分数与除法教学设计

时间:2024-06-26 06:54:47 教学设计 我要投稿

分数与除法教学设计

  作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的分数与除法教学设计 ,仅供参考,希望能够帮助到大家。

分数与除法教学设计

分数与除法教学设计 1

  ——分数除以整数

  分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

  (1)4/7÷2(2)4/7÷3

  =4/7×1/2

  =2/7

  教学反思:

  《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:

  一、充分利用学生最佳的学习状态

  课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。

  二、让学生在不同的活动中探索数学。

  数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。

  三、让学生在不同层次的练习中应用数学。

  学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。

  3、《分数除法》教学设计

  教学设想:

  1、注重考虑学生的知识起点,引发学生的认知,让学生感知“用分数表示除法的商”的产生与发展的过程。

  2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

  3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

  教学目标:

  1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

  2、培养学生动手操作、合作交流和灵活运用知识的能力。

  3、通过学习,培养学生转化的`数学思想和勇于探索的精神。

  教学重点:

  理解分数与除法的关系。

  教学难点:

  具体体会每一个商的由来和表示的含义。

  教学过程:

  一、感知关系

  1、问题:把6米长的绳子平均分成3段。每段长多少米?

  把1米长的绳子平均分成3段。每段长多少米?

  提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

  2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

  板书:被除数÷除数=被除数/除数

  二、探究关系

  1、、验证关系

  (1)通过动手操作验证

  出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

  列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

  动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

  同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

  反馈验证

  引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

  板书:3÷4=3/4

  (2)运用分数意义验证

  师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途敬验证分数与除法的关系吗?

  出示例[2]:17分是几分之几小时?

  引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

  1÷60=1/60 17÷60=17/60(小时)

  引导小结:分数与除法之间的关系,还可以用来转化名数。

  2、揭示关系

  师:通过刚才的验证,你得出了哪些结论?

  ①两个数相除,当商不是整数时,可以用分数来表示。

  ②被除数÷除数=被除数/除数。

  师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

  联系

  区别

  除法

  被除数

  除号

  除数

  是一种运算

  分数

  师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

  引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

  三、巩固关系

  1、强化分数与除法的关系。

  ① P.82 2 ②(P.82 4)

  ③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时

  ④在括号里填上合适的数

  ( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )

  2、比较练习,完成P.82 3

  ①学生选择条件,列式解答。

  ②引导比较:联系都占总数的1/3,区别能否用整数表示商

  四、总结提升

  师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

  质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?

分数与除法教学设计 2

  教学目标:

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点:

  重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

  难点:理解可以用分数表示两个数相除的商。

  教学过程:

  一、导入揭题。

  1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的.分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  二、探索新知

  1、教学例1

  (1)课件出示例1

  把一个蛋糕平均分给3人,每人分得多少个?

  (2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  (3)汇报讨论结果

  (4)观察这两种解法有什么联系?

  2、教学例2、

  把3个饼平均分给4个孩子,每个孩子分得多少个?

  (1)平均分同样可以列式为:3÷4。

  (2)小组合作探究:3÷4的商能不能用分数表示呢?

  (3)通过进一步探究,你发现分数与除法有什么关系了吗?

  师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

  三、拓展应用

  一个正方形的周长是64cm,它的边长是周长的几分之几?

  四、总结

  通过这节课的学习,你有什么收获?

  五、作业布置

  完成教材第50页"做一做"

分数与除法教学设计 3

  教学目标:

  1,借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2,掌握整数除以分数的计算方法,并能正确计算。

  教学重点:

  一个数除以分数的计算方法。

  教学难点:

  探索整数除以分数的计算方法和理解一个数除以分数的意义。

  教学过程:

  创设一个分一分的活动。

  导语:上星期在我们学校举行了什么竞赛(技能竞赛)幼儿园的小朋友也积极参加,并取得好的成绩,幼儿园的老师想用4张同样大的饼来表扬和鼓励小朋友们。如果每人分2张,可以分几人生直接答并说说为什么得出2。

  一,出示:第27页的情境图。

  如果每人分1/2张,可以分几人如果每人分1/3张,可以分几人如果每人分1/4张,可以分几人

  从整数除以整数到整数除以分数,借助除法的意义和图形语言,理解整数除以分数的意义。

  创设自主的探索空间,让学生在小组内借助学具通过观察,比较,思考与讨论,发现知识的内在联系,体会除以一个数与乘这个数的倒数之间的关系。让学生更好地理解分数除法的意义的机会,更主要的'是教会学生一种学习的方法。(即分数除法的意义可联系整数除法的意义进行学习)

  猜想:通过自己的操作得到的答案,你们猜一猜整数除以分数的计算方法。

  二,画一画。

  导语:分完了饼,幼儿园的老师想把它装在盒子里,并用彩带来捆住。

  出示题目:有一条2米长的彩带,如果截成每段1/2米,可以截几段如果截成每段1/3米,可以截几段如果截成每段2/3米,可以截几段

  1,分组验证,让学生画图验证自己的猜想,观察分析图中反映的数量关系

  2,学生体会分数除法的意义和算法。

  三,填一填,想一想。

  让学生观察,比较,从而发现问题中蕴藏的规律。(进一步理解分数除法的意义)

  小结:同学们经过自己的认真探索,发现了整数除以分数的计算方法是乘分数的倒数。

  四,练一练。

  导语:同学们掌握了整数除以分数的计算方法,敢接受知识的挑战吗

  1,算一算:61/421/5102/3124/572/3

  2,有8瓶矿泉水,每人分2/5瓶,可以分几人

  3,拓展题:同学们这节课都学得非常认真,老师想用这9张红纸剪红心奖励给你们,每个红心需3/8张,我们班有32人,够分吗不够应需几张

  4,思考题:算一算6112

  五,聚焦反思,总结提高。

  这节课你有什么收获

  教学反思:

  1、创设生活情境:

  数学知识来源于生活。通过创设幼儿园的老师想奖励小朋友的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。

  2、注重自主探索:

  学生有了知识的求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会除以分数与乘这个数的倒数之间的关系。

  3、经历知识的形成:

  数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如41/2=8是怎样得出学生就能借助图形语言自己探索出每张分了2个1/2,4张就有8个1/2。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法。

  练习循序渐进:

  设计练习时,我在算一算里安排有层次的计算,让学生先算简单的61/421/5,再算需要约分的102/3124/5,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。拓展题是根据学生的实际经历设计的,让学生体会到学习数学的价值。最后还安排了思考题,这是超出了教材的学习范围,可是学生已学会了带分数化成假分数的方法,我认为学有能力的学生解决此题并不难,真正体现了数学的理念:不同层次的学生应有不同能力的培养,不同的收获。

  不足之处:

  小组交流不深入,分工不明确,致使教学难点没突破。

  时间安排不当,有点前松后紧,使后面的拓展题和思考题没讲,不能很好地培养不同学生的不同能力。

  改进方法:

  1,布置小组合作自主探索时,应让学生先分工,并给学生温馨提示:每个学生应自己操作好,借助图形语言想好得出答案的原因,若想不出再和小组的同学交流,讨论,选个学生登记每个人的交流。学生分组画图时,应让每个学生动手画一画,画好再交流自己的验证方法。这样可能会增加小组合作的实效性,避免有的学生只当收音机,也能更好地突破教学的难点。

  2,在经历知识的形成时,时间应安排紧凑些,增强小组合作的实效性。画一画环节可让学生直接在书本上完成。这样也许就不会浪费时间。后面的练习题可能就有时间讲,就能让学生更明白学习数学的价值,从而达到教学的目的

分数与除法教学设计 4

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、谈话激趣,复习辅垫

  1.师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5(4)=儿童体内水分的重量

  35× 5(4)=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  成人的体重× 3(2)=成人体内的水分的重量

  2.揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的'体重吗?这就是我们今天要来研究的分数除法应用题。

  二、引导探究,解决问题

  1.课件出示例题。

  2.合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3.学生汇报

  生1:根据数量关系式:儿童的体重× 5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。

  28÷ 5(4)=35(千克)

  4.比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5.对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1)看作单位“1”的数量相同,数量关系式相同。

  (2)复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、联系实际,巩固提高

  1.(投影)看图口头列式,并用一句话概括题中的等量关系。

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的5(2),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了5(2),修了多少千米?

