三角形内角和教学设计(汇总15篇)
在教学工作者实际的教学活动中,就难以避免地要准备教学设计,教学设计是一个系统化规划教学系统的过程。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编为大家收集的三角形内角和教学设计,仅供参考,欢迎大家阅读。
三角形内角和教学设计1
教学目标:
1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:
课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、课件出示三角形的争吵画面
锐角三角形:我的内角和度数最大。
直角三角形:不对,是我们直角三角形的内角和最大。
钝角三角形:你们别吵了,还是钝角三角形的内角和最大。
师:此时,你想对它们说点什么呢?
2、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和(课件)
师:内角和指的是什么?
生:三角形的三个内角的度数的`和,就是三角形的内角和。
2、看一看,算一算。
师:算一算两个三角尺的内角和是多少度?(课件)
学生计算
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3、操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4、学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
师:此时,你想对争论的三个三角形说些什么呢?
5、小结。
三角形的内角和是180度。
三、解决相关问题
1、在能组成三角形的三个角后面画“√”(课件)
2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)
3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)
四、练习巩固
1、看图,求三角形中未知角的度数。(课件)
2、求三角形各个角的度数。(课件)
五、总结。
师:这节课你有什么收获?
六、板书设计:
三角形的内角和是180°
三角形内角和教学设计2
学习目标:
1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
2.知道三角形两个角的度数,能求出第三个角的度数。 3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。
4.能应用三角形内角和的性质解决一些简单的问题。
教具、学具准备:
课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度,标在图中;一副三角板。
教具、学具准备:课件、学生准备直角三角形、锐角三角形和钝角三角形各一个、一副三角板、磁铁若干。
教学过程:
一、谈话导入
猜谜语:形状似座山,稳定性能坚
三竿首尾连,学问不简单
(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?(学生讲学过的三角形知识。)
师:就这么简单的一个三角形我们就得出了那么多的知识,你们
说数学知识神气不神奇?
今天我们还要继续研究三角形的新知识。
二、创设情境,引出课题,以疑激思
师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。
师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)
师:同学们,请你们给评评理:是这样吗?生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。
生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。
生3:当然是大三角形的内角和大了。
生4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。 (板书课题:
三角形的内角和)
三、动手操作,探究问题,以动启思
1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
(学生们能够很快求出每块三角尺的3个角的和都是180°)师:其他三角形的内角和也是180°吗?生A:其他三角形的内角和也是180°生B:其他三角形的内角和不是180°生C:不一定
2、小组合作探究:
师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)、小组合作
,讨论验证方法(2)汇报验证方法、结果
师:谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎
样?
方法一:
生A:我们小组是用剪拼的方法,将三角形的三个角撕下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。(学生操作)
生:不管什么三角形三个角都能拼成一个平角。
师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?真会动脑筋,不用工具也行,那我们把掌声送给刚才这个小组。
方法二:
生B:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:请这位同学折来给大家看看。
生:3个角折成了一个平角。
师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)
师:说得真清楚。
方法三:
学生C:测量角的度数,再加起来。(填表)
师:这位同学测量的是锐角(钝角)三角形,下面就请同学们另选一个三角形求出它的内角和。(汇报:填写结果)
问:你们发现了什么?
小结:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。
3、小结:
师:刚才同学们用量、拼、折等方法证明了无论是什么样的'三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。
(出示大小不等的三角形判断内角和,判断前面两个三角形的对话,得出大三角形的说法是不对的。)
四、自主练习,解决问题:
师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件)
1、第一关:下面每组中哪三个角能围成一个三角形?(1)70。
60。
30。
90。
(2)42。
54。
58。
80。
2、第二关:庐山真面目:求三角形中一个未知角的度数。
3、第三关:解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
4、第四关:变变变(拓展练习)
利用三角形内角和是180°,求出下面四边形、六边形的内角和?(课件)
师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。
五、课堂总结
帕斯卡法是国著名的数学家、物理学家、哲学家、科学家,他12岁发现“任何三角形的三个内角和是1800!
