三角形内角和教学设计15篇【精选】
作为一名教师,时常需要准备好教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。我们该怎么去写教学设计呢?下面是小编为大家收集的三角形内角和教学设计,希望能够帮助到大家。
三角形内角和教学设计1
三角形内角和教学设计
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境揭示课题。
师:猜谜语形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下?学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀?生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角?三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的.三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形?生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊?生齐:180°。
师:那??其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊?生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度?生:180 °
师:(出示一个很小的三角形)它呢?生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
三角形内角和教学设计2
教学目标:
1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。
3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。
教学难点:
通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"
教师准备:
4组学具、课件
学生准备:
量角器、练习本
教学过程:
一、兴趣导入,揭示课题
1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"
(生出示三角形并汇报各类三角形及特点)
2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
3、我们来帮帮它们好吗?
4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。
你能标出三角形的三个角吗?(生快速标好)
数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)
"同学们,用什么方法能知道三角形的内角和?"
二、猜想验证,探究规律 (动手操作,探究新知)
1.量角求和法证明:
先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人 量,一人记录,一人计算,看哪一小组完成的好?
(1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。
(2)指名汇报各组度量和计算内角和的结果。
(3)观察:从大家量、算的结果中,你发现什么?
归纳:大家算出的三角形内角和都等于或接近180°。
(5)思考、讨论:
通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?
大家讨论讨论。
现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?
看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。
看老师最终把三个角拼成了一个什么角?平角。是多少角?
"180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180 度的平角就可以验证这个结论,对吗?"(课件3)
现在,我们可验证三角形的内角和是(180度)?
2、那么对任意三角形都是这个结论?请看大屏幕。
演示锐角三角形折角。 (三个顶点重合后是一个平角,折好后是一个长方形。)
你们想不想去试一试。
1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)
2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)
a、验证直角三角形的`内角和
折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?
引导生归纳出:直角三角形的内角和是180°
折法2 我们还可以得出什么结论?
引导生归纳出:直角三角形中两个锐角的和是90°。
(即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)
b、验证锐角、钝角三角形的内角和。
归纳:锐角、钝角三角形的内角和也是180°。
放手发动学生独立完成 ,逐一种类汇报 师给予鼓励
三、总结规律
刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?
(三角形的内角和是180°。)
(教师板书:三角形的内角和是180°学生齐读一遍。)
为什么用测量计算的方法不能得到统一的结果呢?
(量的不准。有的量角器有误差。)
老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应
四、应用新知,知识升华。
(让学生体验成功的喜悦)
现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?
(课件5……)
在一个三角形中,有没有可能有两个钝角呢?
(不可能。)
追问:为什么?
(因为两个锐角和已经超过了180°。)
有两个直角的一个三角形
(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)
问:那有没有可能有两个锐角呢?
(有,在一个三角形中最少有两个内角是锐角。)
1、 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2、做一做:
在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数、
3、27页第3题(数学信息较为隐藏和生活中的实际问题)
4.思考题、
五、总结
今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。
板书设计:
三角形内角和
量一量 拼一拼 折一折
三角形内角和是180°
三角形内角和教学设计3
【教学内容】
《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》
【教学目标】
1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】
使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。
【教学难点】
通过多种方法验证三角形的内角和是180 。
【教学准备】
课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。
【教学过程】
一、激趣导入,提炼学习方法
1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”
2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。
4.导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)
二、动手操作,探索交流新知
1.分组活动,探索新知
根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
量一量组同学发给以下几种学具:
折一折组同学发给上面的三角形一组。
拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。
在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。
2.多方互动,交流新知
师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。
(1)首先要求学生说一说你们小组是怎样进行探究的。
(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)
(3)请学生说说通过探究活动你们组得出的结论是什么。
师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?
引导这一组从探究的过程和结论与同学、老师交流。
师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。
同样引导这一组从探究的过程和结论与同学、老师交流。
3.思想碰撞,夯实新知
师:三个徒弟你们能说说谁的方法最好吗?