  (2)一条路修了50千米,修了5(2),这条路全长是多少千米?

  (3)一条路50千米,修了5(2)千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

  设计意图:

  一、从生活入手学数学。

  《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、有破度有层次地设计练习,提高学生的思维能力。

  教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数与除法教学设计 5

  教学目标

  1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

  2.掌握分数乘、除法应用题的分析、解答方法.

  教学重点

  训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

  教学难点

  准确判断单位1,正确地解答分数应用题.

  教学步骤

  一、铺垫孕伏

  (一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

  (二)判断单位1.

  1.鹅的只数是鸭的 .

  2.甲的 是乙.

  3.乙是甲的 .

  4.男生人数的 相当于女生.

  5.小齿轮的齿数占大齿轮的 .

  (三)列式计算.

  1.4是12的几分之几?

  2.12的 是多少?

  3.一个数的 是4,求这个数.

  二、探究新知

  (一)教学例3第(1)题

  池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  1.读题并找出已知条件和问题

  2.提问:应把谁看作单位1?是根据题中哪句话判断的?

  3.画图.

  4.列式解答

  答:鹅的只数是鸭的 .

  (二)教学例3第(2)、(3)题.

  池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

  1.画图理解题意

  2.列式解答

  3.集体订正

  (三)小结

  这三道题有什么相同点和不同点?解题关键是什么?

  1.结构上

  相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

  不同点:已知和未知不一样.

  2.解题思路上

  相同点:都要首先弄清谁作标准,把谁看作单位1;

  不同点:根据已知、未知的变化,确定不同的解答方法.

  解题关键是:正确分析题中的数量关系,明确谁作单位1.

  教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

  答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.

  三、全课小结

  这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.

  四、巩固练习

  (一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

  (二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

  (三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

  五、课后作业

  (一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (二)学校买了阔水30瓶,红墨水24瓶.阔水是红墨水的几倍?

  (三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

  六、板书设计

  分数乘、除法应用题对比

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  412=

  答:鹅的只数是鸭的 .

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12 =4(只)

  答:池塘里有4只鹅.

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4 =12(只)

  答:池塘里有12只鸭.

  5、《分数除法》教学设计

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、 谈话激趣,复习辅垫

  1. 师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,使成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的'体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

  35× 5 (4 )=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  的体重× 3 (2 )=体内的水分的重量

  2. 揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、 引导探究,解决问题

  1. 课件出示例题。

  2. 合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3. 学生汇报

  生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

  28÷ 5 (4 )=35(千克)

  4. 比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5. 对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1) 看作单位“1”的数量相同,数量关系式相同。

  (2) 复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知, 可以用方程解答。

  (3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、 联系实际,巩固提高

  1. (投影)看图口头列式,并用一句话概括题中的等量关系。

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了 5 (2 ),修了多少千米?

  (2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

  (3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

分数与除法教学设计 6

  板书设计(需要一直留在黑板上主板书)

  分数除法

  例1:每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例2:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数(结果最简。除号要变成乘号)

  学生学习活动评价设计

  通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的'几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

  教学反思

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

  主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

分数与除法教学设计 7

  教学目标

  1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。

  2.运用所学的分数除法的知识,解决相应的实际问题。

  教学重难点

  教学重点:正确熟练地进行分数除法的计算。

  教学难点:解决相应的实际问题.。

  教具准备课件

  设计意图教学过程特色设计

  正确熟练地进行分数除法的`计算。

  教学过程

  一、基础知识练习:

  (一)计算:

  2/13÷28/9÷43/10÷35/11÷522/23÷2

  3/10÷223/24÷2617/21÷518/9÷713/15÷4

  学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的

  (二)教材P36第13题,学生独立计算。

  二、深入练习

  教材P36第14题,学生板演,集体订正。

  三、解决问题

  第7题学生独立解答。

  第8题学生解答时提示学生需要先统一单位。

  小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

  四、作业练习:

  教材P36第12,15,16题。

  学生先读题,说一说解题思路,然后学生列式计算。

分数与除法教学设计 8

  一、教学内容:五年级下册教科书第65—66页。

  二、教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  三、教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  四、教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  五、教法要素:

  1.已有的知识和经验:除法的意义和分数的产生、意义。

  2.原型:

  (1)把6块月饼平均分给3个小朋友,每人分几块?

  (2)把1块月饼平均分给3个小朋友,每人分几块?

  (3)把3块月饼平均分给4个小朋友,每人分几块?

  3.探究的问题:

  (1)整数除法得不到整数商的情况时,可以用什么数表示?

  (2)在表示整数除法的商时,用谁作分母?用谁做分子?

  (3)分数与除法的关系是怎样的?

  六、教学过程:

  (一)唤起与生成

  1.提出问题:

  (1)把6块月饼平均分给3个小朋友,每人分几块?怎样列式计算?学生回答,教师板书:6÷3=2(块)

  (2)如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计

  1算?学生回答,教师板书:1÷3= (块) 3

  并让学生说一说是怎样得到的?(学生表述,师用纸片演示)

  (3)观察以上两个算式,两个数相除商有什么不同?

  2.引入:今天我们就来研究分数与除法的关系。(板书课题)

  (二)探究与解决

  探究一:体会分数与除法的关系

  出示例2主题图,让学生理解题意,并引导学生列出算式:3÷4。

  1.提出问题:你们知道每人分得多少块吗?

  引导学生独立思考。

  2.合作探究

  学生操作:拿出3张同样大小的圆片把它看作3块月饼,用剪刀把它们分一分。

  教师巡视,参与指导。

  3.交流汇报

  交流时,让学生具体说一说是怎样分得;把谁看作单位“1”;把3块月饼平均分成4份,每份是多少。

  教师根据学生汇报总结不同的分法。

  分法一:先把每个圆剪成4个 块,再把12个 块平均分给4人,得到每人3个 块,然后把3个 块拼在一起,得出结果,每人分到 块。

  分法二:按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个 块拼在一起,得到每人 块。

  分法三:先把2个圆摞在一起,平均分成4份剪开,剪成4 块,再把1个圆平均分成4份剪开,然后把和 块拼在一起,块。

  分法四:操作与推理结合:1块月饼平均分给4人,每人分得 块,块月饼平均分给4人,每人分得3个 块,是 块。

  4.补充事例,举一反三

  (1)把2块月饼平均分给3个人,每人分几块?

  (2)把5块月饼平均分给8个人,每人分几块?

  学生口答,并说说是怎样分的?(教师板书)

  探究二:概括分数与除法的关系

  1.引导学生观察以上几个算式,想一想:

  (1)整数除法得不到整数商的时侯,可以用什么数表示商?

  (2)在表示整数除法的商时,用谁作分母?用谁做分子?

  (3)分数与除法的关系是怎样的?

  2.组织学生小组讨论交流,全班汇报。

  3.教师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的'分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)

  提问:这个关系式里每个数的范围要注意什么?

  学生思考并同桌交流。

  指出:因为在除法里除数不能是零,所以分数的分母也不能是零。

  如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示? 板书:a÷b=a/b(b≠0)

  4. 想一想:分数与除法有区别吗?区别在哪里?

  引导学生独立思考,再小组交流。

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  5.引导学生说一说 表示的两种意义。

  (三)训练与应用

  1.教科书66页“做一做”的第1题。

  2.教科书练习十二第1题。

  3(四)小结与提高

  总结本节课的小结收获:重点说说分数与除法的关系;评价学习表现。

分数与除法教学设计 9

  教学目标

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

  3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

  教学重难点

  理解分数与除法的关系

  教学准备

  每人准备4张同样大小的圆片

  教学过程

  一、引入情境,揭示例题

  口答题

  1、把8块饼干平均分给4个小朋友,每人分得几块?

  2、把4块饼干平均分给4个小朋友,每人分得几块?

  3、把3块饼干平均分给4个小朋友,每人分得几块?

