《三角形内角和》教学设计

时间:2024-10-01 11:28:10 教学设计 我要投稿

《三角形内角和》教学设计

  作为一位杰出的教职工,时常需要准备好教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。教学设计应该怎么写才好呢?下面是小编帮大家整理的《三角形内角和》教学设计,仅供参考,希望能够帮助到大家。

《三角形内角和》教学设计

《三角形内角和》教学设计1

  教学目标:

  1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。

  2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。

  3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。

  教学重点:

  知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。

  教学难点:

  经历操作活动,推理、归纳出三角形的内角和。

  教学资源:

  多煤体课件,各种三角形,三角板,量角器,剪刀。

  教学活动:

  一、创设情境,导入新课。

  1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?

  2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。

  3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)

  二、合件交流,操作发现。

  1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。

  2.组织学生小组合作:

  请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?

  3.组织学生汇报交流:

  ①那个组说一说你们组测量的数据和计算的.结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)

  4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。

  5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)

  三、实践应用,拓展延伸。

  1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。

  2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。

  四、反思总结,自我建构。

  这节课你有什么收获?

  这节课我们就研究到这儿,同学们再见!

《三角形内角和》教学设计2

  学习目标:

  1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

  2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。

  4.能应用三角形内角和的性质解决一些简单的问题。

  教具、学具准备:

  课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一副三角板。

  教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。

  教学过程:

  一、谈话导入

  猜谜语:形状似座山,稳定性能坚

  三竿首尾连,学问不简单

  (打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)

  师:就这么简单的一个三角形我们就得出了那么多的知识,你们

  说数学知识神气不神奇?

  今天我们还要继续研究三角形的新知识。

  二、创设情境,引出课题,以疑激思

  师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。

  师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)

  师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。

  生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。

  生3:当然是大三角形的内角和大了。

  生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:

  三角形的内角和)

  三、动手操作,探究问题,以动启思

  1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。

  师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。

  (学生们能够很快求出每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定

  2、小组合作探究:

  师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的.报告”。

  (1)、小组合作

  ,讨论验证方法(2)汇报验证方法、结果

  师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎

  样?

  方法一:

  生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。

  师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

  师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)

  生:不管什么三角形三个角都能拼成一个平角。

  师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。

  方法二:

  生B:我们小组是用折的方法,同样得到三角形的内角和是180度。

  师:请这位同学折来给大家看看。

  生:3个角折成了一个平角。

  师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)

  师:说得真清楚。

  方法三:

  学生C:测量角的度数,再加起来。(填表)

  师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)

  问:你们发现了什么?

  小结:通过测量我们发现每个三角形的三个内角和都在180度左右。

  师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。

  3、小结:

  师:刚才同学们用量、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。

  (出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)

  四、自主练习,解决问题:

  师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)

  1、第一关:下面每组中哪三个角能围成一个三角形?(1)70。

  60。

  30。

  90。

  (2)42。

  54。

  58。

  80。

  2、第二关:庐山真面目:求三角形中一个未知角的度数。

  3、第三关:解决生活实际问题。

  (1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?

  (2)交通警示牌“让”为等边三角形,求其中一个角的度数。

  4、第四关:变变变(拓展练习)

  利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)

  师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。

  五、课堂总结

  帕斯卡法是国著名的数学家、物理学家、哲学家、科学家,他12岁发现“任何三角形的三个内角和是1800!

  帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害

  且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。

  帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!

《三角形内角和》教学设计3

  教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

  教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

  教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

  教学目标:

  1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

  2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

  3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

  教学重点:理解并掌握三角形的内角和是180°。

  教学难点:验证所有三角形的内角之和都是180°。

  教具准备:多媒体课件、各种三角形等。

  学具准备:三角形、剪刀、量角器等。

  教学过程:

  一、出示课题,复习旧知

  1、认识三角形的内角。

  (1)复习三角形的概念。

  (2)介绍三角形的“内角”。

  2、理解三角形的内角“和”。

  【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

  二、动手操作,探究新知

  1、通过预习,认识结论,提出疑问

  2、验证三角形的内角和

  (1)用“量一量、算一算”的方法进行验证

  ①汇报测量结果

  ②产生疑问:为什么结果不统一?

  ③解决疑问:因为存在测量误差。

  (2)用“剪一剪、拼一拼”的方法进行验证

  ①指导剪法。

  ①分别拼:锐角三角形、直角三角形、钝角三角形。

  ③验证得出:三角形的内角和是180°。

  (3)用“折一折”的方法进行验证

  ①指导折法。

  ①分别折:锐角三角形、直角三角形、钝角三角形。

  ③再次验证得出:三角形的内角和是180°。

  3、看书质疑

  【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

  三、实践应用,解决问题:

  1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

  2、求出三角形各个角的`度数。(图略)

  3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

  70°,它的顶角是多少度?

  4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

  5、数学游戏。

  【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

  四、总结全课、延伸知识:

  1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

  2、知识延伸:给学生介绍一种更科学的验证方法——转化。

  【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

  板书设计: 三角形的内角和是180°

  方法:①量一量 拼角(略)

  ②拼一拼

  ③折一折

  【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

《三角形内角和》教学设计4

  教学目标:

  1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

  3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

  教学难点:

  通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"

  教师准备:

  4组学具、课件

  学生准备:

  量角器、练习本

  教学过程:

  一、兴趣导入,揭示课题

  1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"

  (生出示三角形并汇报各类三角形及特点)

  2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  3、我们来帮帮它们好吗?