学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的.不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)
师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )
四、走进生活,提升运用能力
1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?
2.给你三根木条,能做出一个有两个直角的三角形吗?
五、总结
师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?
六、拓展新知,课外延伸
师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。
大屏幕出示:
能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?
三角形内角和教学设计4
一、教学目标
1、知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。
2、能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。
3、情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。
二、教学过程
(一)创设情境,导入新课
1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?
(学生畅所欲言。)
2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!
师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)
(二)自主探究,发现规律
1、认识什么是三角形的内角和。
师:你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让学生想一想、说一说怎样才能知道三角形的内角和?
学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)
②小组合作。
通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。
引导学生推测出三角形的内角和可能都是180°。
3、验证推测。
让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,教师参与其中。)
4、全班交流,共同发现规律。
当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。
学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)
5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
(三)巩固练习,拓展应用
根据发现的三角形的新知识来解决问题。
1、完成“试一试”
让学生独立完成后,集体交流。
2、游戏:选度数,组三角形。
请选出三个角的度数来组成一个三角形。
150°10°15°18°20°32°
35°50°52°54°56°58°
130°70°72°75°60°
学生回答的同时,教师操作课件,把学生选择的度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。
3、“想想做做”第1题
生独立完成,集体订正,并说说解题方法。
4、“想想做做”第2题
提问:为什么两个三角形拼成一个三角形后,内角和还是180度?
5、“想想做做”第3题
生动手折折看,填空。
提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?
6、“想想做做”第5题
生独立完成,说说不同的解题方法。
7、“想想做做”第6题
学生说说自己的想法。
8、思考题
教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导
出四边形的内角和公式吗?
(四)课堂总结
本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。
三教后反思:
“三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的.一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求出第三个角的度数。
本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。
(一)创设情景,激发兴趣
俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。
(二)给学生空间,让他们自主探究
“给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。
(三)以学定教,注重教学的有效性
新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。
在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。
三角形内角和教学设计5
一、教材分析
(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。 “三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
(二)教学目标
基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。
2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。
3、解决问题:会用三角形内角和解决一些实际问题。
4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。
(三)重难点的确立:
1、重点:“三角形的内角和等于180°”结论的探究与应用。
2、难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
二、学情分析
处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
基于以上的情况,我确立了本节课的教法和学法:
三、教法、学法
(一)教法
基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。
(二)学法
通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
四、教学过程
我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。
具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。
前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。
通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。
活动4向学生展示分析问题的基本方法,培养学生思维的'广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。
活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。
活动6的设计目的发挥学生主体意识,培养学生语言概括能力。
【教学设计说明】
1、《数学课程标准》指出:“本学段(7~9年级)的数学应结合具体的数学内容,采用?问题情境——建立模型——解释、应用与拓展?的模式展开,让学生经历知识的形成与应用的过程…… ”因此,在本节课的教学中,我不断的创造自主探究与合作交流的学习环境,让学生有充分的时间和空间去动手操作,去观察分析,去得出结论,并体验成功,共享成功、
2、体现自主学习、合作交流的新课程理念、无论是例题还是习题的教学均采用“尝试—交流—讨论”的方式,充分发挥学生的主体性,教师起引导、点拨的作用、
3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。
三角形内角和教学设计6
教学内容:
本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:
1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件、各种三角形等。
学具准备:三角形、剪刀、量角器等。
教学过程:
一、出示课题,复习旧知
1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的内角“和”。
设计理念通过复习三角形的'概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知
1、通过预习,认识结论,提出疑问
2、验证三角形的内角和
(1)用“量一量、算一算”的方法进行验证
①汇报测量结果
②产生疑问:为什么结果不统一?
③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证
①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
③验证得出:三角形的内角和是180°。
(3)用“折一折”的方法进行验证
①指导折法。
①分别折:锐角三角形、直角三角形、钝角三角形。
③再次验证得出:三角形的内角和是180°。
3、看书质疑
设计理念此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。
三、实践应用,解决问题:
1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。
2、求出三角形各个角的度数。(图略)
3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是
70°,它的顶角是多少度?
