初中数学教学设计

时间:2024-05-22 13:01:00 教学设计 我要投稿

初中数学教学设计(汇总15篇)

  作为一位不辞辛劳的人民教师,有必要进行细致的教学设计准备工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么什么样的教学设计才是好的呢?下面是小编收集整理的初中数学教学设计,仅供参考,大家一起来看看吧。

初中数学教学设计(汇总15篇)

初中数学教学设计1

  教材与学情:

  解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

  信息论原理:

  将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

  教学目标

  ⒈认知目标:

  ⑴懂得常见名词(如仰角、俯角)的意义

  ⑵能正确理解题意,将实际问题转化为数学

  ⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

  ⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

  ⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

  教学重点、难点:

  重点:利用解直角三角形来解决一些实际问题

  难点:正确理解题意,将实际问题转化为数学问题。

  信息优化策略:

  ⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

  ⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

  ⑶重视学法指导,以加速教学效绩信息的顺利体现。

  教学媒体:

  投影仪、教具(一个锐角三角形,可变换图2-图7)

  高潮设计:

  1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

  2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

  教学过程

  一、复习引入,输入并贮存信息

  1.提问:如图,在Rt△ABC中,∠C=90°。

  ⑴三边a、b、c有什么关系?

  ⑵两锐角∠A、∠B有怎样的关系?

  ⑶边与角之间有怎样的关系?

  2.提问:解直角三角形应具备怎样的条件:

  注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

  二、实例讲解,处理信息:

  例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

  ⑴引导学生将实际问题转化为数学问题。

  ⑵分析:求AB可以解Rt△ABD和

  Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

  ⑶解题过程,学生练习。

  ⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

  例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的`仰角为45°,求山高AB。

  分析:

  ⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

  ⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

  解:设山高AB=x米

  在Rt△ADB中,∠B=90°∠ADB=45°

  ∵BD=AB=x(米)

  在Rt△ABC中,tgC=AB/BC

  ∴BC=AB/tgC=√3(米)

  ∵CD=BC-BD

  ∴√3x-x=20 解得 x=(10√3+10)米

  答:山高AB是(10√3+10)米

  三、归纳总结,优化信息

  例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

  四、变式训练,强化信息

  (投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

  练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

  练习3:在塔PQ的正西方向A点测得顶端P的

  仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

  教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

  ⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

  ⑵引导学生归纳三个练习题的等量关系:

  练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

  五、作业布置,反馈信息

  《几何》第三册P57第10题,P58第4题。

  板书设计:

  解直角三角形的应用

  例1已知:………例2已知:………小结:………

  求:………求:………

  解:………解:………

  练习1已知:………练习2已知:………练习3已知:………

  求:………求:………求:………

  解:………解:………解:………

初中数学教学设计2

  教学目标

  1、知道什么是全等形、全等三角形及全等三角形的对应元素;

  2、知道全等三角形的性质,能用符号正确地表示两个三角形全等;

  3、能熟练找出两个全等三角形的对应角、对应边。

  教学重点

  全等三角形的性质。

  教学难点

  找全等三角形的对应边、对应角。

  教学过程

  一、提出问题,创设情境

  1、问题:你能发现这两个三角形有什么美妙的关系吗?

  这两个三角形是完全重合的

  2、学生自己动手(同桌两名同学配合)

  取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样。

  3、获取概念

  让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号。

  形状与大小都完全相同的两个图形就是全等形。

  要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同。

  概括全等形的准确定义:能够完全重合的两个图形叫做全等形。请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义。仔细阅读课本中"全等"符号表示的要求。

  二、导入新课

  将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED。

  议一议:各图中的两个三角形全等吗?

  不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED。

  (注意强调书写时对应顶点字母写在对应的位置上)

  启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略。

  观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  得到全等三角形的性质:全等三角形的对应边相等。全等三角形的对应角相等。

  [例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角。

  问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?