  4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

  你能标出三角形的三个角吗?(生快速标好)

  数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)

  "同学们,用什么方法能知道三角形的内角和?"

  二、猜想验证,探究规律 (动手操作,探究新知)

  1.量角求和法证明:

  先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人 量,一人记录,一人计算,看哪一小组完成的好?

  (1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。

  (2)指名汇报各组度量和计算内角和的结果。

  (3)观察:从大家量、算的结果中,你发现什么?

  归纳:大家算出的三角形内角和都等于或接近180°。

  (5)思考、讨论:

  通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?

  大家讨论讨论。

  现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?

  看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。

  看老师最终把三个角拼成了一个什么角?平角。是多少角?

  "180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180 度的平角就可以验证这个结论,对吗?"(课件3)

  现在,我们可验证三角形的内角和是(180度)?

  2、那么对任意三角形都是这个结论?请看大屏幕。

  演示锐角三角形折角。 (三个顶点重合后是一个平角,折好后是一个长方形。)

  你们想不想去试一试。

  1、小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)

  2、"你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)

  a、验证直角三角形的内角和

  折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?

  引导生归纳出:直角三角形的内角和是180°

  折法2 我们还可以得出什么结论?

  引导生归纳出:直角三角形中两个锐角的和是90°。

  (即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)

  b、验证锐角、钝角三角形的内角和。

  归纳:锐角、钝角三角形的内角和也是180°。

  放手发动学生独立完成 ,逐一种类汇报 师给予鼓励

  三、总结规律

  刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?

  (三角形的内角和是180°。)

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  为什么用测量计算的方法不能得到统一的.结果呢?

  (量的不准。有的量角器有误差。)

  老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应

  四、应用新知,知识升华。

  (让学生体验成功的喜悦)

  现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?

  (课件5……)

  在一个三角形中,有没有可能有两个钝角呢?

  (不可能。)

  追问:为什么?

  (因为两个锐角和已经超过了180°。)

  有两个直角的一个三角形

  (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

  问:那有没有可能有两个锐角呢?

  (有,在一个三角形中最少有两个内角是锐角。)

  1、 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  2、做一做:

  在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数、

  3、27页第3题(数学信息较为隐藏和生活中的实际问题)

  4.思考题、

  五、总结

  今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。

  板书设计:

  三角形内角和

  量一量 拼一拼 折一折

  三角形内角和是180°

《三角形内角和》教学设计5

  【教材分析】

  《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

  【学生分析】

  经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

  【学习目标】

  知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

  能力目标: 培养学生主动探索、动手操作的`能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

  情感目标: 让学生体会几何图形内在的结构美。

  【教学过程】

  一、 情景激趣,质疑猜想。

  播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

  钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

  师:想一想,什么是三角形的三个内角的和。

  生:三角形的三个内角的度数和。

  师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

  学生进行猜想,自由发言。

  (设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

  二、自主探究,验证猜想

  师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?

  生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

  生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

  生3:我把三角形的三个角撕下来,拼一拼是否180°。

  生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

  ……

  师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)

  学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

  (设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)

  三、交流评价,归纳结论。

  学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

  实验报告单

  实验名称

  三角形内角和

  实验目的

  探究三角形内角和是多少度。

  实验材料

  尺子

  剪刀

  量角器

  锐角三角形纸片

  直角三角形纸片

  钝角三角形纸片

  我的方法

  我的发现

  我的表现

  自评

  互评

  学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

  师生共同归纳,得出结论:

  三角形内角和等于180°

  (设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

  四、分层练习,巩固创新。

  ①课件出示:

  师:这个三角形是什么三角形?知道几个内角的度数?

  生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

  师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

  学生做完后反馈讲评时让学生说说自己的方法。

  生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

  ∠A=180°-30°-90°=60°。

  生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。

  ②学生完成完成P29的第一题。

  引导学生按照前面的方法独立完成,教师巡视,集体订正。

  ③猜一猜三角形的另外两个角可能各是多少度。

  同桌同学互相说一说。(答案不唯一)

  ④小组操作探究活动。

  让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

  方 法

  四边形内角和

  用量角器量出每个内角的度数,并相加。

  把四边形四个角剪下来,拼在一起。

  把四边形分为两个三角形。

  填表后让学生想一想、互相说一说,四边形内角和是多少度?

  (设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)

《三角形内角和》教学设计6

  【设计理念】

  新课标重视让学生经历数学知识的构成过程,要求教师创设有效的问题情境激发学生的参与欲望,带给足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的构成过程。这样,学生不仅仅能够掌握知识,而且能够积累探究数学问题的活动经验,发展空间观念和推理潜力。

  【教材资料】

  新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习了十六的第1、2、3题。

  【教材分析】

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习了多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学资料时,不但重视体现知识的构成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学带给了清晰的思路。概念的构成没有直接给出结论,而是透过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

  【学情分析】

  1、在学习了本课时,学生已经有了探索三角形内角和的知识基础:明白直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,明白他们的四个角都是直角;认识了三角形,明白了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经明白了等腰三角形和正三角形。

  2、已经有一部分学生明白了三角形内角和是180°,只是知其然而不知所以然。

  【教学目标】

  1、透过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

  2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作潜力,积累基本的数学活动经验,发展空间观念和推理潜力。

  3、在参与数学学习了活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

  【教学重点】

  探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

  【教学难点】

  验证“三角形的内角和是180°”。

  【教(学)具准备】

  多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

  【教学步骤】

  一、复习了旧知引出课题

  1、你已经明白有关三角形的哪些知识?