帕斯卡小的时候身体不太强壮,而父亲又认为数学对小孩子有害
且很伤脑筋,所以不敢让他接触到数学。在十二岁的时候,偶然看到父亲在读几何书。他好奇的问几何学是什么?父亲为了不想让他知道太多,只讲几何学的用处就是教人画图时能作出正确又美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡擅自翻动。可是却引起了巴斯卡的兴趣,他根据父亲讲的一些简单的几何知识,自己独立研究起来。当他把发现:“任何三角形的三个内角和是一百八十度”的结果告诉他父亲时,父亲是惊喜交集,竟然哭了起来。父亲于是搬出了欧几里得的“几何原理”给巴斯卡看。巴斯卡才开始接触到数学书籍。
帕斯卡12岁发现此结论,我们同学10岁就发现了。所以只要善于用眼睛观察,动脑思考,相信未来的数学家、物理学家、科学家就在你们中间!
三角形内角和教学设计3
一、了解前测,内化于心
前测是指在学校教学过程中,教师在上课前的一段时间内,通过不同的调查方式对学生进行相关知识预备和相关方法的预先测试,然后进行有针对性的设计教学活动,并提出相应的课堂教学策略。开展课堂前测,能够很好地了解学生的发展需要和已有经验,了解学生的思维共性和认知差异。
1.前测是教学设计的学情基础
对于教师设计的探究过程,如果学生不需要探究就明白了,那这种设计就是无效的;如果教师设计教学环节难度很大,学生不能回答不能操作,新旧知识之间没有建立联系,那么这个设计也是失败的。那么怎样的教学设计才是有效的呢?第一,它必须符合学生的认知需求;第二,它必须重视新旧知识的过渡。要做到这两点,必须做好前测。
2.前测为教学行为提供数据支持
感性让数学课堂更具人性化、更精彩生动,理性让数学课堂多了一些数学化。在追求数学生活化的同时,我们不能忽视数学本身的东西,应让课堂多一些理性,让我们的教学行为更有效、更科学化。而前测就是让数学课堂科学化的第一步。我们在设计教案时,总是对学生已有的知识认识不到位。而做了前测,那分析统计所得的数据,就是我们科学合理设计教学的正确依据,它能让我们的教学行为更有效。
二、设计前测,外化于行
为了在教学中做到心中有学生,教学设计有依据,需要我们走到学生中去,了解学生的真实认知情况,思维状态,以细致详实的前测来加强教学活动设计的实效性。设计有效的课堂前测,能够很好地了解学生的发展需要和已有经验,这样才能从学生实际出发,让学生开展适合自己的学习。
根据不同的教学内容,教师可以设计不同类型的教学前测,通过前测去了解学生对已有的知识掌握得怎样?有哪些生活经验?这些已有的知识和生活经验对学生学习新知哪些影响?
1.预习分析法
教师安排预习内容,设计预习作业。教师通过分析预习作业,了解学生对新知自学的情况:哪些问题自己能解决,有哪些问题似懂未懂的,还有哪些根本不能解决的问题。从而调整教学内容与方法,确定教学的重点和难点。
如教学五年级的.“长方体和正方体的表面积”,五年级的学生有了一定的空间观念和动手能力,对长方形和正方形也有了一些初步的认识,掌握了他们的基本特征,并且具备了一定的概括推理能力。长方体和正方体的表面积是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生们学习长方体和正方体之前已经知道了些什么?他们学习的起点在哪里?学生学习这部分的难点到底是什么?学生的空间思维怎么样?为了更好地了解学生的情况,在教学长方体和正方体的表面积之前,笔者对学生进行了前测。
2.个别谈话法
这个方法主要用于后继教材的教学,问题从旧知和新旧的连接点处设计,通过教师与各个类型、各个层次的学生代表的谈话了解他们新知生长点的掌握情况,确定怎样引导学生迁移或类推,从而选择最为有效的教学方式。
如教学四年级“三角形的内角和”本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。我在课前了解到,已经有不少学生知道了三角形内角和是180度。既然不少学生都知道了这个结论,那是不是不用教学了呢?答案显然不是的。教师还要通过个别谈话法,了解哪些层次的学生知道了这个结论?如何知道的,怎么证明?为了更好地了解学生的学情,预设教学过程,教师通过与学生个别谈话进行教学前测。
教学前测如下:
教师在班级里选择了6名学生,好、中、差各三名,进行访谈。
问题1:关于三角形你了解哪些知识?