  怎样列式?板书3÷4

  引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

  不满1块那该怎么表示呢?

  生:小数或分数

  二、实践操作探索研究

  师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

  学生动手操作

  教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

  师:接下来我们请同学汇报一下他们研究所得结果。

  (生讲述这样分的理由)

  教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

  (2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

  总结:把3块饼干平均分给4个小朋友,每人分得3/4块

  板书:3÷4=3/4(块)

  师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

  学生口述理由。板书:3÷5

  师:想想该怎么去分?把你的想法和同桌交流下。

  指名让学生说说思考过程。

  板书:3÷5=3/5(块)

  师:如果分给7个小朋友呢?

  学生口述3÷7=3/7(块)

  三、归纳总结,围绕主题

  师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

  板书课题:分数与除法的关系

  生相互交流。教师板书:被除数÷除数=

  师:除法算式又可以写成什么形式?

  生补充:被除数÷除数=被除数/除数

  师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

  生:a÷b=a/b

  师:这里的a和b可以取任何数吗?为什么?

  生:除数不能为0。

  师:分数和除法之间的关系,你有什么好的方法记住它们吗?

  生交流讨论并回答

  师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

  四、巩固练习,拓展延伸

  师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

  集体校对。

  师引导:比较上下两行有什么不同?

  在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

  师:接下来请大家独立完成“试一试”两小题。

  然后小组交流你是怎么想的?

  师:把7分米改写成用米作单位,可以列怎样的除法算式?

  生:7÷10=7/10(米)

  师:第二个呢?

  生:23÷60=23/60(时)

  师:独立完成“练一练”的第二题

  集体讲评校对。

  师:完成“练习八”的`第一题口答

  师:完成“练习八”的第三题

  学生在书本上完成,

  教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

  五、课堂作业

  完成“练习八”的第二题

  教后反思:

  本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<

分数与除法教学设计 10

  一、教学目标

  1、结合具体事例,经历分数除以整数的过程。

  2、掌握分数除以整数的计算方法,能够进行分数除以整数的计算。

  3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。

  二、教学准备

  小黑板,口算卡。

  三、创设情境。

  1、复习导入(一生说数,另一生说出它的倒数)。

  2、口算练习:(1)205(2)488(3)364。

  201/5481/8361/4。

  四、自主探究。

  (一)根据口算找规律。

  1、提问:通过以上计算,你发现了什么?

  预设:学生可能说出:

  (1)每组的计算结果相同。

  (2)除以一个数和乘以这个数的.倒数的结果是一样的。

  (3)每组算式里都有一个除法和一个乘法,符号后面的两个数互为倒数,其结果都是相同的。

  2、教师引导。

  如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?

  师生总结:甲数乙数(0除外)=甲数乙数的倒数。

  预设:学生可能想不到除数不能为0。

  师引导:所以的数都能作除数吗?

  3、验证以上结论:

  (二)请学生参照以上口算习题,自己试着举出几组来。

  1、出示分饼例题。

  学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。

  预设:学生可能会出现两种想法。

  (1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。

  (2)求每份是多少,就是求的是多少?

  教师根据学生的汇报情况,随机板书。

  2、学生观察计算过程,谈发现。

  3、师生共同总结分数除以一个数的计算方法。

  分数除以一个数(0除外)等于分数乘这个数的倒数。

  五、巩固练习。

  1、完成试一试。

  学生练习。(集体订正时,让学生说一说自己是怎么想的?)。

  2、完成练一练。

  第1、2、4题:学生完成后,汇报解题思路。师生共同交流。

  六、交流收获。

  通过这节课的学习,你有哪些收获?

分数与除法教学设计 11

  内容:

  本册教科书第28页例2和练习八第1~4题。

  教学目的:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

  教学过程:

  一、复习

  1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

  1/5、3/4、7/16、9/9

  2、口算下面各题。

  1/6÷3、4/5÷2、3/8÷6、6/7÷2

  提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

  3、解答应用题。

  一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)

  提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)

  指定一名学生列式解答。

  二、新课

  揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

  1、出示例题。

  一辆汽车小时行驶18千米,1小时行驶多少千米?

  提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

  指名列出算式,教师板书:18÷。

  2、教学整数除以分数的计算方法。

  教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

  提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

  提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)

  提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)

  提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)

  提问:18÷2也就是求18的`几分之几?可以怎样写?(学生回答后教师写出“18”。)

  提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。

  提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。

  提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

  18÷==45(千米)

  写出答案“答:汽车1小时行驶45千米。”

  3、引导学生小结。

  “整数除以分数,等于整数乘上除数的倒数。”

  三、看教科书中新课内容后试算

  全体学生独立计算“做一做”中的练习题:

  12÷ 24÷

  集体订正计算过程及结果,并提问一个数除以分数的法则。

  四、课堂练习

  在练习本上计算练习八第1、2题,然后订正计算结果。

  五、总结

  今天学习了什么新知识?

  整数除以分数的计算法则是什么?

  计算整数除以分数应注意什么?

  六、布置作业

  1、阅读教科书第28~29页的内容。

  2、在练习本上做练习八第3、4题。

分数与除法教学设计 12

  设计理念:

  学习数学知识就要与生活联系,培养学生对数学的兴趣,使人人学习有价值的数学。《分数除法的意义和分数除以整数》都涉及到学生日常生活中经常见到,并用到的内容,与学生的生活密切联系,再加上学生有一定的求知欲,能进一步激起学生学习数学的兴趣。教学内容:《分数除法的意义和分数除以整数》是义务教育课程标准实验教科(人教版)小学数学六年级上册第25—26页内容及相应的练习。教学目标:

  1、使学生理解分数除法的意义与整数除法的意义相同。

  2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算。

  3、培养学生分析能力,知识的迁移能力和语言表达能力,使学生的抽象思维能力得到发展。教学重点:理解分数除法的意义

  教学难点:正确地归纳出分数除以整数的计算方法,并能准确地计算。教学关键:理解除法的意义。教具准备:课件、练习纸多张。

  教材分析:《分数除法的意义和分数除以整数》是人教版小学数学第十一册第25—26页内容。这节课有两部分内容。第一部分是:分数除法的意义,在处理这部分内容时,出示一组整数乘除法的复习题,复习整数除法的意义,然后改编成一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是:分数除以整数的计算法则,这是本节课的重点和难点。通过折纸帮助学生理解题意,引导学生通过用两种不同折纸方法得出两种不同计算方法,最后自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算÷3,发现问题,最后归纳出分数除以整数的计算方法。提高学生的解题能力,发展学生的`创新思维能力。

  教学策略及教法设计:

  一、创设情境,导入新课。

  通过电脑出示让学生感受一下我们今天所学习的知识来生活中,而让学生对这节课更感兴趣。

  二、小组合作,学习新知。

  教学分数除法的意义,先通过情境复习整数除法的意义,给出一个整数的乘法算式让学生与出两个除法算式。再根据除法算式改编成两道除法问题,最后并把整数改成分数,分别引出3道分数乘、除法的算式和问题。这过程从整数乘法引出整数除法,得出除法是乘法的逆运算。再将整数化成分数,用同样的方法,证明除法是乘法的逆运算。并得出整数除法的意义分数除法的意义相同,都是已知两个因数的积和其中一个因数,求另一个因数的运算。教学例1,先进行一些×的口算练习。再出示例题问题。通过折纸、计算,对例1的第一个问题的解决,得出2种方法:第一种是每份是2个;另一种是每份是的。通过比较,得出第二种方552241法在所在有题目中都适用,而第一种只能是在特殊既情况才能用。从而用第二种方法解决例1第二个小问题。

  最后总结,归纳出分数除以整数的计算规律,分数除以整数(0除外)等于乘以这个数的倒数。

  三、动手操作,体验成功。

  这个环节主要通过做练习让学生熟练分数除以整数的计算,巩固除法的记忆。

  四、全课小结。

  这个环节主要是让学生自己说,将这节课的主要知识分数除以整数的计算规律向老师说,向同学说,从而巩固对这节课的内容,提高计算能力和表达能力。

  五、作业布置。

分数与除法教学设计 13

  教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

  教学目标:

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学过程:

  一、复习引入

  1.列式,说说数量关系。

  小明2小时走了6km,平均每小时走多少千米?