4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)
5、数学游戏。
设计理念练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。
四、总结全课、延伸知识:
1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?
2、知识延伸:给学生介绍一种更科学的验证方法——转化。
设计理念课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。
板书设计:三角形的内角和是180°
方法:①量一量拼角(略)
②拼一拼
③折一折
设计理念此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。
三角形内角和教学设计7
一、教学目标
1.知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.过程与方法目标: 经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
3.情感态度价值观目标: 在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
二、教学重难点
重点:掌握三角形内角和定理。
难点:理解三角形内角和定理推理的过程。
三、教学过程
尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是三角形内角和,下面我将正式开始我的试讲。
上课,同学们好,请坐。
【导入】
同学们,上课之前呢我们先来看一下大屏幕,老师给大家准备了几张照片我们来看一下,在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
那同学们,大家同不同意它的说法呀,老师看到同学们都很疑惑的样子,没关系,今天这位节课我们就一起来研究一下这个问题,学习一下——三角形的内角和。
【新授】
活动一:
那同学们,接下来啊我们拿出尺字,画出几个三角形,然后测量并计算一下,三角形3个内角的和各是多少度呢?给大家三分钟时间同桌之间相互交流一下这个问题。
老师看到同学们都安静了下来,第三排这位同学,你来说一说你们两个人的结论。哦,他说呀他们发现他们两人画出的直角三角形内角和都是180度,你们的思路非常清晰,请坐!后边同学有不同意见,你来说,他说呀他们两人画出的锐角三角形也是180度。也是正确的,请坐!
活动二:
那同学们,是不是所有的三角形的内角和都是180°呢?如何进行验证呢?
那接下来5分钟我们前后排4个人一小组进行讨论,待会啊老师会找同学提问。
老师看到同学们都很迷茫,给大家一点小提示,我们可以用剪拼的形式来验证一下。
好时间到,哪位同学来告诉一下老师,你们的讨论结果呢。你们小组讨论的最激烈,你来告诉一下老师,他说呀他们小组是将三种不同类型的三角形的三个角剪下来,再拼一拼,发现都拼成一个了平角,你们的'方法非常独特,请坐!那大家的方法和它们的方法是一样的吗?
看来同学们的思路都非常的清晰,那同学们,由此我们就验证得出了,三角形的内角和就是180度。
观察一下黑板上这些内容,以上就是本节课所要学习的三角形内角和。
【巩固练习】
通过本节课的学习,相信大家对平行四边形有了更深的了解。我们看向黑板,接下来给大家两分钟时间来做一下这道题巩固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度数。课代表来黑板上板书一下。老师看到同学们笔都放下了,我们一起来看一下黑板上同学的答案,∠3=15°,同学们的答案和他的是一样的吗,看来同学们对本节课知识的掌握都已经非常扎实了。
【课堂小结】
不知不觉本节课马上就接近了尾声,哪位同学来说一下本节课你都有哪些收获呢?(停顿2秒)第二排手举得最高这位同学你来说一下,哦,他说啊,通过本节课的学习他掌握了三角形当中一个新的特点,三角形的内角和是180度,总结的非常全面见,请坐!
【作业布置】
接下来老师来给大家布置个小任务,回家之后仔细观察一下家中的物体,看一看那些物品是三角形的,动手测量一下内角和,看一看是否满足180度,下节课一起来交流讨论一下,今天这节课就上到这里,同学们再见。
三角形内角和教学设计8
教学内容:人教版小学数学第八册第85页例5及”做一做”
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想
3、在探索中体验发现的乐趣,增强学好数学的信心、
教学重点
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学难点 :
验证所有三角形的内角之和都是180°
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)
教学过程:
一、 设疑引思
1、 分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数、
2、 每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数、
3、 设问:老师为什么能很快”猜” 出第三个角的度数呢?