  2、出示课题:三角形的内角和

  【设计意图:也自然导入新课。】

  二、提出问题引发猜想

  1、提出问题:看到这个课题,你有什么问题想问的?

  预设:

  (1)三角形的内角指的是哪些角?

  (2)三角形的内角和是什么意思?

  (3)三角形的内角一共是多少度?

  2、引发猜想

  猜一猜:三角形的内角和是多少度?你是怎样猜的?

  【设计意图:提出一个问题比解决一个问题更重要。课始在复习了三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习了自己想研究的资料,无疑激发了学生的学习了兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎样猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

  三、操作验证构成结论

  1、交流验证方法:

  (1)用什么方法证明三角形的内角和是180度呢?

  预设:

  ①量算法

  ②剪拼法

  ③折拼法等

  (2)三角形的个数有无数个,验证哪些三角形能够代表所有的三角形?我们的操作过程怎样分工才会做到省时又高效?

  2、动手验证

  3、全班汇报交流

  4、小结:刚才透过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在必须的误差,我们的'结论也可能存在偏差。

  5、方法拓展

  推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

  6、构成结论:任意三角形的内角和是180°。

  【设计意图:《标准》指出:“教师应激发学生的用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习了带给了经验支撑。】

  四、应用结论解决问题

  1、巩固新知:想一想,算一算。

  2、解决问题:等腰三角形风筝的顶角是多少度?

  3、辨析训练,完善结论。

  五、课堂总结,归纳研究方法

  这天这节课你学到了哪些知识?你是怎样得到这些知识的?

  六、课后延伸:

  用这天所学的方法继续研究四边形的内角和。

  七、板书设计:

  三角形的内角和

  猜测:三角形的内角和是180°?

  验证:量拼

  结论:任意三角形的内角和是180°

《三角形内角和》教学设计7

  【教材内容】

  北京市义务教育课程改革实验教材(北京版)第九册数学

  【教材分析】

  《三角形内角和》是北京市义务教育课程改革实验教材(北京版)第九册第三单元的内容,属于空间与图形的范畴,是在学生已经掌握了三角形的稳定性和三角形的三边关系相关知识后对三角形的进一步研究,探索三角形的内角和等于180°。教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°。让学生在自主探索中发现三角形的又一特性,更加深入的培养了学生的空间观念。

  【学生分析】

  在四年级学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  【教学目标】

  1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。

  2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。

  3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。

  【教学重点】

  让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。

  【教学难点】

  能利用学到的知识进行合情的推理。

  【教具学具准备】

  课件、各种各样的直角三角形、长方形、剪刀、量角器、数学纸

  【教学过程】

  一、学具三角板,引入新课

  1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)

  2、顾名思义一个三角形都有几个角呀?(三个)

  3、认识内角

  (1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?

  (2)这个三角形内有几个内角?(三个)这个呢?(三个)

  (设计意图:由学生最熟悉的三角板引入新课,激发学生兴趣的同时为后面的学习做准备)

  二、动手操作,探索新知

  (一)直角三角形内角和

  ⅰ、特殊直角三角形内角和

  1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。

  2、观察这两个三角形的度数,你有什么发现?

  生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)

  生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?

  (课件):(1)90°+60°+30°=180°)

  那么另一个三角板的三个内角的总度数是多少?

  (生回答,师课件:(2)90°+45°+45°=180)

  3、你指的哪是180度?(生:这三个内角合起来是180度)

  4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)

  5、这个直角三角形的内角和是多少度?另一个呢?

  6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。

  (师出示一个平角)问:平角是什么样的?

  7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。

  ⅱ、一般直角三角形内角和

  1、老师还为你们准备了各种各样的直角三角形,快拿出来看看。

  2、刚才的那两个直角三角形的内角和是180度,你们手中的直角三角形的内角和是多少度呢?老师还为你们准备了一些学具,你能充分地利用这些学具,想办法来研究直角三角形的内角和是多少度吗?下面我们以小组为单位来研究,注意小组同学要明确分工可以一个人填表,另外的人一起动手实验看一看哪一组想出研究方法最多。

  (1)小组活动(2)汇报

  哪个组愿意把你们的研究成果向大家展示?每个小组派代表发言。(在实物展台上演示)

  三角形的种类

  验证方法

  验证结果

  *“量一量”的方法:

  板书:有一点误差的度数

  *“剪一剪”的方法:

  我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)(课件展示)

  现在我们也用这种方法试一试,看能不能拼成平角?(小组实验)

  你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?

  还有其他方法吗?

  *“折一折”的方法:

  预设:①生:我是折的。师:怎样折的?你能给大家演示吗?

  学生演示(课件:折的过程)

  ②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)

  *推理:

  你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)

  这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)

  3、小结

  (1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。

  (2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)

  (设计意图:引导学生通过量、拼、推理等实践操作活动,自主探究直角三角形的内角和是180度,体验解决问题策略的多样化。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。)

  (二)、锐角三角形、钝角三角形的内角和

  1、请你们任意画一个钝角三角形,一个锐角三角形

  2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?