  速度=路程÷时间

  2.填空。

  2/3小时有()个1/3小时,1小时有()个1/3小时。

  3.口算,说说分数除以整数的计算方法。

  (1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

  (分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

  4.引入课题。

  我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

  今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。

  板书课题:一个数除以分数。

  二、解决问题,发现算法

  1.理解题意,列出算式。

  (1)出示例3。

  (2)学生读题,理解题意。

  (3)列出算式,说出列式根据什么数量关系。

  板书:2÷(2/3)(5/6)÷(5/12)

  2.探索整数除以分数的计算方法。

  (1)2÷(2/3)如何计算呢?让我们画出线段图看看。

  (2)先画一条线段表示1小时走的'路程(边说边板书),怎样表示2/3小时走了2km这个条件?

  (将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

  (3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

  (4)根据学生的回答把线段图补充完整,板书计算思路。

  先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

  再求3个1/3小时走了多少千米,算式:2×(1/2)×3

  (5)找出计算方法。

  板书:(乘法结合律)

  现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

  启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

  观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

  强调:被除数没有变,除号变乘号,除数变成了它的倒数。

  (6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

  板书,学生齐读。

  3.探索分数除以分数的计算方法。

  (1)让学生尝试计算5/6÷5/12。

  我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

  (2)学生汇报,教师板书:

  (3)为什么写成×(12/5)?

  (4)怎样验证这种计算结果是正确的?

  学生可能回答:

  ①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

  再求12个1/12小时走了多少千米,算式是5/6×1/5×12

  ②用乘法验算。

  (5)回答“谁走得快些”。

  (6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

  让同桌学生相互议一议,再指名回答。

  (7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

  强调:除以一个不等于0的数。

  齐读法则。

  三、巩固练习

  1.口算。(采用口算对折卡片)

  (1)不能约分的2÷3/5=1/3÷2/5=

  (2)能约分的3÷3/4=2/7÷6/7=

  2.完成课本第31页“做一做”第1题,填在书上。

  第2题,写在课堂练习本上,写出过程。

  3.直接写出得数。

  1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

  四、师生共同小结

  1.这节课我们学习了哪些知识?

  2.一个数除以分数的计算方法是什么?

  五、布置作业(略)

分数与除法教学设计 14

  分数除法应用题教学是苏教版小学数学十一册中的内容,是本册的重点、难点。如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量。我作了一些教学尝试。

  一、从学生的生活实际出发学数学。

  数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自己的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的`机会。

  二、让学生参与学习过程,体验学习知识的过程。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  教学中把自主、合作、探究的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。班级中的学生之间有一定的差异,为使每位学生都得到发展,在教学中,我重视让学生同桌之间互相说对题目的理解及对解题方法的分析理解,在相互交流中促进知识的掌握,充分发挥学生的主体地位。

  三、多角度分析问题,提高解决问题的能力。

  在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如是、占、比、相当于后面的数量就是作单位1的数量,画线段图就先画作单位1这个数量,再画与之对应的数量的线段图;知1求几用乘法,知几求1用除法等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  应用题的教学不是仅仅凭借一两节课就能形成学生的知识技能,需要我们教师在每节课都能对学生进行相应的训练,使学生真正掌握解决问题的方法形成解决问题的能力。

分数与除法教学设计 15

  复习激趣《分数与除法》教学设计目标导学《分数与除法》教学设计自主合作《分数与除法》教学设计汇报交流《分数与除法》教学设计变式训练创境激疑

  一、导入揭题。

  1、复习:76是()数,它表示()。107的分数单位是(),它有()个这样的分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  合作探究

  二、明确学习目标。(在此处明确)

  1、通过观察、探究,理解分数与除法的关系。

  2、通过练习,会用分数表示两个数相除的商。

  三、指导学生自主学习标杆素材、展示、反思、训练、点拨。通过观察、操作,自主探究分数与除法的关系。

  例1、把一个蛋糕平均分给3人,每人分得多少个?

  学习要求:

  1、平均分怎样列式?

  2、同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  3、观察这两种解法有什么联系?

  例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

  1、平均分同样可以列式为:3÷4。

  2、小组合作探究:3÷4的商能不能用分数表示呢?【练后反思】通过进一步探究,你发现分数与除法有什么关系了吗?

  【被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?】

  拓展应用

  一个正方形的周长是64cm,它的边长是周长的几分之几?

  总结

  通过这节课的'学习,你有什么收获?

  作业布置

  在括号里填上适当的数。5÷8=12÷17=()÷()=m÷n(n≠0)=

  板书设计

  分数与除法

  例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

  被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)

《分数与除法教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【分数与除法教学设计 】相关文章:

《分数除法》教学设计07-05

《分数除法(一)》教学设计10-27

分数除法教学设计与反思06-16

分数除法二教学设计07-29

《分数除法》教学设计15篇05-05

《分数与除法》教学反思04-11

分数与除法教学反思04-11

分数除法教学反思04-11

分数除法的教学反思04-02

分数与除法教学设计

  作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以提高教学质量,收到预期的教学效果。优秀的教学设计都具备一些什么特点呢?下面是小编帮大家整理的分数与除法教学设计 ,仅供参考,希望能够帮助到大家。

分数与除法教学设计

分数与除法教学设计 1

  ——分数除以整数

  分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

  (1)4/7÷2(2)4/7÷3

  =4/7×1/2

  =2/7

  教学反思:

  《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:

  一、充分利用学生最佳的学习状态

  课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。

  二、让学生在不同的活动中探索数学。

  数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。

  三、让学生在不同层次的练习中应用数学。

  学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。

  3、《分数除法》教学设计

  教学设想:

  1、注重考虑学生的知识起点,引发学生的认知,让学生感知“用分数表示除法的商”的产生与发展的过程。

  2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

  3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

  教学目标:

  1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

  2、培养学生动手操作、合作交流和灵活运用知识的能力。

  3、通过学习,培养学生转化的`数学思想和勇于探索的精神。

  教学重点:

  理解分数与除法的关系。

  教学难点:

  具体体会每一个商的由来和表示的含义。

  教学过程:

  一、感知关系

  1、问题:把6米长的绳子平均分成3段。每段长多少米?

  把1米长的绳子平均分成3段。每段长多少米?

  提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

  2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

  板书:被除数÷除数=被除数/除数

  二、探究关系

  1、、验证关系

  (1)通过动手操作验证

  出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

  列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

  动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

  同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

  反馈验证

  引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

  板书:3÷4=3/4

  (2)运用分数意义验证

  师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途敬验证分数与除法的关系吗?

  出示例[2]:17分是几分之几小时?

  引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

  1÷60=1/60 17÷60=17/60(小时)

  引导小结:分数与除法之间的关系,还可以用来转化名数。

  2、揭示关系

  师:通过刚才的验证,你得出了哪些结论?

  ①两个数相除,当商不是整数时,可以用分数来表示。

  ②被除数÷除数=被除数/除数。

  师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

  联系

  区别

  除法

  被除数

  除号

  除数

  是一种运算

  分数

  师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

  引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

  三、巩固关系

  1、强化分数与除法的关系。

  ① P.82 2 ②(P.82 4)

  ③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时

  ④在括号里填上合适的数

  ( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )

  2、比较练习,完成P.82 3

  ①学生选择条件,列式解答。

  ②引导比较:联系都占总数的1/3,区别能否用整数表示商

  四、总结提升

  师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

  质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?

分数与除法教学设计 2

  教学目标:

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点:

  重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

  难点:理解可以用分数表示两个数相除的商。

  教学过程:

  一、导入揭题。

  1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的.分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  二、探索新知

  1、教学例1

  (1)课件出示例1

  把一个蛋糕平均分给3人,每人分得多少个?

  (2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  (3)汇报讨论结果

  (4)观察这两种解法有什么联系?

  2、教学例2、

  把3个饼平均分给4个孩子,每个孩子分得多少个?