三角形还有许多奥妙,等待我们去探索、<导入新课,板书课题>
二、 探索交流,获取新知
1、 量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论、
2、 折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度, 初步验证”三角形的内角和是180°”的.结论、
3、 拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论、
4、 师利用课件演示将一个三角形的三个角拼成一个平角的过程、
5、 验证:FLASH演示三种三角形割补过程
发现1: 通过把直角三角形割补后,内角∠2,∠3 组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于( )度。
发现2:通过把钝角、锐角三角形割补后,三角组成了一个( )角,而( )角等于( )度。所以锐角三角形和钝角三角形的内角和都是180度。
6、 小结:刚才能过量一量折一折拼一拼,你发现了什么?
生说,师板书:三角形的内角和———180°
三、 应用练习,拓展提高
1、书例5后”做一做”
思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)
2、下面哪三个角会在同一个三角形中。
(1)30、60、45、90
(2)52、46、54、80
(3)61、38、44、98
3、走向生活:
(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?
(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)
四 作业:作业本
五 全课总结
总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?
板书设计:三角形的内角和
三角形的内角和———180°
三角形内角和教学设计9
教学要求
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
教学重点
三角形的内角和是180°的规律。
教学难点
使学生理解三角形的内角和是180°这一规律。
教学用具
每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。
教学过程:
一、出示预习提纲
1、三角形按角的不同可以分成哪几类?
2、一个平角是多少度?1个平角等于几个直角?
3、如图,已知∠1=35°,∠2=75°,求∠3的度数。
二、展示汇报交流
1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4、指名学生汇报各组度量和计算的结果。你有什么发现?
5、大家算出的三角形的'内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。
12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13、出示教材85页做一做。让学生试做。
14、指名汇报怎样列式计算的。两种方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
课后反思:
对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。
三角形内角和教学设计10
微课作品介绍本微课是苏教版小学数学四年级下册《三角形内角和》的课前先学指导,学生在家观看视频内容,同时结合学习任务单,在视频的指导下通过猜、量、算、剪、拼等方法探索三角形的内角和是180度。学生在课前利用视频完成学习任务单,然后到学校课堂中和老师、同学进行交流,再进一步提升。
教学需求分析适用对象分析该微课的适用对象是苏教版四年级下学期的小学生,学生应认识三角形的基本特征,学习过角和角的度量,知道平角是180度。具备了一定的动手操作能力和数学思维能力。
学习内容分析该微课让学生发现、验证三角形的内角和是180度的结论。这部分内容是在学生认识了三角形的基本特征和三边的关系后,三角形分类前学习的。这在苏教版中和原来的教材不同,放在这里是因为三角形内角和是学生进一步学习和探究三角形分类方法的重要前提。学生知道了三角形的内角和是180度,对三角形分类及命名的方法,才能知其然,还能知其所以然。
教学目标分析:
1、通过学生的实际操作,理解并验证三角形的内角和等于180°,并能够运用结论解决简单的实际问题;
2、使学生通过观察、实验,经历猜想与验证三角形内角和的探索过程,在活动中发展学生的空间观念和推理能力。
3、已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在学习时的主要目标是验证三角形的内角和是180度。
教学过程设计本微课教学过程:
一、明确多边形的内角、内角和概念。
首先要明确概念,才好继续研究。内角、内角和以前学生没有学过,还是有必要给学生明确的。
二、探索三角尺的内角和,猜想三角形的内角和。
从学生熟悉的三角板开始计算三角板的内角和,引发学生猜想,三角形的内角和是多少。
三、验证三角形内角和是否为180°。
验证分为三个层次:首先是量教材提供的三角形,算出内角和,可能会有误差。其次把三角形三个内角拼在一起,拼成是平角180度。最后自己任意画一个三角形剪下来,拼一拼,得出结论。让学生经历由特殊到一般的认知过程。
四、拓展延伸,探究梯形、平行四边形和六边形内角和。
由三角形的内角和,学生自然就会想到已学过的梯形、平行四边形和六边形内角和是多少呢。教师留下问题让学有余力的学生进一步去探索。
五、自主学习检测
学生观看完了视频是否学会了,是需要检测的。学生通过做完自主检测后进行校对,检验自己所学。
学习指导本微视频应配合下面的学习任务单共同使用,在观看视频时,根据视频提示随时暂停视频依次完成任务单。
自主学习前准备:
请在自主学习前阅读学习任务单的学习指南,并准备好数学书、一副三角尺、量角器、剪刀、铅笔等学习用具。
自主学习任务单:
通过观看教学资源自学,完成下列学习任务:
任务一:明确多边形的内角、内角和概念
1、你认识下面的图形吗?他们各有几个角,请在图中标出来。
2、你刚才标出的角,又叫做每个图形的()。
3、如果把一个图形所有的内角的度数加起来,所得的总和就是这个图形的()。
4、你知道图中长方形和正方形的内角和是多少度吗?你是怎么知道的?