  将△OCA翻折可以使△OCA与△OBD重合。因为C和B、A和D是对应顶点,所以C和B重合,A和D重合。

  ∠C=∠B;∠A=∠D;∠AOC=∠DOB。AC=DB;OA=OD;OC=OB。

  总结:两个全等的三角形经过一定的转换可以重合。一般是平移、翻转、旋转的方法。

  [例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角。

  分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来。

  根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素。常用方法有:

  (1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边。

  (2)全等三角形对应边所对的角是对应角;两条对应边所夹的.角是对应角。

  解:对应角为∠BAE和∠CAD。

  对应边为AB与AC、AE与AD、BE与CD。

  [例3]已知如图△ABC≌△ADE,试找出对应边、对应角。(由学生讨论完成)

  借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边。而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了。再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角。所以说对应边为AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

  做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合。这时就可找到对应边为:AB与AD、AC与AE、BC与DE。对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED。

  三、课堂练习

  课本练习1。

  四、课时小结

  通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素。这也是这节课大家要重点掌握的

  找对应元素的常用方法有两种:

  (一)从运动角度看

  1、翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素。

  2、旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

  3、平移法:沿某一方向推移使两三角形重合来找对应元素。

  (二)根据位置元素来推理

  1、全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边。

  2、全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角。

  五、作业

  课本习题1

  课后作业:《新课堂》

初中数学教学设计3

  教学目标

  1、知识与技能:

  (1)理解一元一次不等式组及其解集的意义;

  (2)掌握一元一次不等式组的解法。

  2、过程与方法:

  (1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。

  (2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。

  3、情感、态度与价值观:

  (1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。

  (2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。

  2学情分析

  本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。

  另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的思想,这种数形结合的思想对学生今后学习数学有着重要的影响。

  3重点难点

  1、教学重点:对一元一次不等式组解集的认识及其解法。

  2、教学难点:对一元一次不等式组解集的认识及确定。

  3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。

  4教学过程4.1第一学时教学活动活动1【导入】温故知新

  教师提问:

  1、什么是一元一次不等式?

  2、什么是一元一次不等式的解集?

  3、如何求一元一次不等式的解集?

  针对性练习:

  (设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)

  活动2【讲授】创设问题情景,探索新知

  1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水

  超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?

  (设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)

  2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:

  超过1 200 t和不足1 500 t。

  3、问题1:如何用数学式子表示这两个不等关系?

  1)引导学生一起把这个实际问题转换为数学模型:

  满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。

  设用x min将污水抽完,则x需同时满足以下两个不等式:

  30x>1200, ①

  30x<1500 ②

  2)教师归纳一元一次不等式组的意义:

  由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。

  (设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)

  4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?

  1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,

  运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。

  2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:

   由不等式①,解得x>40

  由不等式②,解得x<50

  3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。

  (设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)

  5、问题3:如何求得这两个解集的公共部分?

  学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。

  (设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)

  教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。

  (设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)

  形式一:用两种不同颜色表示这两个解集

  1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。

  (1)这两种颜色把数轴分成几个部分?

  (2)每一个部分分别表示哪些数?

  (3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?

  2)学生通过自主探究、合作交流,得到这3个问题的正确答案。

  3)得出结论:

  只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。

  4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。

  (设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的'在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)

  形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。

  类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。

  形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。

  (设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)

  6、问题4:如何表示这个可取值范围?

  教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。

  7、小结并解决课本问题:原不等式组中x的取值范围为40

  (设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)

  8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:

  在数轴上,若在40

  一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

  9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:

  (1)分别求出不等式组中各个不等式的解集;

  (2)把这些解集分别在同一条数轴上表示出来;

  (3)确定各个不等式解集的公共部分;

  (4)写出不等式组的解集。

  (设计意图:及时进行小结,使学生对所学知识更加的系统化。)

初中数学教学设计4

  [教学目标]

  1.会说出怎样的两个图形是全等形,并会用符号语言表示两个三角形全等。

  2.知道全等三角形的有关概念,会在全等三角形中正确地找出对应顶点、对应边、对应角。

  3.会说出全等三角形的对应边、对应角相等的性质。

  此外,通过把两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生

  动态的研究几何图形的意思。

  [引导性材料]

  我们身边经常看到"一模一样"的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。

  说明:让学生在举出实际例子以及对所举例子的辨析中获得对全等图形尽可能多的精确的感知。

  [教学设计]

  问题1:几何中,我们把上述所例举的"一模一样"的图形叫做"全等形",以下是描述全等形的三种不同的说法,你认为哪种说法是恰当的?(l)形状相同的两个图形叫全等形。

  (2)大小相等的两个图形叫全等形。

  (3)能够完全重合的两个图形叫全等形。

  (学生阅读课本第21页,全等三角形的有关概念、全等三解形的表示方法。)操作和观察(学生用两块透明塑料片叠合在一起,任意剪两个全等的三角形,教师制作两个全等三角形的复合投影片演示。)(1)将重合的两块全等三角形塑料片中的一个沿着一边所在的直线移动,观察移动过程中这两个三角形有哪几种不同位置?画出这两个全等三角形不同位置的组合图形。