问题2:你还能清楚地记得三角形分类吗?
问题3:关于三角形内角和你了解什么?
问题4:知道三角形内角和的由来吗?你获得三角形内角和知识的途径是什么?
问题5:你在生活中见到过哪些三角形?你遇到过哪些生活中需要解决的关于三角形的实际问题?
三角形内角和教学设计4
【教学内容】
《人教版九年义务教育教科书 数学》四年级下册《三角形的内角和》
【教学目标】
1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】
使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。
【教学难点】
通过多种方法验证三角形的内角和是180 。
【教学准备】
课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。
【教学过程】
一、激趣导入,提炼学习方法
1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”
2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。
4.导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)
二、动手操作,探索交流新知
1.分组活动,探索新知
根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
量一量组同学发给以下几种学具:
折一折组同学发给上面的三角形一组。
拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。
在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。
2.多方互动,交流新知
师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。
(1)首先要求学生说一说你们小组是怎样进行探究的。
(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)
(3)请学生说说通过探究活动你们组得出的结论是什么。
师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?
引导这一组从探究的过程和结论与同学、老师交流。
师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。
同样引导这一组从探究的.过程和结论与同学、老师交流。
3.思想碰撞,夯实新知
师:三个徒弟你们能说说谁的方法最好吗?
学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)
师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )
四、走进生活,提升运用能力
1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?
2.给你三根木条,能做出一个有两个直角的三角形吗?
五、总结
师:徒弟们你们经过三年的苦学,终于学有所成了。今天,能说说你们在我这里都学到了什么手艺吗?
六、拓展新知,课外延伸
师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。
大屏幕出示:
能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?
三角形内角和教学设计5
教学内容:
北师版小学数学四年级下册《探索与发现(一)—三角形内角和》
教材分析:
《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。
学情分析:
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。
教学目标:
1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。
2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。
教学重点:
让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。
教学难点:
掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:
表格、课件。
学具准备:
各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、复习
提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?
生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。
2、引入
三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。
播放课件,提问:它们在争论什么?
什么是三角形的内角和?(板书:内角和)
讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:
1、你认为谁说得对?你是怎么想的?
2、你有什么办法可以比较一下这两个三角形的内角和呢?
学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
(二)探索与发现
1、初步探索,提出猜想。
(1)量一量
①了解活动要求:(屏幕显示)
A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)
B、把测量结果记录在表格中,并计算三角形内角和。
C、讨论:从刚才的测量和计算结果中,你发现了什么?
(引导生回顾活动要求)
②、小组合作。
③、汇报交流。
你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?
(引导学生发现每个三角形的三个内角和都在1800,左右。)
(2)提出猜想
刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)
2、动手操作,验证猜想
这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)
引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?
(1)、小组合作,讨论验证方法。
(2)分组汇报,讨论质疑
学生可能会出现的方法:
A、撕拼的方法
把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。
讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?
B、折一折的.方法
把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。
讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?
C提问:还有没有其它的方法?
3、回顾两种方法,归纳总结,得出结论。
(1)课件演示:两种方法的展示。
(2)引导学生得出结论。
孩子们,三角形内角和到底等于多少度呢?”
学生一定会高兴地喊:“1800!
(3)总结方法,齐读结论
我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)
(4)解释测量误差
为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?
那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800
(三)、回顾问题:
现在你知道这两个三角形谁说得对了吗?(都不对!)