  3、学生模仿老师操作说理

  4、由此我们得到了锐角三角形的'内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。

  师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?如果没有的话请你用自信、肯定的语气读一读(板书:三角形的内角和是180°)。

  (设计意图:引导学生通过直角三角形的内角和是180度来推导出锐角和钝角三角形的内角和是180度,使学生初步掌握由特殊到一般的逻辑思辨方法。)

  三、巩固新知,拓展应用

  我们就用三角形的这一特性来解决一些问题

  1、两个三角形拼成大三角形

  (1)每个三角形的内角和都是少度?

  (2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢

  2、一个三角形去掉一部分

  (1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?

  再剪去一个三角形呢?(课件演示)

  你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。

  (2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)

  你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?

  (3)如果五边形,你还能求出他的度数吗?

  (设计意图:充分利用多媒体资源帮助学生理解、消化、新的知识,能够灵活的运用三角形的内角和等于180度。在此基础上渗透数学的“转化”思想和“分割”思想提高学生灵活运用和推理等各方面的能力。)

  四、总结评价、延伸知识

  通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?

  师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。

  (设计意图:帮助学生梳理本节课的知识脉络。)

《三角形内角和》教学设计8

  知识与技能

  1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

  2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

  情感态度与价值观

  3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

  教学重点:

  1、探索和发现三角形三个内角和的度数和等于180o。

  2、已知三角形的两个角的度数,会求出第三个角的度数。

  教学难点:

  已知三角形的两个角的度数,会求出第三个角的度数。

  方法与过程

  教法:主动探究法、实验操作法。

  学法:小组合作交流法

  教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

  教学课时:1课时

  教学过程

  一、预习检查

  说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。

  二、情景导入呈现目标

  故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

  三、探究新知 

  自主学习

  1、活动一、比一比2、活动二、量一量

  (1)什么是内角?

  (2)如何得到一个三角形的内角和?

  (3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。

  (4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

  3、说一说,做一做。

  (1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

  (2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。

  四、当堂训练(小黑板出示内容)

  1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

  2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

  3、三角形具有()性。

  4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

  5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

  6、交流学案第三题。 先独立做,最后组内交流。

  五、点拨升华

  任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

  六、课堂总结

  通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

  七、拓展提高

  妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的'一底角是多少? 先独立做,最后组内交流。

  板书设计:

  三角形的内角和

  测量三个角的度数求和:结论:

  教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

  当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

《三角形内角和》教学设计9

  教学要求

  1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

  2、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  3、培养学生动手动脑及分析推理能力。

  教学重点

  三角形的内角和是180°的规律。

  教学难点

  使学生理解三角形的内角和是180°这一规律。

  教学用具

  每个学生准备锐角三角形、直角三角形、钝角三角形纸片各一张,量角器。

  教学过程:

  一、出示预习提纲

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?

  3、如图,已知∠1=35°,∠2=75°,求∠3的度数。

  二、展示汇报交流

  1、投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?老师指出:三角形的这三个角,就叫做三角形的三个内角。(板书:内角)

  2、三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。

  3、以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?

  4、指名学生汇报各组度量和计算的结果。你有什么发现?

  5、大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。

  6、刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?

  提示学生,可以把三个内角拼成一个角,就只需测量一次了。

  7、请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。

  8、三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)

  9、拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的'内角和也是180°)

  10、那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)11。老师板书结论:三角形的内角和是180°。

  12、一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?

  13、出示教材85页做一做。让学生试做。

  14、指名汇报怎样列式计算的。两种方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  课后反思:

  对于三角形的内角和,学生并不陌生,在平时的做题中已经涉及到了。可是学生并不知道如何去验证,所以本节课,重点让孩子们经历体验,感悟图形。从而收获了经验。特别是动手操作将三角形拼成一个直角时,有的孩子将角剪得非常小,很不好拼,在此进行了重点的提示。

《三角形内角和》教学设计10

  【教学内容】

  《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》

  【教学目标】

  1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

  2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。

  3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

  【教学重点】

  使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

  【教学难点】

  通过多种方法验证三角形的内角和是180 。

  【教学准备】

  课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

  【教学过程】

  一、激趣导入,提炼学习方法

  1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

  2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

  3.选择工具,总结方法。

  让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

  师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

  4.导入新课。

  图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的.内角和)

  二、动手操作,探索交流新知

  1.分组活动,探索新知

  根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

  量一量组同学发给以下几种学具:

  折一折组同学发给上面的三角形一组。

  拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

  在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

  2.多方互动,交流新知

  师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

  (1)首先要求学生说一说你们小组是怎样进行探究的。

  (2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

  (3)请学生说说通过探究活动你们组得出的结论是什么。

  师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

  引导这一组从探究的过程和结论与同学、老师交流。

  师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

  同样引导这一组从探究的过程和结论与同学、老师交流。

  3.思想碰撞,夯实新知

  师:三个徒弟你们能说说谁的方法最好吗?

  学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

  师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )

  四、走进生活,提升运用能力

  1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?

  2.给你三根木条,能做出一个有两个直角的三角形吗?

  五、总结

  师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?