  (2)图是上述移动过程中的两个全等三角形组合的图形,说出它们的对应顶点、对应边、对应角。

  (3)将重合的两块三角形塑料片,以一边所在的直线为轴,把其中一个三角形翻折180,请你画出翻折后的两个全等三角形组合的图形。

  (4)将两块全等的三角形塑料片拼合成如图中的图形,并指出它们的对应顶点、对应边、对应角。

  [小结]

  1.识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点。

  2.用全等三变换的'方法观察图形,有助于正确、迅速的从复杂图形中识别出全等三角形。

  [作业]课本组第2、3、4题。

  初中数学实践课教案设计三一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及

  数学结论的确定性,提高学生学习热情。

  三、教学重、难点重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:引导发现法、讨论法五、教具、学具教具:多媒体课件学具:三角板、量角器六、教学媒体:大屏幕、实物投影七、教学过程:

  (一)创设情境,设疑激思师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

  方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。

  (二)引申思考,培养创新师:通过前面的讨论,你能知道多边形内角和吗?活动三:探究任意多边形的内角和公式。

  思考:(1)多边形内角和与三角形内角和的关系?(2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。

  发现2:多边形的边数增加1,内角和增加180o。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)180。

  (三)实际应用,优势互补

  1、口答:

  (1)七边形内角和xx

  (2)九边形内角和xx

  (3)十边形内角和xx

  2、抢答:

  (1)一个多边形的内角和等于1260o,它是几边形?

  (2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是xx。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540o,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?(四)概括存储学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题(五)作业:练习册第93页1、2、3

  八、教学反思:

  1、教的转变本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

  2、学的转变学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

  3、课堂氛围的转变整节课以"流畅、开放、合作、隐导"为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以"对话"、"讨论"为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教学设计5

  摘 要:本着对课堂练习分层教学设计的要求与目的,本节课设计了三个层次。针对学困生的特殊情况,课堂练习通过诵读定理和抄写例题来使其加深印象;在巩固练习中中等生要求书面写出步骤并进行展示;对于优等生在快结束本节课时抛出变式让他们进行思考,并交流思路。这三个层次都贯穿于整个课堂教学,使每位学生上课都有事可做,根据自己的能力来解决能力范围内的问题。

  关键词:相切;环节说明;分层体现;

  一、案例背景介绍

  (一)教学环境

  在我们着手进行课题《初中数学分层教学方式与策略研究》的研究开始后,大家齐心协力探索、研究方法,组内各种分层招数可谓是百花齐放,为此我代表课题组上了一节分层教学的展示课,以供同仁观摩点评,为促进数学教学的分层设计向更好的方向前行作贡献。

  (二)学生情况

  我校学生大部分来自韩庄镇不同的自然村,由于小学地域的不同,所以学生的基础各不相同,很多学生的基础还相当薄弱。因此这种情况特别适合分层教学。

  (三)教材情况

  本课是人教版初三数学上册第24章圆第2节点和圆、直线和圆的位置关系中的一个课时:直线和圆相切的情况。学生已经有了点和圆的位置关系的基础以及直线和圆的位置关系的数量的认识,本节课研究直线与圆的特殊位置关系相切,将相切从位置到数量的逻辑自然过渡,进而引出圆的切线的判定和性质。重点是圆的切线的判定定理和性质定理。难点是判定定理的理解和性质定理证明中反证法的理解。

  二、案例内容设计及说明

  环节一:复习引入

  通过回顾旧知再次加深圆与直线的位置关系,在全班集体朗读中体会d与r的关系,并顺势将位置关系量化这一问题显化,同时自然引出特殊情况――相切

  环节说明:俗话说书读百遍,其意自现。数学概念在朗读中更能逐渐理解其本质,因此不光语文需要朗读,数学也要朗读。而且针对我班学困生上课听不懂,不会做的现象,这样来设计复习方式更能调动我班学生学习的动力,让每位学生都参与到课堂教学中来。这也是这个环节分层的体现。