为什么?请大家一起,自信肯定的告诉我。
生:因为三角形内角和等于1800,。(齐读)
三、巩固深化,加深理解。
1、试一试:数学书28页第3题
∠A=180°— 90°—30°
2、练一练:数学书29页第一题(生独立解决)
∠A=180°— 75°— 28°
3、小法官:数学书29页第二题
4、拓展创新
A D G
B C E F H R
ABC的内角和是()
DEF的内角和是()
GHR的内角和呢?
小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。
四、回顾课堂,渗透数学方法。
1、总结:猜想—验证—归纳—应用的数学方法。
2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。
3、课堂延伸活动:探索——多边形内角和
板书设计:
三角形内角和等于1800。
猜想验证得出结论应用
三角形内角和教学设计6
【教学资料】
《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页
【教学目标】
1、透过"量一量","算一算","拼一拼","折一折"的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、透过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想、
3、透过数学活动使学生获得成功的体验,增强自信心、培养学生的创新意识,探索精神和实践潜力、
【教学重难点】
理解并掌握三角形的内角和是180度
【教具学具准备】
多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
【教学流程】
(一)创设情境,激发兴趣
此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?
(课件)
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
生答
师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)
【评析:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习了热情。】
(二)动手操作,探索新知
1、揭示“内角”和“内角和”的概念
(1)“内角”的概念
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
(2)“内角和”的概念
师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?
师小结:三角形的内角和就是三个内角的度数之和。
2、猜测内角和
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.
3、动手验证,汇报交流
(1)介绍学具筐
刘老师为每个小组准备了一个学具筐,里面有不同的学习了材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?
(2)生独立思考,动手操作
(3)组内交流
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
(4)全班汇报交流
师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。
A、测量法
活动记录表
三角形的形状每个内角的度数三个内角和
∠1∠2∠3
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?
生发表观点
师小结:看来采用测量的方法会有误差,学习了数学要用这种严谨的态度来对待,咱们再看看别的方法。
B、撕拼法
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
师:透过他们三个人的验证,你得到了什么结论?
C、其他方法
师:条条大路通罗马,还有别的验证方法吗?
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
【评析:《标准》指出:“教师应激发学生的用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中刘老师注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习了,在活动中发展。】
4、科学验证方法
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)
【评析:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就就应让学生养成严谨、认真、实事求是的学习了态度。】
(三)课外拓展,积淀文化
师:明白三角形内角和的秘密最早是由谁发现的吗?(放课件)
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。
【评析:适当的引入课外知识,它既能够激发学生的学习了兴趣,又有机的渗透了向帕斯卡学习了,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的构成与发展能起到了潜移默化的作用。】
(四)应用新知,解决问题
明白了这个结论能够帮忙我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:大三角形的内角是哪些?指出来
师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
师小结:三角形无论大小,内角和都是180°。
【评析:透过课件动态演示两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,使学生认识到三角形的内角和不因三角形的大小而改变。】
2、想一想,做一做
在一个三角形ABC中,已知A45°,B85o,求с的度数。
在一个直角三角形中,已知с52o,求Α的度数。
爸爸给小红买了一个等腰三角形的风筝。它的'一个底角是70°,它的顶角是多少度?
【评析:将三角形内角和知识与三角形特征有机结合起来,使学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。】
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
【评析:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。】
(五)全课小结,完善新知
1、学生谈收获
2、师小结
这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
【评析:这样用谈话的方式进行总结,不仅仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。】
【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:
1、精心设计学习了活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习了材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习了态度和探究精神。
3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习了置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习了情感。
整节课的学习了资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长、
三角形内角和教学设计7
【教学目标】
1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】
一、激趣引入。
1、猜谜语
师:同学们喜欢猜谜语吗?
生:喜欢。
师:那么,下面老师给大家出个谜语。请听谜面:
形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?
生:三角形
2、介绍三角形按角的分类
师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类
师分别出示卡片贴于黑板。
3、激发学生探知心里
师:大家会不会画三角形啊?
生:会
师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!
生:试着画
师:画出来没有?
生:没有
师:画不出来了,是吗?
生:是
师:有两个直角的`三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)
二、探究新知。
1、认识三角形的内角
看看这三个字,说说看,什么是三角形的内角?