  (1)平均分同样可以列式为:3÷4。

  (2)小组合作探究:3÷4的商能不能用分数表示呢?

  (3)通过进一步探究,你发现分数与除法有什么关系了吗?

  师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

  三、拓展应用

  一个正方形的周长是64cm,它的边长是周长的几分之几?

  四、总结

  通过这节课的学习,你有什么收获?

  五、作业布置

  完成教材第50页"做一做"

分数与除法教学设计 3

  教学目标:

  1,借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2,掌握整数除以分数的计算方法,并能正确计算。

  教学重点:

  一个数除以分数的计算方法。

  教学难点:

  探索整数除以分数的计算方法和理解一个数除以分数的意义。

  教学过程:

  创设一个分一分的活动。

  导语:上星期在我们学校举行了什么竞赛(技能竞赛)幼儿园的小朋友也积极参加,并取得好的成绩,幼儿园的老师想用4张同样大的饼来表扬和鼓励小朋友们。如果每人分2张,可以分几人生直接答并说说为什么得出2。

  一,出示:第27页的情境图。

  如果每人分1/2张,可以分几人如果每人分1/3张,可以分几人如果每人分1/4张,可以分几人

  从整数除以整数到整数除以分数,借助除法的意义和图形语言,理解整数除以分数的意义。

  创设自主的探索空间,让学生在小组内借助学具通过观察,比较,思考与讨论,发现知识的内在联系,体会除以一个数与乘这个数的倒数之间的关系。让学生更好地理解分数除法的意义的机会,更主要的'是教会学生一种学习的方法。(即分数除法的意义可联系整数除法的意义进行学习)

  猜想:通过自己的操作得到的答案,你们猜一猜整数除以分数的计算方法。

  二,画一画。

  导语:分完了饼,幼儿园的老师想把它装在盒子里,并用彩带来捆住。

  出示题目:有一条2米长的彩带,如果截成每段1/2米,可以截几段如果截成每段1/3米,可以截几段如果截成每段2/3米,可以截几段

  1,分组验证,让学生画图验证自己的猜想,观察分析图中反映的数量关系

  2,学生体会分数除法的意义和算法。

  三,填一填,想一想。

  让学生观察,比较,从而发现问题中蕴藏的规律。(进一步理解分数除法的意义)

  小结:同学们经过自己的认真探索,发现了整数除以分数的计算方法是乘分数的倒数。

  四,练一练。

  导语:同学们掌握了整数除以分数的计算方法,敢接受知识的挑战吗

  1,算一算:61/421/5102/3124/572/3

  2,有8瓶矿泉水,每人分2/5瓶,可以分几人

  3,拓展题:同学们这节课都学得非常认真,老师想用这9张红纸剪红心奖励给你们,每个红心需3/8张,我们班有32人,够分吗不够应需几张

  4,思考题:算一算6112

  五,聚焦反思,总结提高。

  这节课你有什么收获

  教学反思:

  1、创设生活情境:

  数学知识来源于生活。通过创设幼儿园的老师想奖励小朋友的生活情境来激发学生对知识的求知,增强学生的探索欲望,从而感悟学习数学的意义和必要。

  2、注重自主探索:

  学生有了知识的求知欲望后,赶紧让他们在小组内自主探索,借助圆片和图形语言理解理解整数除以分数的意义。通过观察,比较,思考与讨论,自主发现知识的内在联系,体会除以分数与乘这个数的倒数之间的关系。

  3、经历知识的形成:

  数学的学习过程注重学习的效果,更注重知识的学习过程。于是,我让学生通过自己的操作猜想整数除以分数的计算方法,并借助图形语言来验证知识的形成,如41/2=8是怎样得出学生就能借助图形语言自己探索出每张分了2个1/2,4张就有8个1/2。从而培养学生学习数学的能力和逻辑推理能力,体会数学知识的严密性,还让学生明白了知识或真理是能接受实践的验证的,为以后同学们的学习猜想提供了很好的学习方法。

  练习循序渐进:

  设计练习时,我在算一算里安排有层次的计算,让学生先算简单的61/421/5,再算需要约分的102/3124/5,最后算要化成带分数的算式,满足了不同的学生有不同的收获。然后把所学的知识回归生活,解决实际问题。拓展题是根据学生的实际经历设计的,让学生体会到学习数学的价值。最后还安排了思考题,这是超出了教材的学习范围,可是学生已学会了带分数化成假分数的方法,我认为学有能力的学生解决此题并不难,真正体现了数学的理念:不同层次的学生应有不同能力的培养,不同的收获。

  不足之处:

  小组交流不深入,分工不明确,致使教学难点没突破。

  时间安排不当,有点前松后紧,使后面的拓展题和思考题没讲,不能很好地培养不同学生的不同能力。

  改进方法:

  1,布置小组合作自主探索时,应让学生先分工,并给学生温馨提示:每个学生应自己操作好,借助图形语言想好得出答案的原因,若想不出再和小组的同学交流,讨论,选个学生登记每个人的交流。学生分组画图时,应让每个学生动手画一画,画好再交流自己的验证方法。这样可能会增加小组合作的实效性,避免有的学生只当收音机,也能更好地突破教学的难点。

  2,在经历知识的形成时,时间应安排紧凑些,增强小组合作的实效性。画一画环节可让学生直接在书本上完成。这样也许就不会浪费时间。后面的练习题可能就有时间讲,就能让学生更明白学习数学的价值,从而达到教学的目的

分数与除法教学设计 4

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、谈话激趣,复习辅垫

  1.师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5(4)=儿童体内水分的重量

  35× 5(4)=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  成人的体重× 3(2)=成人体内的水分的重量

  2.揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的'体重吗?这就是我们今天要来研究的分数除法应用题。

  二、引导探究,解决问题

  1.课件出示例题。

  2.合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3.学生汇报

  生1:根据数量关系式:儿童的体重× 5(4)=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的5(4)是28千克,就可以直接用除法来做。

  28÷ 5(4)=35(千克)

  4.比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5.对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1)看作单位“1”的数量相同,数量关系式相同。

  (2)复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试:一条裤子的价格是75元,是一件上衣的3(2)。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、联系实际,巩固提高

  1.(投影)看图口头列式,并用一句话概括题中的等量关系。

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的5(2),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了5(2),修了多少千米?

  (2)一条路修了50千米,修了5(2),这条路全长是多少千米?

  (3)一条路50千米,修了5(2)千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

  设计意图:

  一、从生活入手学数学。

  《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。

  二、关注过程,让学生获得亲身体验。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

  三、多角度分析问题,提高能力。

  在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  四、有破度有层次地设计练习,提高学生的思维能力。

  教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数与除法教学设计 5

  教学目标

  1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

  2.掌握分数乘、除法应用题的分析、解答方法.

  教学重点

  训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

  教学难点

  准确判断单位1,正确地解答分数应用题.

  教学步骤

  一、铺垫孕伏

  (一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

  (二)判断单位1.

  1.鹅的只数是鸭的 .

  2.甲的 是乙.

  3.乙是甲的 .

  4.男生人数的 相当于女生.

  5.小齿轮的齿数占大齿轮的 .

  (三)列式计算.

  1.4是12的几分之几?

  2.12的 是多少?

  3.一个数的 是4,求这个数.

  二、探究新知

  (一)教学例3第(1)题

  池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  1.读题并找出已知条件和问题

  2.提问:应把谁看作单位1?是根据题中哪句话判断的?

  3.画图.

  4.列式解答

  答:鹅的只数是鸭的 .

  (二)教学例3第(2)、(3)题.

  池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

  1.画图理解题意

  2.列式解答

  3.集体订正

  (三)小结

  这三道题有什么相同点和不同点?解题关键是什么?

  1.结构上

  相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

  不同点:已知和未知不一样.

  2.解题思路上

  相同点:都要首先弄清谁作标准,把谁看作单位1;

  不同点:根据已知、未知的变化,确定不同的解答方法.

  解题关键是:正确分析题中的数量关系,明确谁作单位1.

  教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

  答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.

  三、全课小结

  这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.

