.

  (4)某乡粮食总产量为m吨,那么该乡每人平均拥有粮食y(吨)与该乡人口数x的函数关系式.

  分析:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=(k是常数,k≠0).所以此题必须先写出函数解析式,后解答.

  解:

  (1)a=12/h,是反比例函数;

  (2)F=pS,是正比例函数;

  (3)F=W/s,是反比例函数;

  (4)y=m/x,是反比例函数.

  3.当m为何值时,函数y=是反比例函数,并求出其函数解析式.分析:由反比例函数的定义易求出m的值.解:由反比例函数的定义可知:2m-2=1,m=3/2.所以反比例函数的解析式为y=.

  4.当质量一定时,二氧化碳的体积V与密度ρ成反比例.且V=5m3时,ρ=/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围.

  (2)求V=9m3时,二氧化碳的密度.

  解:略

  5.已知y=y1+y2,y1与x成正比例,y2与x2成反比例,且x=2与x=3时,y的值都等于19.求y与x间的函数关系式.

  分析:y1与x成正比例,则y1=k1x,y2与x2成反比例,则y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y与x间的函数关系式.

  解:因为y1与x成正比例,所以y1=k1x;因为y2与x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,当x=2与x=3时,y的值都等于19.

  【教学说明】加深对反比例函数概念的理解,及掌握如何求反比例函数的解析式.

  四、师生互动、课堂小结

  先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.

  课后作业

  布置作业:教材“习题”中第1.3.5题.

  教学反思

  学生对于反比例函数的概念理解的都很好,但在求函数解析式时,解题不够灵活,如解答第5题时,不知如何设未知数.在这方面应多加练习.

初中数学教学设计14

  一、教材分析

  全期共有六章。新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算 、轴对称图形、数据的分析与比较。

  二、学情分析

  本学期是本年级学生初中学习阶段的第二学期。通过上期的学习,大多数学生对学习数学产生了浓厚的学习兴趣。更有像陈琦、严细毛、瞿俐纯等同学更是对数学探究活动情有独衷。上期期末考试中,0901整体水平稍高于兄弟班级,但有两极分化的'趋势。0902班的及格率稍高于兄弟班,但低分段学生高于10%,而且这部分学生对学习缺乏应有的热情和自信,有自暴自弃之嫌。

  三、目标任务

  本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题。教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力。在期中、期末考试中力争生均分70分左右,合格率60%以上,优秀率30%以上,并将低分率控制到10%以下。

  四. 主要教学措施

  1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的学习兴趣和个性品质。

  2、把握学生思想动态,及时与学生沟通,搞好师生关系。

  3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。

  4、改进教学方法,用多媒体课件,实物等创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。

  5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。

  6、 开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力。

初中数学教学设计15

  我在这次国培中学习了“初中数学概念课堂教学设计”。虽只有短短的时间,却让我受益匪浅。

  数学概念是数学命题、数学推理的基础,数学学习的真正开始是从对数学概念的学习开始的,作为一名初中数学老师,我也常常在思考,如何进行概念教学?如何充分利用有限的45分钟,让学生真正理解概念?通过这次国培,给我们今后的数学概念教学提供了一种可以借鉴的教学模式:即“创设问题情景,归纳共同特征——建立数学模型,抽象出概念——在交流中深化概念,辨析概念的内涵与外延——巩固、应用与拓展。”概念教学注意以下几点:

  1、注重了数学与生活之间的联系。

  《数学课程标准》要求:“让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。”数学的每一个概念都是一个数学模型,老师们从学生实际出发,创设了许多有利于学生学习的现实背景与材料,极大的鼓起了学生学习数学的兴趣。

  2、概念的得出注重了探究过程、分析过程,体现了活动主题。

  通过一组实例,分析共性,找共同特征。

  3、铺垫导入恰当,让预设与生成合情合理。

  课堂教学的优秀与否,既要看预设,又要看生成。做到了新知不新,新概念是在旧概念的基础上滋生和发展出来的,她们这样的引入,符合学生的最近发展区需要,教师适时搭建了一个新旧知识的桥梁,然后引导学生分析、观察,学生就会印象深刻。

  4、注重了数学陷阱的设置。

  把学生对概念理解中的.易错点、易混淆点列出来,让学生判断、研究可以让学生对概念理解更深刻。

  5、注重了学科间的渗透。

  在数学教学中,如何使学生形成数学概念,正确的理解和掌握概念是极为重要的,这是学好数学的基础之一。要让学生真正理解概念,要把握好以下三点:一要注重联系生活原型,对概念作通俗解释,体验探究数学问题的乐趣;二要注重揭示概念的本质,准确理解概念的内涵与外延;三要注重概念的实际应用,实现知识的升华。

【初中数学教学设计】相关文章:

初中数学教学设计04-12

初中数学教学设计04-09

数学初中教学设计02-21

初中数学教学设计【热】07-09

初中数学教学设计精彩10-08

初中数学教学设计[集合]03-01

初中数学教学设计[精华]02-17

初中数学优秀教学设计02-16

初中数学教学设计教案优秀12-11