生:就是三角形里面的角。
师:三角形有几个内角啊?
生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)
师:你知道什么是三角形“内角和”吗?
生:三角形里面的角加起来的度数。
2、研究特殊三角形的内角和
师:分别拿出一个直角三角板,请同学们看看这属于什么三角形,说出每个角的度数,那这个三角形的内角和是多少度?
生:算一算:90°+60°+30°=180° 90°+45°+45°=180°
师:180°也是我们学习过的什么角?
生:平角
师:从刚才两个三角形的内角和的计算中,你发现了什么?
3、研究一般三角形的内角和
师:猜一猜,其它三角形的内角和是多少度呢?
生:
4、操作、验证
师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?
要求:
(1)每4人为一个小组。
(2)每个小组都有不同类型的三角形,每种类型都需要验证,先讨论一下,怎样才能较快的完成任务?
(3)验证的方法不只一种,同学们要多动动脑子。
师:好,开始活动!
师:巡视指导
师:好!请一组汇报测量结果。
生:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。
生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。
师:好!非常好!
师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)
生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。
师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)
现在老师问同学们,三角形的内角和是多少?
生:180度。
师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。板书:三角形内角和等于180度。现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是180°”。
三、解决疑问
师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?
生:没有
师:那你能用这节课的知识解释一下为什么画不出来吗?
生:两个直角是180度,没有第三个角了。
师:如果想画出有两个角是钝角的三角形你能画出来吗?
生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。
师:学会了知识,我们就要懂得去运用。
四、巩固提高。
1、填空。
(1)三角形的内角和是()度。
(2)一个三角形的两个内角分别是80°和75°,它的另一个角是()。
2、求下面各角的度数。
(1)∠1=27° ∠2=53° ∠3=()这是一个()三角形。
(2)∠1=70° ∠2=50° ∠3=()这是一个()三角形。
3、判断每组中的三个角是不是同一个三角形中的三个内角。
(1)80° 95° 5°( )
(2)60° 70° 90°( )
(3)30° 40° 50°( )
4、红领巾是一个等腰三角形,求底角的度数。(多媒体出示)
对学生进行思品教育。
5、思考延伸。
根据三角形内角和是180度,算一算四边形和八边形的内角和是多少?
6、游戏:帮角找朋友每组卡片中,哪三个角可以组成三角形?)每组卡片中,哪三个角可以组成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°
五、总结。
三角形内角和教学设计8
背景分析:
在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。
教学目标:
1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。
2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。
3、体会数学学习的魅力,体验探究学习的乐趣。
教学重难点:
探索和发现三角形的内角和等于180°。
教具准备:
多媒体课件、一副三角板、量角器、三角形纸片。
学具准备:
每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。
教学过程:
一、导入课题
1、故事引入,激发兴趣
同学们,今天,老师给大家带来一个小故事,想听吗?
课件显示数学家——帕斯卡的图片
师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。
师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?
揭示并板书课题:三角形的内角和。生齐读课题。
2、明确目标
学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)
3、效果预期
带着这些问题,我们一起走进今天的探究之旅,老师期待大家的精彩表现,大家准备好了吗?。
〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。
二、民主导学
1、任务呈现
(1)认识内角、内角和
师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形。
师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。
师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,
师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3
师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。
师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)
师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?
师:我们现在开始验证好吗?动手之前,请听好活动要求
屏幕出示要求,指名学生读:
想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;
想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;
想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;
验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。
2、自主学习
学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)
3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)
师:来吧孩子们,该到全班交流的时候了。哪个小组愿意先把你们的成果与大家一起分享。
A、剪拼法(撕拼法)
这个小组通过剪拼得出三角形的内角和是180
B、折拼法
刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试
C、测量法
用量的方法的小组,你们得出的三角形的内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的'结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?
刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)
小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。
〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。
4、数学文化介绍
你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?
生:
师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°
师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?
生:分成了两个直角三角形。
师:你真会观察,请大家看,∠1+∠2=
生:90°
师:∠3+∠4=
师:那么这个三角形的内角和就是
生:180°
师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?