  四、巩固练习

  (一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

  (二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

  (三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

  五、课后作业

  (一)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (二)学校买了阔水30瓶,红墨水24瓶.阔水是红墨水的几倍?

  (三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

  六、板书设计

  分数乘、除法应用题对比

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  412=

  答:鹅的只数是鸭的 .

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12 =4(只)

  答:池塘里有4只鹅.

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4 =12(只)

  答:池塘里有12只鸭.

  5、《分数除法》教学设计

  教材分析:

  本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、 谈话激趣,复习辅垫

  1. 师生交流

  师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

  对,水是我们体内含量最多的物质,它对我们人体是至关重要的,使成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

  师:老师查到了一些资料,我们一起来看一下。(课件出示)

  2.复习旧知

  师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

  学生回答后说明理由。

  师:算一算你们自己体内水分的质量吧!

  生答

  师:一儿童的'体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

  生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

  35× 5 (4 )=28(千克)

  师:谁还能根据另一个信息写出等量关系式?

  的体重× 3 (2 )=体内的水分的重量

  2. 揭示课题

  师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

  二、 引导探究,解决问题

  1. 课件出示例题。

  2. 合作探究

  师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

  3. 学生汇报

  生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

  生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

  28÷ 5 (4 )=35(千克)

  4. 比较算法

  比较算术做法与方程做法的优缺点?

  (让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

  5. 对比小结

  和前面复习题进行比较一下,看看这题和复习题有什么异同?

  (1) 看作单位“1”的数量相同,数量关系式相同。

  (2) 复习题单位“1”的量已知,用乘法计算;

  例1单位“1”的量未知, 可以用方程解答。

  (3) 因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

  6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

  问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

  单位“1”是已知还是未知的?

  根据学生回答画线段图。

  根据题中的数量关系找学生列出等量关系式。

  学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

  师:这道题你还能用其它方法解答吗?

  (根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

  三、 联系实际,巩固提高

  1. (投影)看图口头列式,并用一句话概括题中的等量关系。

  2.练一练:

  (1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

  (2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

  3.对比练习

  (1)一条路50千米,修了 5 (2 ),修了多少千米?

  (2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

  (3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

  四、全课小结畅谈收获

  ①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

  教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

分数与除法教学设计 6

  板书设计(需要一直留在黑板上主板书)

  分数除法

  例1:每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  归纳总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  例2:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  归纳总结:分数除以整数(0除外),等于分数乘这个整数的倒数(结果最简。除号要变成乘号)

  学生学习活动评价设计

  通过这一节课的学习,要使学生理解并掌握分数除法的计算方法,会进行分数除法计算;会解答已知一个数的'几分之几是多少求这个数的实际问题;并且这一节课的学习将要为后面运用比的知识解决有关的实际问题打好基础。

  教学反思

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。

  主要内容包括:分数除法的意义与计算;解决问题;比的意义与基本性质等。本单元的内容和学生前面学习的很多知识具有比较直接的联系。如分数除法,除了与分数乘法的意义、计算及其应用有联系外,还与整数除法的意义,以及解方程的技能有关。而比的初步知识,则要用到分数和除法的一些基础知识。通过本单元的学习,学生一方面基本上完成了分数加、减、乘、除的学习任务,比较系统地掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。我觉得在教学过程中,应充分考虑到学生自身对分数除法的意义的理解的基础上进行教学。在教学过程中要充分利用教材,激活学生已有的知识经验,引导他们展开类比思维,以促进学习的正向迁移。实际上,这也是本单元的课堂教学中,落实学生的主体地位,发挥教师主导作用的有效途径。引导学生数形结合,边操作、边观察、边思考,并通过讨论、交流,在理解的基础上得出算法,进而掌握算法。

分数与除法教学设计 7

  教学目标

  1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。

  2.运用所学的分数除法的知识,解决相应的实际问题。

  教学重难点

  教学重点:正确熟练地进行分数除法的计算。

  教学难点:解决相应的实际问题.。

  教具准备课件

  设计意图教学过程特色设计

  正确熟练地进行分数除法的`计算。

  教学过程

  一、基础知识练习:

  (一)计算:

  2/13÷28/9÷43/10÷35/11÷522/23÷2

  3/10÷223/24÷2617/21÷518/9÷713/15÷4

  学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的

  (二)教材P36第13题,学生独立计算。

  二、深入练习

  教材P36第14题,学生板演,集体订正。

  三、解决问题

  第7题学生独立解答。

  第8题学生解答时提示学生需要先统一单位。

  小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

  四、作业练习:

  教材P36第12,15,16题。

  学生先读题,说一说解题思路,然后学生列式计算。

分数与除法教学设计 8

  一、教学内容:五年级下册教科书第65—66页。

  二、教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  三、教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  四、教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  五、教法要素:

  1.已有的知识和经验:除法的意义和分数的产生、意义。

  2.原型:

  (1)把6块月饼平均分给3个小朋友,每人分几块?

  (2)把1块月饼平均分给3个小朋友,每人分几块?

  (3)把3块月饼平均分给4个小朋友,每人分几块?

  3.探究的问题:

  (1)整数除法得不到整数商的情况时,可以用什么数表示?

  (2)在表示整数除法的商时,用谁作分母?用谁做分子?

  (3)分数与除法的关系是怎样的?

  六、教学过程:

  (一)唤起与生成

  1.提出问题:

  (1)把6块月饼平均分给3个小朋友,每人分几块?怎样列式计算?学生回答,教师板书:6÷3=2(块)

  (2)如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计

  1算?学生回答,教师板书:1÷3= (块) 3

  并让学生说一说是怎样得到的?(学生表述,师用纸片演示)

  (3)观察以上两个算式,两个数相除商有什么不同?

  2.引入:今天我们就来研究分数与除法的关系。(板书课题)

  (二)探究与解决

  探究一:体会分数与除法的关系

  出示例2主题图,让学生理解题意,并引导学生列出算式:3÷4。

  1.提出问题:你们知道每人分得多少块吗?

  引导学生独立思考。

  2.合作探究

  学生操作:拿出3张同样大小的圆片把它看作3块月饼,用剪刀把它们分一分。

  教师巡视,参与指导。

  3.交流汇报

  交流时,让学生具体说一说是怎样分得;把谁看作单位“1”;把3块月饼平均分成4份,每份是多少。

  教师根据学生汇报总结不同的分法。

  分法一:先把每个圆剪成4个 块,再把12个 块平均分给4人,得到每人3个 块,然后把3个 块拼在一起,得出结果,每人分到 块。

  分法二:按照课本上的方法,把3个圆摞在一起,平均分成4份剪开,再把每份的3个 块拼在一起,得到每人 块。

  分法三:先把2个圆摞在一起,平均分成4份剪开,剪成4 块,再把1个圆平均分成4份剪开,然后把和 块拼在一起,块。

  分法四:操作与推理结合:1块月饼平均分给4人,每人分得 块,块月饼平均分给4人,每人分得3个 块,是 块。

  4.补充事例,举一反三

  (1)把2块月饼平均分给3个人,每人分几块?

  (2)把5块月饼平均分给8个人,每人分几块?

  学生口答,并说说是怎样分的?(教师板书)

  探究二:概括分数与除法的关系

  1.引导学生观察以上几个算式,想一想:

  (1)整数除法得不到整数商的时侯,可以用什么数表示商?

  (2)在表示整数除法的商时,用谁作分母?用谁做分子?

  (3)分数与除法的关系是怎样的?

  2.组织学生小组讨论交流,全班汇报。

  3.教师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的'分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)

  提问:这个关系式里每个数的范围要注意什么?

  学生思考并同桌交流。

  指出:因为在除法里除数不能是零,所以分数的分母也不能是零。

  如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示? 板书:a÷b=a/b(b≠0)

  4. 想一想:分数与除法有区别吗?区别在哪里?