长方形内角和正方形内角和
任务二:探索三角尺的.内角和,猜想三角形的内角和。
1、请拿出一副三角尺,你知道每块三角尺上各个角的度数?在图上标出来。
2、算一算,每个三角尺3个内角的和是多少度。
3、根据你刚才的计算结果,你能猜想一下,任意一个三角形它的内角和的度数呢?
任务三:验证任意三角形内角和是否为180°
1、请从数学书本第113页剪下3个三角形,用量角器量出每个三角形3个内角的度数。
算一算,每个三角形3个内角的和是多少度。
2还可以用什么办法来验证剪下的这3个三角形的内角和等于180度?(把你的验证方法展示在下面。)如果你想不出来请看下面的提示。
温馨提示:平角正好是180°,这三个内角能正好拼成一个平角吗?
3、自己任意画一个三角形,先剪下来,再拼一拼。
4、你发现了什么?写在下面。
5、请你回顾一下我们研究三角形形内角和是180度的过程?简单的写下来。
任务四:拓展延伸
任务一中还有梯形、平行四边形和六边形,如果你有兴趣,你可以研究他们的内角和。
任务五:自主学习检测
1、右边三角形中,∠1=75°,∠2=40°,∠3=()°
2、第3个三角形还可以怎样计算,哪种更简便?
3、一块三角尺的内角和是180°,用两块完全一样的三角尺拼成一个三角形,拼成的三角形内角和是多少度?
4、用一张长方形纸折一折,填一填
配套学习资料苏教版小学数学四年级下册教材
制作技术介绍Camtasia Studio软件制作、PPT。
三角形内角和教学设计11
教学内容 :小学数学教材第八册P137—P138及练习三十一的第13—15题。
教学目的:
1.通过教学向学生渗透“认识来源于实践,服务于实践”的观点。
2.使学生通过学习“三角形内角和”能解决一些实际问题。
3.进一步培养学生动手操作的能力。
教学重点: 对三角形内角和知识的实际运用。
教学难点:通过动手操作验证三角形的内角和是180°
教 法:实验法,演示法
教具准备:三种类型的三角形若干个。
学具准备:三角形纸片若干、多媒体课件。
教学过程:
一、课前一练
师:前几节课我们一直在研究三角形,有关三角形,你掌握了哪些知识呢?
二、猜角设疑,揭示课题
师:看来同学们对三角形已经非常熟悉了,下面我们来做个游戏,这个游戏叫“猜角”。请同学们拿起桌子上量好角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。相信吗?下面我们来试一试。
(师生猜角活动)
师: 你们想不想知道老师有什么法宝,能这么快说出第三个角的度数?通过这节数学课的学习,你就可以揭开这个奥秘了。(板书“三角形的内角和”)
三、自主探索,合作交流
师:看到这个题目,你想知道些什么呢?
生: 什么是三角形的内角?
生:三角形的内角和是多少度?
生:什么叫三角形的内角和?
生:我们学习三角形的内角和有什么用处?
通过这节课的学习,我们就要知道,三角形的内角和是多少度以及它在实际生活中的应用。
1、理解“内角”
师:我们先来看第一个问题:什么是三角形的内角?谁想说说自己的想法?