生:巧妙!
师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。
〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。
5、练习
(1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?
(2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:
求出等边三角形每个角的度数?
等腰三角形顶角96°,底角是多少度?
直角三角形的一个锐角是40°,另一个锐角是多少度?
〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。
三、检测导结(下面进入检测环节,大家愿意接受挑战吗?)
1、目标检测(见检测卡)
2、结果反馈
集体订正
课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。
3、反思总结
回顾一下今天学的内容,你有什么收获?
大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”
其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?
生:帕斯卡
师:NO,另有其人,如果大家感兴趣,课后可以去查一查。
〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。
三角形内角和教学设计9
学情分析:
学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。
教学目标:
1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。
3、情感态度:使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。
教学重点:
探索发现和验证三角形的内角和是180度。
教学难点:
对不同探究方法的指导和学生对规律的灵活应用。
教具准备:
教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表
学生准备:量角器、直尺、剪刀
教学过程:
一、激趣导入
多媒体展示三角形
出示谜语:形状似座山,稳定性能坚
三竿首尾连,学问不简单?????(打一图形名称)
(预设:三角形)
师:谁能介绍介绍三角形?
(生1:三角形有三条边、三个顶点、三个角。
生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)
师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)
师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。
师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。
师:今天我们就来研究一下三角形的内角和。
二、学习目标
1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。
2、能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。
3、培养动手动脑及分析推理能力。
三、自主学习(展示量角法)
1.理解三角形的内角、内角和
(1)板书展示三角形
师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)
师:你能过来指指吗?同意吗?内角有几个?
师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。
师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?
(2)三角形的内角和
师:什么是三角形的内角和?
(三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)
师:就是把∠1+∠2+∠3加起来。
师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)
师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)
学生测量(1分40)汇报结果(5人)。
教师填写测量汇报单。
师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)
四、合作探究
师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法)
1、操作验证探索三角形内角和的规律(6分钟)
(1)操作验证:小组合作
拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀
(老师要给学生充裕的`时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
2、学生汇报
(1)转化法:
生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。
师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。
(2)折拼法
生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。
师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)
(3)剪拼法
生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)
标记上之后再拼一拼,可见标记的方法很科学。(20分钟)
3、教师演示
师:我们再来感受一下怎么验证三角形的内角和的?
师:这是什么三角形?把他折一折。
师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)
师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。
师:注意观察。
师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。
师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)
4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)
师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)
师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)
师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°
师:你们能用今天的发现做一些练习吗?
五、测评反馈
1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?
六、课后作业
69页第1题、第3题。
七、板书设计
三角形内角和教学设计10
教学目标:
1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生合作交流的能力,体验学习数学的快乐。
教学过程:
教学设想
学生活动
备注
一、 创设情境
1、故事导入
有一天,两个三角形吵了起来,大三角形说自己的个头大,所以内角比小三角形大。可小三角形说别看自己个头小,但角却不小。他们争得不可开交,始终争论不出结果。到底谁的内角大,谁的内角小,请大家帮忙想个办法,好吗?
生:可以用三角板量一量每个内角的度数,也就求出三角形内角的和,就知道谁大谁小了。
这节课,我们就来研究三角形的内角和。
二、合作交流
量一量
(1)师:同学们,你们的书上有许多三角形,现在就请你们选择喜欢的三角形,到小组里量出每个角的度数。再计算出三角形内角的和,并填好小组活动记录表。
(2)各小组汇报记录结果,并说说有什么发现?
生:每个三角形的'三个内角和接近180度。
师:三角形的内角和就是180度。接近180度的是在测量过程中出现了一点小的误差。
(3)除了用测量的方法能计算出三角形的内角和等于180度外,还有许多好的方法呢!
撕一撕
引导学生把一个三角形的三个角撕一下,拼一拼。
折一折
自己试着折一折,也会发现利用折一折,可以知道三角形内角和是180度。
师小结:刚才,同学们用量、撕、折的方法知道了三角形内角和是180度,现在你们可以告诉这两个三角形不要吵了,它们的内角是一样大的。
算一算
这两个三角形很感谢同学们,你们看,它们的好朋友也来了,它们只知道自己两个角的度数,你们能帮它们算出另外一个角的度数吗?