  引导学生独立思考,再小组交流。

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  5.引导学生说一说 表示的两种意义。

  (三)训练与应用

  1.教科书66页“做一做”的第1题。

  2.教科书练习十二第1题。

  3(四)小结与提高

  总结本节课的小结收获:重点说说分数与除法的关系;评价学习表现。

分数与除法教学设计 9

  教学目标

  1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

  2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

  3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

  教学重难点

  理解分数与除法的关系

  教学准备

  每人准备4张同样大小的圆片

  教学过程

  一、引入情境,揭示例题

  口答题

  1、把8块饼干平均分给4个小朋友,每人分得几块?

  2、把4块饼干平均分给4个小朋友,每人分得几块?

  3、把3块饼干平均分给4个小朋友,每人分得几块?

  怎样列式?板书3÷4

  引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

  不满1块那该怎么表示呢?

  生:小数或分数

  二、实践操作探索研究

  师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

  学生动手操作

  教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

  师:接下来我们请同学汇报一下他们研究所得结果。

  (生讲述这样分的理由)

  教师总结:(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

  (2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

  总结:把3块饼干平均分给4个小朋友,每人分得3/4块

  板书:3÷4=3/4(块)

  师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

  学生口述理由。板书:3÷5

  师:想想该怎么去分?把你的想法和同桌交流下。

  指名让学生说说思考过程。

  板书:3÷5=3/5(块)

  师:如果分给7个小朋友呢?

  学生口述3÷7=3/7(块)

  三、归纳总结,围绕主题

  师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

  板书课题:分数与除法的关系

  生相互交流。教师板书:被除数÷除数=

  师:除法算式又可以写成什么形式?

  生补充:被除数÷除数=被除数/除数

  师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

  生:a÷b=a/b

  师:这里的a和b可以取任何数吗?为什么?

  生:除数不能为0。

  师:分数和除法之间的关系,你有什么好的方法记住它们吗?

  生交流讨论并回答

  师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

  四、巩固练习,拓展延伸

  师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

  集体校对。

  师引导:比较上下两行有什么不同?

  在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

  师:接下来请大家独立完成“试一试”两小题。

  然后小组交流你是怎么想的?

  师:把7分米改写成用米作单位,可以列怎样的除法算式?

  生:7÷10=7/10(米)

  师:第二个呢?

  生:23÷60=23/60(时)

  师:独立完成“练一练”的第二题

  集体讲评校对。

  师:完成“练习八”的`第一题口答

  师:完成“练习八”的第三题

  学生在书本上完成,

  教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

  五、课堂作业

  完成“练习八”的第二题

  教后反思:

  本节课重在学生通过自己探索实践,来观察和理解分数和除法之间的关系。在教学时,要求学生把3块饼干平均分给4个小朋友,当有学生展示了自己的研究成果,即把一块饼干平均分给4个小朋友,就该把这块饼干平均分成4份,这样每人就可以得到1块饼干中的1/4,也就是1/4块,现在有三个同样的饼干,按照同样的方法去分,每人就可以得到3个1/4块,就是3/4块。在边展示边讲解后,我继续提问,除了这样的思考方式,你还可以怎么分?有一个成绩较好,思维较敏锐的学生说,我们还可以把这块饼干平均分成8份,每人取其中的2份,就是2/8块,共有3个2/8块,就是6/8块也就是3/4块。我注意到了,我只是点了一下,这样也是可以的,6/8就是3/4,这是我们以后所要学习的内容。课后,在其余老师的点拨下,我也认真思考了这个问题。其实,我觉得,这个学生出现了这样的思维方式也未尝不可,的确也是合情合理的。但是实际上,我还是觉得该生对于分数的意义掌握的不够牢固,对于题目中已经很明显地给出了。要平均分给4个小朋友,那应该平均分成4份,而他却想到了平均分成了8份,这是思维跳跃的一种形式,但也是基本知识掌握不牢固的一种体现,所以在今后的教学中,我应加强学生认真读题的习惯,将基础知识扎扎实实地运用到解决实际问题中去。<

分数与除法教学设计 10

  一、教学目标

  1、结合具体事例,经历分数除以整数的过程。

  2、掌握分数除以整数的计算方法,能够进行分数除以整数的计算。

  3、积极参与数学学习活动,有克服困难和运用知识解决问题的成功体验。

  二、教学准备

  小黑板,口算卡。

  三、创设情境。

  1、复习导入(一生说数,另一生说出它的倒数)。

  2、口算练习:(1)205(2)488(3)364。

  201/5481/8361/4。

  四、自主探究。

  (一)根据口算找规律。

  1、提问:通过以上计算,你发现了什么?

  预设:学生可能说出:

  (1)每组的计算结果相同。

  (2)除以一个数和乘以这个数的.倒数的结果是一样的。

  (3)每组算式里都有一个除法和一个乘法,符号后面的两个数互为倒数,其结果都是相同的。

  2、教师引导。

  如果用甲数表示被除数,乙数表示除数,那么你能得出什么结论来呢?

  师生总结:甲数乙数(0除外)=甲数乙数的倒数。

  预设:学生可能想不到除数不能为0。

  师引导:所以的数都能作除数吗?

  3、验证以上结论:

  (二)请学生参照以上口算习题,自己试着举出几组来。

  1、出示分饼例题。

  学生用自己喜欢的方法尝试解决。(教师为学生准备了圆片)。

  预设:学生可能会出现两种想法。

  (1)把1/2张大饼平均分成三份,就是把一张大饼平均分成(23=)6份,每份是1/6。(学生可能结合折图片来加以说明)。

  (2)求每份是多少,就是求的是多少?

  教师根据学生的汇报情况,随机板书。

  2、学生观察计算过程,谈发现。

  3、师生共同总结分数除以一个数的计算方法。

  分数除以一个数(0除外)等于分数乘这个数的倒数。

  五、巩固练习。

  1、完成试一试。

  学生练习。(集体订正时,让学生说一说自己是怎么想的?)。

  2、完成练一练。

  第1、2、4题:学生完成后,汇报解题思路。师生共同交流。

  六、交流收获。

  通过这节课的学习,你有哪些收获?

分数与除法教学设计 11

  内容:

  本册教科书第28页例2和练习八第1~4题。

  教学目的:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

  教学过程:

  一、复习

  1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

  1/5、3/4、7/16、9/9

  2、口算下面各题。

  1/6÷3、4/5÷2、3/8÷6、6/7÷2

  提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

  3、解答应用题。

  一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)

  提问:这道题要求的是哪个数量?(求速度。)根据已学的数量关系怎样求速度?(板书:速度=路程÷时间)

  指定一名学生列式解答。

  二、新课

  揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

  1、出示例题。

  一辆汽车小时行驶18千米,1小时行驶多少千米?

  提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

  指名列出算式,教师板书:18÷。

  2、教学整数除以分数的计算方法。

  教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

  提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

  提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)

  提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)

  提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)

  提问:18÷2也就是求18的`几分之几?可以怎样写?(学生回答后教师写出“18”。)

  提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。

  提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。

  提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

  18÷==45(千米)

  写出答案“答:汽车1小时行驶45千米。”

  3、引导学生小结。

  “整数除以分数,等于整数乘上除数的倒数。”

  三、看教科书中新课内容后试算

  全体学生独立计算“做一做”中的练习题:

  12÷ 24÷

  集体订正计算过程及结果,并提问一个数除以分数的法则。

  四、课堂练习

  在练习本上计算练习八第1、2题,然后订正计算结果。

  五、总结

  今天学习了什么新知识?

  整数除以分数的计算法则是什么?

  计算整数除以分数应注意什么?