生:“内”是里的意思,“内角”就是三角形里面的'角。
师:你知道三角形有几个内角吗?(三个)
2、理解“内角和”
师:那我们再来想一想三角形的内角和指的是什么呢?
生:(边指边说)“内角和”就是将三角形里面的角相加的度数。
生:我还有补充。三角形的内角和是三个角相加的度数。
师:说的真好,为了方便,我们将三角形的每个内角编上序号1、2、3,我们叫它∠1,∠2,∠3,∠1,∠2,∠3的度数和,就是这个三角形的内角和。(课件出示)
3、探究新知。
①分工
师:研究三角形的内角和,就要对每一类的三角形进行研究。如果咱们分工研究,你们组愿意研究哪一类的三角形呢?(小组进行选择)先别着急,每位同学想想,你准备采用什么方法来研究三角形的内角和?把你的想法简单的在小组内说一说。我发现有的小组已经胸有成竹了。下面请各小组组长来领取你们要研究的三角形和需要的材料。为了研究方便,请把你研究的三角形的内角也编上编号,如果遇到小组解决不了的问题,别忘了老师在你身边。
②小组合作探究内角和。
③学生汇报交流。
师:我发现大部分小组已完成了研究,哪个小组愿意派代表到前面汇报你们研究的方法和结果。
(小组汇报)
④得出结论。
师:谁能用一句话来概括一下这几个同学的观点。
(三角形的内角和等于180°)
师小结:我们研究了锐角三角形、直角三角形,钝角三角形,其实也就包括了所以的三角形,从而可以得出结论,三角形的内角和都等于180°(板书)
4、学习例题。
师:根据这一规律,如果知道三角形中两个角的度数,就能求出第三个角的度数。
课件出示例题:在三角形中,已知∠1=78°,∠2=44°,求∠3的度数。
学生独立解答,集体订正,注意纠正学生的书写格式。
四、应用深化
1、变式练习
师:三角形兄弟听说咱们发现了它们的内角和是180°,非常高兴。瞧,它们也特地赶来了,请听听它们在说些什么?(课件出示)
你会解决它们提出的问题吗?
2、练习三十一的第15题。
师:同学们放过风筝吗?你见过的风筝都是什么形状的?
这些形状都是美丽的对称图形,看!小红的爸爸给小红买了什么样的风筝?(课件出示)你是怎么想的?
3、抢答:
师:原来生活中也会应用到三角形内角和的知识,同学们回忆一下,刚才老师猜角的秘密是什么?(三角形内角和是180°)
师:如果让你来猜你会猜吗?下面咱们以小组为单位进行抢答,规则是:先举牌者先回答,答对的小组可获得一面小旗,最后小旗多的小组是比赛的冠军。你们做好准备了吗?
(进行猜角游戏)
已知∠1,∠2,∠3是三角形的三个内角。
(1)∠1=38° ∠2=49°求∠3
(2)∠2=65° ∠3=73°求∠1
已知∠1和∠2是直角三角形中的两个锐角
(1)∠1=50°求∠2
(2)∠2=48°求∠1
师:现在每小组都得到了红旗,但最后获胜者是第几小组,让我们用掌声向他们表示祝贺。
4、拓展练习
师:同学们,我们已经知道了三角形有三个内角,你知道长方形、正方形各有几个内角吗?它们的内角和又是多少度呢?那么任意四边形的内角和又是多少度呢?任意五边形、六边形、七边形……内角和又是多少呢?有兴趣的同学可以研究一下。
五、反思回顾
师:通过本节课的学习,你有什么收获?
师:同学们通过探索和合作交流发现了三角形的内角和是180°,充分发挥了你们的聪明才智,你们真不简单!希望你们在今后的学习中继续探索,掌握更多的本领!
三角形内角和教学设计12
教学目标:
1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
教学重点:
1、探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:表格、课件。
学具准备:各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。
生1:大三角形大(个子大)
生2:小三角形大(有钝角)
(教师不做判断,让学生带着问题进入新课)
2、什么是三角形的内角和?(板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的。度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、?