尝试:阅读与思考第1、2题
反馈交流
三、巩固练习
完成练习与应用第1、2题
小组活动开始
小组活动记录表第()组
三角形内角和教学设计11
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
设计意图:也自然导入新课。
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的`学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
三角形内角和教学设计12
教学内容
人教版小学数学第八册第五单元第85页例5
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的'三个内角和
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°.
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°.
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°.
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢? (是,因为这三类三角形包括了所有三角形。)
板书:三角形的内角和是180°
三、巩固练习,应用规律
1、在一个三角形中,∠1=140°,∠3=25°,你能求出∠2的度数吗?
学生独立完成,并说出原因:因为三角形的内角和是180°,也就是∠1+∠2+∠3=180°,借助图像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一个等腰三角形的顶角是80°,它的两个底角各是多少度?
学生分析:因为等腰三角形的两个底角相等,又因为三角形的内角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展练习,深化规律
1、求出下面各角的度数。
(1) (2)
2、判断
(1)三角形任意两个内角的和大于第三个角。( )
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
三角形内角和教学设计13
【设计理念】
新课标重视让学生经历数学知识的构成过程,要求教师创设有效的问题情境激发学生的参与欲望,带给足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的构成过程。这样,学生不仅仅能够掌握知识,而且能够积累探究数学问题的活动经验,发展空间观念和推理潜力。
【教材资料】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习了十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习了多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学资料时,不但重视体现知识的构成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学带给了清晰的思路。概念的构成没有直接给出结论,而是透过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习了本课时,学生已经有了探索三角形内角和的知识基础:明白直角和平角的度数,会用量角器度量角的'度数;认识长方形、正方形,明白他们的四个角都是直角;认识了三角形,明白了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经明白了等腰三角形和正三角形。
2、已经有一部分学生明白了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1、透过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作潜力,积累基本的数学活动经验,发展空间观念和推理潜力。
3、在参与数学学习了活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习了旧知引出课题
1、你已经明白有关三角形的哪些知识?
2、出示课题:三角形的内角和
【设计意图:也自然导入新课。】
二、提出问题引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:
(1)三角形的内角指的是哪些角?
(2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎样猜的?
【设计意图:提出一个问题比解决一个问题更重要。课始在复习了三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习了自己想研究的资料,无疑激发了学生的学习了兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎样猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证构成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设:
①量算法
②剪拼法
③折拼法等
(2)三角形的个数有无数个,验证哪些三角形能够代表所有的三角形?我们的操作过程怎样分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才透过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在必须的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。
6、构成结论:任意三角形的内角和是180°。
【设计意图:《标准》指出:“教师应激发学生的用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习了带给了经验支撑。】
四、应用结论解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
这天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:
用这天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测:三角形的内角和是180°?
验证:量拼
结论:任意三角形的内角和是180°
三角形内角和教学设计14
一、教材依据
苏教版四年级数学第八册第28~29页
二、教学方法及思路
数学学习的价值在于让学生亲身经历知识发生发展的过程。本节课力图带领学生进入这样一个学习过程:利用故事的形式,让学生产生疑问,三角形的内角和是不是180°?接着让学生通过小组合作的方法通过剪或折,得到三角形的三个内角都能凑成一个平角,得出三角形内角和是180°这一规律。通过课件的进一步演示,让学生对结论的形成过程有更系统更清晰的整理,较好的突破了这节课的重、难点部分。在练习设计方面,通过算一算,量一量,选一选,拼一拼,折一折,说一说等多种方式,提高学生解决简单的实际问题的能力。
三、教学目标
1、知识目标:让学生通过量、剪、拼、摆、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。
2、能力目标:让学生在学习活动中进一步增强探索的意识,提高合作交流的能力,获得成功的体验,树立学习的信心。
3、情感目标:让学生体会几何图形内在的结构美,并充分体会到学习数学的快乐。
四、教学重点
使学生理解并掌握三角形的内角和是180°。
五、教学难点
验证所有三角形的内角之和都是180°。
六、教学设备
量角器、正方形纸、剪刀、各类三角形(也包括等边、等腰)、实物投影、多媒体课件
七、教学过程
(一)创设情境,导入新课
1、师谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?