  六、布置作业

  1、阅读教科书第28~29页的内容。

  2、在练习本上做练习八第3、4题。

分数与除法教学设计 12

  设计理念:

  学习数学知识就要与生活联系,培养学生对数学的兴趣,使人人学习有价值的数学。《分数除法的意义和分数除以整数》都涉及到学生日常生活中经常见到,并用到的内容,与学生的生活密切联系,再加上学生有一定的求知欲,能进一步激起学生学习数学的兴趣。教学内容:《分数除法的意义和分数除以整数》是义务教育课程标准实验教科(人教版)小学数学六年级上册第25—26页内容及相应的练习。教学目标:

  1、使学生理解分数除法的意义与整数除法的意义相同。

  2、使学生在理解算理的基础上掌握分数除以整数的计算方法,并能正确的进行计算。

  3、培养学生分析能力,知识的迁移能力和语言表达能力,使学生的抽象思维能力得到发展。教学重点:理解分数除法的意义

  教学难点:正确地归纳出分数除以整数的计算方法,并能准确地计算。教学关键:理解除法的意义。教具准备:课件、练习纸多张。

  教材分析:《分数除法的意义和分数除以整数》是人教版小学数学第十一册第25—26页内容。这节课有两部分内容。第一部分是:分数除法的意义,在处理这部分内容时,出示一组整数乘除法的复习题,复习整数除法的意义,然后改编成一组分数乘除法题,让学生观察三个算式之间的关系,再与整数一组题比较,发现道理完全一样,从而很自然得出分数除法的意义。第二部分内容是:分数除以整数的计算法则,这是本节课的重点和难点。通过折纸帮助学生理解题意,引导学生通过用两种不同折纸方法得出两种不同计算方法,最后自己说出两种不同的思路,老师都加以肯定,然后让学生任选一种方法计算÷3,发现问题,最后归纳出分数除以整数的计算方法。提高学生的解题能力,发展学生的`创新思维能力。

  教学策略及教法设计:

  一、创设情境,导入新课。

  通过电脑出示让学生感受一下我们今天所学习的知识来生活中,而让学生对这节课更感兴趣。

  二、小组合作,学习新知。

  教学分数除法的意义,先通过情境复习整数除法的意义,给出一个整数的乘法算式让学生与出两个除法算式。再根据除法算式改编成两道除法问题,最后并把整数改成分数,分别引出3道分数乘、除法的算式和问题。这过程从整数乘法引出整数除法,得出除法是乘法的逆运算。再将整数化成分数,用同样的方法,证明除法是乘法的逆运算。并得出整数除法的意义分数除法的意义相同,都是已知两个因数的积和其中一个因数,求另一个因数的运算。教学例1,先进行一些×的口算练习。再出示例题问题。通过折纸、计算,对例1的第一个问题的解决,得出2种方法:第一种是每份是2个;另一种是每份是的。通过比较,得出第二种方552241法在所在有题目中都适用,而第一种只能是在特殊既情况才能用。从而用第二种方法解决例1第二个小问题。

  最后总结,归纳出分数除以整数的计算规律,分数除以整数(0除外)等于乘以这个数的倒数。

  三、动手操作,体验成功。

  这个环节主要通过做练习让学生熟练分数除以整数的计算,巩固除法的记忆。

  四、全课小结。

  这个环节主要是让学生自己说,将这节课的主要知识分数除以整数的计算规律向老师说,向同学说,从而巩固对这节课的内容,提高计算能力和表达能力。

  五、作业布置。

分数与除法教学设计 13

  教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

  教学目标:

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学过程:

  一、复习引入

  1.列式,说说数量关系。

  小明2小时走了6km,平均每小时走多少千米?

  速度=路程÷时间

  2.填空。

  2/3小时有()个1/3小时,1小时有()个1/3小时。

  3.口算,说说分数除以整数的计算方法。

  (1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

  (分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

  4.引入课题。

  我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

  今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。

  板书课题:一个数除以分数。

  二、解决问题,发现算法

  1.理解题意,列出算式。

  (1)出示例3。

  (2)学生读题,理解题意。

  (3)列出算式,说出列式根据什么数量关系。

  板书:2÷(2/3)(5/6)÷(5/12)

  2.探索整数除以分数的计算方法。

  (1)2÷(2/3)如何计算呢?让我们画出线段图看看。

  (2)先画一条线段表示1小时走的'路程(边说边板书),怎样表示2/3小时走了2km这个条件?

  (将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

  (3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

  (4)根据学生的回答把线段图补充完整,板书计算思路。

  先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

  再求3个1/3小时走了多少千米,算式:2×(1/2)×3

  (5)找出计算方法。

  板书:(乘法结合律)

  现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

  启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

  观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

  强调:被除数没有变,除号变乘号,除数变成了它的倒数。

  (6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

  板书,学生齐读。

  3.探索分数除以分数的计算方法。

  (1)让学生尝试计算5/6÷5/12。

  我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

  (2)学生汇报,教师板书:

  (3)为什么写成×(12/5)?

  (4)怎样验证这种计算结果是正确的?

  学生可能回答:

  ①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

  再求12个1/12小时走了多少千米,算式是5/6×1/5×12

  ②用乘法验算。

  (5)回答“谁走得快些”。

  (6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

  让同桌学生相互议一议,再指名回答。

  (7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

  强调:除以一个不等于0的数。

  齐读法则。

  三、巩固练习

  1.口算。(采用口算对折卡片)

  (1)不能约分的2÷3/5=1/3÷2/5=

  (2)能约分的3÷3/4=2/7÷6/7=

  2.完成课本第31页“做一做”第1题,填在书上。

  第2题,写在课堂练习本上,写出过程。

  3.直接写出得数。

  1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

  四、师生共同小结

  1.这节课我们学习了哪些知识?

  2.一个数除以分数的计算方法是什么?

  五、布置作业(略)

分数与除法教学设计 14

  分数除法应用题教学是苏教版小学数学十一册中的内容,是本册的重点、难点。如何激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量。我作了一些教学尝试。

  一、从学生的生活实际出发学数学。

  数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自己的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣。教学改变复习旧知引入新知的传统做法,直接取材于学生的生活实际,通过班级的人数引出题目,再让学生介绍本班的情况,引发学生参与的积极性,向他们提供充分的从事数学活动和交流的`机会。

  二、让学生参与学习过程,体验学习知识的过程。

  教学中,为让学生认识解答分数乘法应用题的关键是什么时,让学生通读题目、细读题目,圈出题目中的重要词句,理解题意。画出线段图分析数量之间的关系。亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

  教学中把自主、合作、探究的教学方式。和教师分析讲解相结合。把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。班级中的学生之间有一定的差异,为使每位学生都得到发展,在教学中,我重视让学生同桌之间互相说对题目的理解及对解题方法的分析理解,在相互交流中促进知识的掌握,充分发挥学生的主体地位。

  三、多角度分析问题,提高解决问题的能力。

  在分析应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,注意启发学生从例题中抽象概括数量关系,总结经验规律。如是、占、比、相当于后面的数量就是作单位1的数量,画线段图就先画作单位1这个数量,再画与之对应的数量的线段图;知1求几用乘法,知几求1用除法等等的做法。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

  应用题的教学不是仅仅凭借一两节课就能形成学生的知识技能,需要我们教师在每节课都能对学生进行相应的训练,使学生真正掌握解决问题的方法形成解决问题的能力。

分数与除法教学设计 15

  复习激趣《分数与除法》教学设计目标导学《分数与除法》教学设计自主合作《分数与除法》教学设计汇报交流《分数与除法》教学设计变式训练创境激疑

  一、导入揭题。

  1、复习:76是()数,它表示()。107的分数单位是(),它有()个这样的分数单位。

  2、观察:5÷8=4÷9=这两道题能得到整数商吗?

  3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

  合作探究

  二、明确学习目标。(在此处明确)

  1、通过观察、探究,理解分数与除法的关系。

  2、通过练习,会用分数表示两个数相除的商。

  三、指导学生自主学习标杆素材、展示、反思、训练、点拨。通过观察、操作,自主探究分数与除法的关系。

  例1、把一个蛋糕平均分给3人,每人分得多少个?

  学习要求:

  1、平均分怎样列式?

  2、同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

  3、观察这两种解法有什么联系?

  例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

  1、平均分同样可以列式为:3÷4。

  2、小组合作探究:3÷4的商能不能用分数表示呢?【练后反思】通过进一步探究,你发现分数与除法有什么关系了吗?

  【被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?】

  拓展应用

  一个正方形的周长是64cm,它的边长是周长的几分之几?

  总结

  通过这节课的'学习,你有什么收获?

  作业布置

  在括号里填上适当的数。5÷8=12÷17=()÷()=m÷n(n≠0)=

  板书设计

  分数与除法

  例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

  被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)