  六、拓展新知,课外延伸

  师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

  大屏幕出示:

  能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

《三角形内角和》教学设计11

  【教学内容】

  《义务课程标准实验教科书数学》(人教版)小学数学四年级下册《三角形》中《三角形的内角和》(书第67页)。

  【教材分析】

  三角形是日常生活中常见的一种平面图形,学生已经在之前的课中了解了三角的特性和三角形的分类等知识。三角形的内角和是三角形的一个重要特征,本节课的教学是让学生通过量一量、算一算、拼一拼等活动,理解并掌握三角形的内角和是180°,渗透转化思想,为今后学习图形知识打下基础。

  【学情分析】

  学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级上册已经知道了两块三角板上每一个角的度数,由于三角形与日常生活联系紧密,图形直观,所以教学相对而言操作性很强。而学生的数学知识、能力和思考问题的角度存在一定的差异,因此比较容易出现解决问题的策略多样化,这样也对教学的开展提供了很好了研讨环境。

  【教学目标】

  (1)理解和掌握三角形的内角和是180°,能应用这一结论知识解决相关问题。

  (2)经历“猜想-验证-得出结论”的学习过程,体验转化、推理、极限等上学思想方法,培养大胆质疑、动手操作、合作交流能力。

  (3)让学生体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。通过教学中的活动体会数学的转化思想。

  【教学重难点】通过操作验证归纳出三角形的内角和是180°。

  【教具、学具准备】

  教具:教学课件、硬纸片制作的各种三角形、三角尺。

  学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板,固体胶,剪刀。

  【教学过程】

  一、创设情境,引出新课

  1.师:最近我们一直在研究三角形(课件出示一个大三角形),知道了三角形可以分为哪几类?

  有一天,三角形兄弟们为了内角和的事吵了起来,我们一起去看看究竟发生了什么事?

  (课件)师讲故事:三角形哥哥理直气壮地对弟弟说:“我的内角和要比你的大的多.”三角形弟弟不服气地说:“别看你个头比我大,但我的内角和并不比你的小.”同学们来评评理,谁说的对呢?生:哥哥的对;弟弟说的对……

  师:现在出现了不同的意见,有认为三角形哥哥的内角和大,也有觉得三角形弟弟说得对的。那到底谁说的对呢?三角形的内角和究竟是多少呢?那这节课我们就一起来研究研究。(出示课题:三角形的内角和)

  相信通过这节课的探究,同学们一定会做出公平、公正的判断。

  2.在探究前,我们有必要先来清楚一下什么是三角形的内角?什么又是内角和呢?

  谁来解释一下,说说你对内角的认识。

  信封里有几个三角形,在其中一个三角形内指出三个内角,并标上角1、角2、角3。

  师:内角和就是?三个内角的度数之和

  三角形的内角和是多少度呢?所有的三角形内角和都是180度?

  你有什么办法可以验证呢?

  二、新知探究,动手实践

  (1)量一量

  A.师:对呀,用量角器量出每个角的度数再算一算度数之和不就知道了。

  我们在验证时,你说至少要研究几类三角形呢?

  生:三类,锐角三角形、直角三角形、钝角三角形(同意吗?同意)

  B.下面就请小组合作,用量一量的方法来验证。

  要求:1、4人一组,1人负责记录、,其他3人每人选择一个三角形;

  2、测量每个内角的度数,并如实记录在表格中;

  3、仔细计算三角形的内角和。

  (生动手操作,师巡视。发现个别组合作比较好,在很短的时间内就完成任务)

  C.汇报交流

  师:哪个小组首先来发表一下你们小组测量的结果?并说说你们组发现了什么?

  (每种三角形叫两名同学回答,回答后板书)

  师:哪些同学测量的是锐角三角形呢?生:60度、60度、60度

  师:这个三角形也叫......生:等边三角形

  师:还有不同的锐角三角形吗?

  师:下面我请测量直角三角形的同学也来汇报

  师:请量钝角三角形的朋友也来说一说

  师:刚才,有的同学验证的结果是三角形的内角和是180度,也有的同学验证的结果是三角形的内角和接近180度,这说明刚才同学们猜想出的三角形内角和是180度,还值得我们怀疑,那有没有更好的方法来验证三角形的内角和肯定是180度。

  (2)拼一拼

  (或许冷场)郑老师来个温馨提示:看到180度使你想到了一个什么特殊的角呢?(平角)

  你有什么启发?是否也可以把三角形的三个内角拼在一起,成为一个平角呢?谁有想法?指名说后课件出示撕拼。同学们也来试试看吧,我们还是4人一组,选择其中一个三角形,合作撕一撕或剪一剪再拼一拼,贴到长方形白纸上。

  展示交流。

  生1:我们小组是用剪拼的方法,将锐角三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

  生2:我们小组是用撕的方法。我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。

  (3)折一折

  师:老师最近也在研究三角形内角和的验证方法,这不,给大伙带来了一个你们没想到的验证法,请看大屏幕。(课件出示:三类三角形折的过程。)

  师:请同学仔细看,认真思考,呆会把你看到的说出来

  生:要给两条线找到中点,连成虚线,往对边折。

  师:由于时间关系,请同学们将这个操作过程带回到课外去实践。

  操作总会有误差,比如测量度数时,不一定刚好180°,比如剪拼或折叠时的缝隙,都有可能出现误差。还有别的方法更能说明三角形的内角和是180°吗?

  (4)演绎推理

  A.课件演示:我们可以将新知识转化成旧知识来解决问题。

  一个长方形有4个直角,每个直角90°,那么长方形的'内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。(板书:90°×4=360° 360°÷2=180°)

  B.一个直角三角形的内角和是180°,那两个直角三角形背靠背拼成了大三角形,它的内角和是几度呢?(课件演示)为什么还是180度?你解释一下?