  环节二:新知探究

  活动

  1、引导学生从直线与圆相切的位置及数量关系上来深入探究,通过动态演示来理解一条直线何时变成圆的切线。

  环节说明:上节课得到的圆与直线相切是数量上的关系,通过动态的演示让学生明确位置的变化,从而总结出切线的判定。但是引导很重要,从两个方面去观察:直线经过哪里?与圆的半径有什么位置关系?需要老师点拨。并要等待学生来总结,不能操之过急。分层体现1对观察的结果分别让两位程度较差的学生回答,再让中等程度的学生来总结;体现2对定理的数学表达让全体学生写在练习本上,老师选择展示,并修改;体现3对总结出的判定进行朗读。

  活动

  2、将判定的题设和结论互换后的探究。

  环节说明:反证法在过三点做圆时已有所涉及,所以在这里用反证法证明切线的性质时让学生互相交流讨论然后进行汇报就行,不要进行过多的引申,否则淡化了主题。分层体现1讨论交流时采取师傅和徒弟在同一组,师傅负责解释证明的方法;体现2数学语言的书写让学生自己写并派代表写在黑板上。

  环节三:巩固和应用

  通过判断题加深对切线的判定和性质的理解。通过师生共同分析解决几何解答证明题,并由学生书写证明步骤。

  环节说明:判断题中设置了3道小题,并给出了反例,能使学生更加明确定理的意义。这里教学的分层体现在针对反例来问学困生为什么不对,让学生说出违背了所需条件的`哪一条,强化切线判定条件在这部分学生头脑中的印象。例题的分析采取了小组讨论交流的方法,与环节二中的分组一样,分层体现在“师带徒”弄清解题思路,师傅增强了解题的逻辑性,更严密,徒弟学会了解题的分析,拓宽了视野,打开了思路。在有思路的前提下,全班安静书写步骤。还可以展示在投影下,由学生来评判书写的是否清楚。

  环节四:课堂小结

  在小结中,除了总结出本节课所学的判定和性质外,将相关的判定和性质做一归纳很有必要,“在不断的总结中收获、进步”不是吗?同时提出下节课要学习的相关性质更能激起学生学习的积极性。

  环节说明:在小结的分层中判定由程度稍差点的学生总结,哪怕照着书上找都行,并进行诵读,使其再次熟知所学知识。在性质的总结中,老师抛出两条本节未涉及的性质给学生,让学生课后思考证明,在下节课时可由学生简要发表见解并证明。

  环节五:拓展练习

  通过引导学生添加辅助线,点拨学生圆中常用辅助线的做法,分情况添加恰当的辅助线。这两个练习旨在拓展尖子生的思维。

  环节六:作业布置

  通过分层布置,使每位学生都能在自己能力范围内进行巩固练习。

  环节说明:作业

  1、重点面向学困生考察其掌握基础的程度。作业

  2、针对待优生夯实基础的基础上,提高其运用能力。作业

  3、是设计的培优计划,对学有余力的学生来说是个很好的锻炼机会。

  三、案例分析与反思

  实际上本节课中圆的切线的判定定理是为了便于应用而对直线和圆相切的定义改写得到的一种形式,而圆的切线的性质定理的证明仅仅要求学生再次感受反证法,并不要求会应用,所以本节的设计在分层中很注重理解和感知,通过互帮互助和朗读感知达到难点的突破,另外圆是学生学习的第一个曲线形,由直线形到曲线形,在知识上是一个飞跃,本节利用图形运动变化过程发现其中图形的性质,做好了知识前后的衔接,同时加强了新旧知识的联系,发挥出了知识的迁移作用。类比也是本节课所用到的一个重要的学习方法,而且在教授过程中难度的控制非常适当,分层的影子处处可见。纵观整节课的分层之处进入都很自然,也落到了实处,但分层效果的检测没有体现出来,这也是遗憾之处。

初中数学教学设计6

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的'探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学教学设计7

  1、实验主题:平面图形的密铺知识在生活中有着广泛的应用,其中最典型最常见的就是铺地板。其特点是使用的基本图形简单,构造的图案美观,随处可见。符合初中生的认知水平,能够吸引初中生的兴趣,具有说服力。所以本节课,我们从生活中的“铺地板”入手,研究其中蕴含的平面图形的密铺知识。

  在《新课程标准》中对图形的密铺作出明确的要求:知道任意一个三角形、四边形或正六边形可以图形的密铺,并能运用这几种图形进行简单的图形的密铺设计。而平面图形的密铺知识在生活中也有着广泛的应用,其中最典型最常见的就是铺地板。其特点是使用的基本图形简单,构造的图案美观,随处可见。符合初中生的认知水平,能够吸引初中生的兴趣,具有说服力。