生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。
生3:用折一折的办法把三个角折到一起看它们能不能组成平角
(二)探索与发现
活动一:量一量
(1)①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②小组合作。
③汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在180°,左右。)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)
活动二:拼一拼,验证猜想
这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)
引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。
(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
(3)分组汇报,讨论质疑
(4)课件演示,验证结果
活动三:折一折
师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。
(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
提问:还有没有其它的`方法?
3、回顾两种方法,归纳总结,得出结论。
(1)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
学生答:“180°!”
(2)总结方法,齐读结论
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
(3)解释测量误差
为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°
(三)回顾问题:
现在你知道这两个三角形谁说得对了吗?(都不对!)
为什么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800180°。(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
∠A=180°-90°-30°
2、练一练:数学书29页第一题(生独立解决)
∠A=180°-75°-28°
3、小法官:数学书29页第二题
四、回顾课堂,渗透数学方法。
1、总结:猜想—验证—归纳—应用的数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和
板书设计:
三角形内角和等于180°
三角形内角和教学设计13
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的'内角和。板书课题。
(二)自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,①已知等腰三角形的底角,求顶角。
②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
八、板书设计
通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!
三角形内角和教学设计14
教学内容:
人教版四年级下册第85面——87面。
教学目标:
1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。
3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
让学生经历“三角形内角和是180°”这一知识的发现过程。
教学准备:
教具:多媒体课件、三角板一个、两个完全一样的直角三角形。
学具:锐角三角形、直角三角形、钝角三角形各一个。
教学过程:
(一)创设情境,提出问题。
师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,今天老师还给大家带来了一个老朋友,请看,是什么?
生:三角形!
师:前面我们已经认识了三角形,谁能给大家介绍一下?
学生讲学过的三角形知识。
(学生叙述到部分主要内容即可)
师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)
师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?
师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。
师:有谁知道这个三角形三个内角的度数?
(FLASH:生说完后师点击出第二个三角形,边说边点出度数)
[U1]试一试,看谁算得快。
师:谁来说说自己的计算过程?
[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?
生:它们的内角和都是180度。
师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?
[回答可能有二]:
(一种全部说是:)
师:请问,你们是怎么想的,为什么这么认为?
生:……
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(一种有一部分同学说是,有一部分同学说不是:)
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)
(二)动手操作,探究新知
[U3]
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)
生:……
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)
师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)
师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?
生:我们还用了折的方法(生介绍方法)
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)
生:是个平角。180度。
师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的`误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?
生:三角形的内角和是180度。(师板书)
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?
师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形内角和教学设计15
教学目标:
1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:
课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、课件出示三角形的争吵画面
锐角三角形:我的内角和度数最大。
直角三角形:不对,是我们直角三角形的内角和最大。
钝角三角形:你们别吵了,还是钝角三角形的内角和最大。
师:此时,你想对它们说点什么呢?
2、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和(课件)
师:内角和指的是什么?
生:三角形的三个内角的度数的和,就是三角形的内角和。
2、看一看,算一算。
师:算一算两个三角尺的内角和是多少度?(课件)
学生计算
师:是不是所有的.三角形的内角和都是180°呢?你能肯定吗?
(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3、操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4、学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
师:此时,你想对争论的三个三角形说些什么呢?
5、小结。
三角形的内角和是180度。
三、解决相关问题
1、在能组成三角形的三个角后面画“√”(课件)
2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)
3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)
四、练习巩固
1、看图,求三角形中未知角的度数。(课件)
2、求三角形各个角的度数。(课件)
五、总结。
师:这节课你有什么收获?
六、板书设计:
三角形的内角和是180°
【三角形内角和教学设计】相关文章:
三角形内角和教学设计07-17
三角形的内角和教学设计06-07
《三角形内角和》教学设计06-08
《三角形的内角和》教学设计03-14
《三角形内角和》教学设计10-01
三角形内角和教学设计03-09
《三角形内角和》教学设计(实用)10-02
《三角形内角和》教学设计【热】06-09
三角形内角和教学设计(15篇)04-08
三角形内角和教学设计15篇03-20