  师:是哦,当两个直角三角形拼在一起,两个直角就消失掉了,所以这个大三角形的内角和仍是180度。

  我们通过遮掩过的演绎推理,计算进一步证明了:任意三角形的内角和都是180°.

  (5)小结:同学们,刚才我们用哪些方法证明了三角形的内角和是180度?

  测量法、撕拼法、折叠法、演绎推理法

  师:是的,三角形的内角和都是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。刚才同学们用这些多方法证明了无论是什么样的三角形内角和都是1800(板书:是180°)这个结论是我们集体智慧的结晶,是我们亲自动手实验反复验证得来的,现在我们可以用肯定、自豪的语气说:三角形的内角和是180°(引导学生齐读课题)。

  数学文化帕斯卡12岁发现三角形内角和是180度。

  早在300多年前就有一位和你们差不多大小的孩子发现了这个伟大的结论,他就是法国伟大的科学家、数学家帕斯卡。希望在座的各位也好好学习,将来在我们班也产生一些大人物。

  三、多样练习,拓展延伸

  1、得出了这个结论,你会不会利用它很快地说出小动物遮盖着的角是几度呢?(口头指名回答)

  师:还记得刚刚上课时那3个吵架的三角形吗?(课件出示)现在大家可以帮忙解决他们吵架的问题了吗?

  解决了它们的纷争,我们再来帮个忙,算算各个角的度数。(出示课件)学生独立完成,师巡视指导。师:你是怎么想的?

  (1)为什么除以3

  (2)为什么除以2

  (3)可以用90°-40°=50°吗?

  2、超级变变变

  这些三角形很顽皮,跟同学们玩起了超级变变变的游戏。一起来看!

  A.课件演示等边三角形越变越大,问:每个角是几度?你发现了什么?

  B.等腰三角形也迫不及待地跑下来了:我也要变!我也要变!它是怎么变的呢?

  这个等腰三角形的顶角是96度,底角是42度。如果顶角是120底角就是?如果顶角继续变大,变成150度,底角就是?如果顶角继续变大,变成180度,那底角呢?是几度?

  是的,当顶角180度时,这时就不是一个三角形了,这两遍和这条长边重合,其实就是一个180度的平角了。课件演示,问:什么变了?什么没变?

  C.直角三角形又是怎么变的呢?它拉来了一个兄弟,两个背靠背组成了一个新三角形,这个新三角形的内角和是几度呢?

  3.拓展训练(老师还给大家准备了两道聪明题,当中午的作业。)

  A.家里镜框上的一块三角形玻璃碎了(如图)。聪明的明明,只带了其中的一块去玻璃店,就配到了和原来一模一样的。你知道他带的是哪一块吗?

  B.已经知道了三角形的内角和是180o,你能求出四边形、五边形和六边形的内角和吗?

  五、课堂总结

  这节课学到了什么?什么让你记忆深刻?

  师:哈哈,真是不错,带着疑问进课堂,带着收获出课堂,咱们合作真是愉快。谢谢!

《三角形内角和》教学设计12

  设计思路

  本节课我先引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再引导学生通过折角的方法也发现这个结论,由此获得三角形的内角和是180°的结论。概念的形成没有直接给出结论,而是通过量、算、拼、折等活动,让学生探索、实验、发现、推理归纳出三角形的内角和是180°。

  最后让学生运用结论解决实际问题,练习的安排上,注意练习层次性和趣味性,还设计了开放性的练习,由一个同学出题,其它同学回答。先给出三角形两个内角的度数,说出另外一个内角,有唯一的答案。给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中拓展学生思维。

  教学目标

  1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

  3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点

  让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

  教学准备

  教具:多媒体课件、用彩色卡纸剪的相同的两个直角三角形、一个钝角三角形、一个锐角三角形。

  学具:三角形

  教学过程

  一、引入

  (一)认识三角形的内角及三角形的内角和

  师:我们已经学习了三角形的分类,谁能说说老师手上的是什么三角形?

  师:今天我们来学习新的知识《三角形内角和》,谁能说说哪些角是三角形的内角?(让学生边说边指出来)

  师:那三角形的内角和又是什么意思?(把三角形三个内角的度数合起来就叫三角形的内角和。)

  (二)设疑,激发学生探究新知的心理

  师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

  生:能。

  师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  师:有谁画出来啦?

  生1:不能画。

  生2:只能画两个直角。

  生3:……

  师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?那就让我们一起来研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、动手操作,探究三角形内角和

  (一)猜一猜。

  师:猜一猜三角形的'内角和是多少度呢?同桌互相说说自己的看法。

  生1:180°。

  生2:不一定。

  ……

  (二)操作、验证三角形内角和是180°。

  1、量一量三角形的内角

  动手量一量自己手中的三角形的内角度数。

  师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

  生:可以先量出每个内角的度数,再加起来。

  师:哦,也就是测量计算,是吗?

  学生汇报结果。

  师:请汇报自己测量的结果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的内角

  学生操作

  师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

  生1:有。

  生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

  师:怎样才能把三个内角放在一起呢?(学生操作)

  生:把它们剪下来放在一起。

  师:很好。

  汇报验证结果。

  师:通过拼合我们得出什么结论?