让学生对了解的有关三角形的知识畅所欲言。
2、师谈话:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,(它们在争论谁的内角和大。)
3、 到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。
(板书课题:三角形内角和)
设计意图:一方面借助电教媒体,利用儿童喜闻乐见的故事创设情境,激发学生学习兴趣,另一方面,通过故事中的.认知冲突,来激发学生的求知欲。
(二)自主探究,发现规律
1、认识什么是三角形的内角和三角形的内角和。
谈话:我们通常所说的三角尺的角是三角尺的内角,你知道什么是三角形的内角和吗?
通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。
2、探究三角形内角和的特点。
①让学生想一想、说一说怎样才能知道三角形的内角和?
学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行验证。)
②小组合作。
通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。
引导学生推测出三角形的内角和可能都是180°。
3、 验证推测。
让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。
(小组合作验证,教师参与其中。)
4、全班交流,共同发现规律。
当学生汇报用折拼或剪拼的方法的时候,教师在电脑中根据学生的汇报,分别演示直角三角形、锐角三角形、钝角三角形的折拼和剪拼的过程。
在学生交流、教师课件演示的过程中,师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)
5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
[设计意图:先提出疑问,再通过学生的动手实践、自主探索与合作交流的方式,一方面调动了学生思维的积极性,另一方面,通过课件的演示,在学生的充分感知的基础上发现三角形的内角和是180°]
(三)巩固练习,拓展应用
根据发现的三角形的新知识来解决问题。
1、教学“试一试”
出示“试一试”:三角形中,∠1=75°,∠2=39°,∠3=( )?
学生试做,指名板演。学生可能有下面两种算法:
①∠3=180°—75°—39°=66°
②∠3=180°—(75°+39)°=66°
评议板演,教师让学生说说是怎样想的,再让学生用量角器量一量教科书中的∠3。提问:与算出的结果相同吗?
2、 “想想做做”第1题
生独立完成,集体订正,并说说解题方法。
3、“想想做做”第2题
提问:为什么两个三角形拼成一个三角形后,内角和还是180度?
4、“想想做做”第3题
生动手折折看,填空。
提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?
5、“想想做做”第6题
生说说自己的想法。
[设计意图:当学生获得“三角形的内角和是180°”的知识信息后,让学生通过算一算、量一量、拼一拼和折一折,巩固学生对三角形的内角和的认识。]
引导学生说出:首先要看三个内角的和是不是180°,其次看每个内角的度数是否符合这类三角形的特征。
[设计意图:开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题。]
(五)课堂作业
完成“想想做做”第4题和第5题。
(六)课堂总结
问:这节课你学到了哪些数学知识?这些知识你是怎样获得的?你还有什么疑问?
[设计意图:通过交流式的回顾,引导学生对本课学习知识和学习方法进行总结。]
(七)板书设计
三角形内角和等于180°
①∠3=180°—75°—39°=66°
②∠3=180°—(75°+39)°=66°
三角形内角和教学设计15
三角形内角和教学设计
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境揭示课题。
师:猜谜语形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下?学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀?生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角?三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形?生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊?生齐:180°。
师:那??其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊?生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的.内角和是多少度?生:180 °
师:(出示一个很小的三角形)它呢?生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
【三角形内角和教学设计】相关文章:
三角形内角和教学设计07-17
三角形的内角和教学设计06-07
《三角形的内角和》教学设计03-14
《三角形内角和》教学设计06-08
三角形内角和教学设计03-09
《三角形内角和》教学设计【热】06-09
三角形内角和教学设计15篇03-20
三角形内角和教学设计(15篇)04-08
三角形内角和教学设计15篇(优秀)07-17