  生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

  生2:直角三角形的内角和也是180°。

  生3:钝角三角形的内角和还是180°。

  课件演示验证结果。

  师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

  师:我们可以得出一个怎样的结论?

  生:三角形的内角和是180°。

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  师:为什么用测量计算的方法不能得到统一的结果呢?

  生1:量的不准。

  生2:有的量角器有误差。

  师:对,这就是测量的误差。

  3、折一折三角形的内角

  师:除了量、拼的方法,还有没有别的方法可以验证三角形的内角和是180°。

  如果学生说不出来,教师便提示或示范。

  学生操作

  4、小结:三角形的内角和是180°。

  三、解决疑问。

  师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

  生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。

  师:在一个三角形中,有没有可能有两个钝角呢?

  生:不可能。

  师:为什么?

  生:因为两个锐角和已经超过了180°。

  师:那有没有可能有两个锐角呢?

  生:有,在一个三角形中最少有两个内角是锐角。

  四、应用三角形的内角和解决问题。

  1、下面说法是否正确。

  钝角三角形的内角和一定大于锐角三角形的内角和。()

  在直角三角形中,两个锐角的和等于90度。()

  在钝角三角形中两个锐角的和大于90度。()

  ④一个三角形中不可能有两个钝角。()

  ⑤三角形中有一个锐角是60度,那么这个三角形一定是个锐角三角形。()

  2、看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  3、游戏巩固。

  由一个同学出题,其它同学回答。

  (1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。

  (2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。

  4、根据所学的知识算出四边形、正五边形、正六边形的内角和。

  五、全课总结。

  今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?

  反思:

  在本节课的学习活动过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。再引导学生用折三角形的方法也能验证三角形的内角和是180°。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  但因为是借班上课,对学生了解不多,学生前面的内容(三角形的特性和分类)还没学好,所以有些练习学生就没有预想的那么得心应手,如:知道等腰三角形的顶角求底角的题,学生掌握比较困难。

《三角形内角和》教学设计13

  【教学目标】

  1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

  2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

  3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

  【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

  【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

  【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

  【教学过程】

  一、激趣引入。

  1、猜谜语

  师:同学们喜欢猜谜语吗?

  生:喜欢。

  师:那么,下面老师给大家出个谜语。请听谜面:

  形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

  生:三角形

  2、介绍三角形按角的分类

  师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类

  师分别出示卡片贴于黑板。

  3、激发学生探知心里

  师:大家会不会画三角形啊?

  生:会

  师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

  生:试着画

  师:画出来没有?

  生:没有

  师:画不出来了,是吗?

  生:是

  师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)

  二、探究新知。

  1、认识三角形的内角

  看看这三个字,说说看,什么是三角形的内角?

  生:就是三角形里面的角。

  师:三角形有几个内角啊?

  生:3个。

  师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)

  师:你知道什么是三角形“内角和”吗?

  生:三角形里面的角加起来的度数。

  2、研究特殊三角形的内角和

  师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的`内角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  师:180°也是我们学习过的什么角?

  生:平角

  师:从刚才两个三角形的内角和的计算中,你发现了什么?

  3、研究一般三角形的内角和

  师:猜一猜,其它三角形的内角和是多少度呢?

  生:

  4、操作、验证

  师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

  要求:

  (1)每4人为一个小组。

  (2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?

  (3)验证的方法不只一种,同学们要多动动脑子。

  师:好,开始活动!

  师:巡视指导

  师:好!请一组汇报测量结果。

  生:通过测量我们发现每个三角形的三个内角和都在180度左右。

  师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

  生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

  师:好!非常好!

  师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)

  生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

  师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)

  现在老师问同学们,三角形的内角和是多少?

  生:180度。

  师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。

  三、解决疑问

  师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

  生:没有

  师:那你能用这节课的知识解释一下为什么画不出来吗?

  生:两个直角是180度,没有第三个角了。

  师:如果想画出有两个角是钝角的三角形你能画出来吗?

  生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

  师:学会了知识,我们就要懂得去运用。

  四、巩固提高。

  1、填空。

  (1)三角形的内角和是()度。

  (2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。

  2、求下面各角的度数。

  (1)∠1=27° ∠2=53° ∠3=()这是一个()三角形。

  (2)∠1=70° ∠2=50° ∠3=()这是一个()三角形。

  3、判断每组中的三个角是不是同一个三角形中的三个内角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)

  对学生进行思品教育。

  5、思考延伸。

  根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?

  6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、总结。

《三角形内角和》教学设计14

  一、教材内容分析

  三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索。实验。发现。验证三角形内角和是180度。

  二、教学目标(知识,技能,情感态度、价值观)

  知识于技能:让学生通过亲自动手量。剪。拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。

  过程与方法:让学生在动手获取知识的过程中,培养学生的创新意识和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想

  情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  三、学习者特征分析

  学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手操作能力和主动探究能力。因此概念的.形成是通过量。算。拼等活动,让学生探索。实验。发现。讨论。推理。归纳出三角形的内角和是180度。

  四、教学策略选择与设计

  1。关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。

  2。从学生已有的知识和生活经验出发,让学生通过操作。观察。思考。交流。推理。归等活动,培养学生的学习兴趣,体验数学的价值。

  五、教学环境及资源准备

  教具准备;多媒体课件。一副三角板。

  学具准备:量角器。各种三角形。剪刀等。

《三角形内角和》教学设计15

  一、教学目标

  1.知识目标:通过测量、撕拼(剪拼)、折叠等方法,探索和发现三角形三个内角的度数和等于180°这一规律,并能实际应用。

  2.能力目标:培养学生主动探索、动手操作的能力。使学生养成良好的合作习惯。

  3.情感目标:让学生体会几何图形内在的结构美。并充分体会到学习数学的快乐。

  二、教学过程

  (一)创设情境,导入新课

  1、师:我们已经认识了三角形,你知道哪些关于三角形的知识?

  (学生畅所欲言。)

  2、师:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

  师口述:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,

  3、到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。(板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、认识什么是三角形的内角和。

  师:你知道什么是三角形的内角和吗?

  通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

  2、探究三角形内角和的特点。

  ①让学生想一想、说一说怎样才能知道三角形的内角和?

  学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行)

  ②小组合作。

  通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

  引导学生推测出三角形的内角和可能都是180°。

  3、验证推测。

  让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

  (小组合作验证,教师参与其中。)

  4、全班交流,共同发现规律。

  当学生汇报用折拼或剪拼的方法的时候,指名学生上黑板展示结果。

  学生交流、师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

  5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  (三)巩固练习,拓展应用

  根据发现的三角形的新知识来解决问题。

  1、完成“试一试”

  让学生独立完成后,集体交流。

  2、游戏:选度数,组三角形。

  请选出三个角的度数来组成一个三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  学生回答的同时,教师操作课件,把学生选择的`度数拖入方框内,通过电脑计算相加是否等于180°,来验证学生的选择是否正确。验证学生选的对了以后,再让学生判断选择的度数所组成的三角形按角的大小分类,属于哪种三角形。并说出理由。

  3、“想想做做”第1题

  生独立完成,集体订正,并说说解题方法。

  4、“想想做做”第2题

  提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

  5、“想想做做”第3题

  生动手折折看,填空。

  提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

  6、“想想做做”第5题

  生独立完成,说说不同的解题方法。

  7、“想想做做”第6题

  学生说说自己的想法。

  8、思考题

  教师拿一个大三角形,提问学生内角和是多少?用剪刀剪成两个三角形,提问学生内角和是多少?为什么?再剪下一个小三角形,提问学生内角和是多少?为什么?最后建成一个四边形,提问学生内角和是多少?你能推导

  出四边形的内角和公式吗?

  (四)课堂总结

  本节课我们学习了哪些内容?(生自由说),同学们说得真好,我们要勇于从事实中寻找规律,再将规律运用到实践当中去。

  三教后反思:

  “三角形的内角和”是小学数学教材第八册“认识图形”这一单元中的一个内容。通过钻研教材,研究学情和学法,与同组老师交流,我将本课的教学目标确定为:

  1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

  2、已知三角形两个角的度数,会求出第三个角的度数。

  本节教学是在学生在学习“认识三角形”的基础上进行的,“三角形内角和等于180度”这一结论学生早知晓,但为什么三角形内角和会一样?这也正是本节课要与学生共同研究的问题。所以我将这节课教学的重难点设定为:通过动手操作验证三角形的内角和是180°。教学方法主要采用了实验法和演示法。学生的折、拼、剪等实践活动,让学生找到了自己的验证方法,使他们体验了成功,也学会了学习。下面结合自己的教学,谈几点体会。

  (一)创设情景,激发兴趣

  俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。本节课先创设画角质疑的情景,当学生画不出来含有两个直角的三角形时,学生想说为什么又不知怎么说,学生探究的兴趣因此而油然而生。

  (二)给学生空间,让他们自主探究

  “给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。它正是新课改中学生主体性的表现,是以人为本新理念的体现。所以在本节课中我注重创设有助于学生自主探究的机会,通过“想办法验证三角形内角和是180度”这一核心问题,引发学生去思考、去探究。我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪等活动找到自己的验证方法。学生拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。这样,学生在经历“再创造”的过程中,完成了对新知识的构建和创造。

  (三)以学定教,注重教学的有效性

  新课表指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源,即以学定教,注重每个教学环节的有效性。本课中当我提出“为什么一个三角形中不能有两个角是直角”时,有学生指出如果有两个直角,它就拼不成了一个三角形;也有学生说如果有两个直角,它就趋向于长方形或正方形。“为什么会这样呢”?学生沉默片刻后,忽然有个学生举手了:“因为三角形的内角和是180度,两个直角已经有180度了,所以不可能有两个角是直角。”这样的回答把本来设计的教学环节打乱了,此时我灵机把问题抛给学生,“你们理解他说的话吗、你怎么知道内角和是180度、谁都知道三角形的内角和是180度”等,当我看到大多数的已经知道这一知识时,我就把学生直接引向主题“想不想自己研究证明一下三角形的内角和是不是180度。”激发了学生探究的兴趣,使学生马上投入到探究之中。

  在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。通过多边形内角和的思考以及验证,发展了学生的空间想象力,使课堂的知识得以延伸。<

【《三角形内角和》教学设计】相关文章:

三角形内角和教学设计03-09

三角形内角和教学设计07-17

三角形的内角和教学设计06-07

《三角形的内角和》教学设计03-14

《三角形内角和》教学设计06-08

《三角形内角和》教学设计【热】06-09

三角形内角和教学设计15篇03-20

三角形内角和教学设计(15篇)04-08

三角形内角和教学设计(汇总15篇)08-15