  所以本节课,从生活中的“铺地板”入手,研究其中蕴含的平面图形的密铺知识。试图通过研究用一种正多边形进行铺地板的条件,使学生了解平面图形的密铺的含义,能够综合应用多边形内角和知识解决平面图形的密铺问题,力图培养学生的动手能力、探究能力、问题意识和合作意识,体会数形结合的数学思想以及从特殊到一般的数学方法。

  此外,由用一种正多边形铺地板可以延伸到对用两种正多边形进行铺地板,用三种正多边形进行铺地板的思考和研究,也可以拓展到对用任意三角形和任意四边形进行铺地板的研究。从深度和广度上都有进一步探究的空间。

  2、实验目的“课题学习”作为初中数学四大领域之一,是新课程标准的一大特色。是在教师的指导下,以问题为核心、以问题解决为目标开展的探究式学习活动。在初中阶段,通过一些具有挑战性的研究课题,让学生获得初步的研究经验,发展一定的研究能力。

  七年级学生的自我意识、好奇心、表现欲和认知能力都处在上升的阶段。这一时期,对培养学生的学习兴趣、动手能力和思考能力至关重要,也是预防厌学情绪的关键时期。所以,我们可以充分利用如《平面图形的密铺》这样的课题学习来保护和提升学生学习数学的热情和信心,使学生开阔眼界、拓展知识、培养问题意识和创新精神。

  3、实验准备

  3.1教师集体备课,确定课题学习方案。

  课题学习不仅对于学生来说是一种新的学习方式,对于教师来说也是一次对新的教学方式的挑战。怎样开展初中数学课题学习课程,怎样根据生活实际和教材确定合适的课题,怎样把握课堂探究的重点,怎样把握研究的深度和广度,怎样挖掘平面图形的密铺的内涵。仅凭一个人的力量是有限的。所以,在开展课题学习之前,备课组的老师们通过进一步学习相关的理论,上网查找资料,研讨,对课题学习及平面图形的密铺有了更深的认识,共同制定出本节课题学习的方案。

  3.2操作材料准备,探究活动报告、多媒体课件制作。

  操作活动中需要用到边长为5cm的正三角形、正四边形、正五边形、正六边形、正八边形、正十边形若干个。如果让学生制作会遇到工作量大、耗时长、误差大、不可重复使用等问题,增加学生负担,影响拼接效果。经集体备课决定由学校统一制作,作为校本教具使用。既为学生减轻了负担,又保证了操作活动中拼接图形的效果。

  多媒体课件和探究活动报告由教师制作。

  3.3成立课题学习小组,明确课题学习任务。

  将全班分成6个小组,每组8人。其中数学思维好中差搭配,男女搭配,内向性格与外向性格搭配。选定组长,由组长组织本小组开展实验操作、自主探究活动。

  3.4搜集用地板砖铺成的'地板图片。

  由小组长组织本小组的同学尽可能多地收集生活中的地板图案。

  4、实验的内容与步骤

  4.1创设情境,引出课题。(2分钟)

  教师用多媒体展示生活中的地板图案,并提出问题:你见过的地板砖都有哪些形状?看到这些形状你有没有产生过问题?设计意图:培养学生的问题意识。

  学生观察图形,思考作答。

  引出今天研究的课题:铺地板中的数学。

  4.2动手操作,自主探究。(15分钟)

  4.2.1让学生观察教师所给材料的特点:

  ①都是正多边形

  ②边长相同

  ③边数相同或不同

  ④边数不同的正多边形每一个内角的度数不同

  ⑤边数相同的多边形形状大小完全相同。

  设计意图:让学生了解原始材料的数学特征,为下面探究用一种正多边形进行铺地板的条件做准备。

  4.2.2学生动手操作,尝试用一种正多边形进行拼接,思考讨论用一种正多边形进行铺地板需要满足的条件。

  4.2.3填写探究报告。制度大全,为您编辑,与引用请。

  注:对于探究能力较强探究速度较快的小组,可以建议他们利用剩余的时间继续探究用多种正多边形铺地板的条件。

  4.3交流互动,探讨课题。(10分钟)

  每组选一个代表,说明本组的探究过程,展示探究成果。其组的成员可以进行补充或提出自己的疑问。最终得出用一种正多边形进行铺地板的条件。

  4.4提出问题,深化课题。(10分钟)

  将“用一种正多边形进行铺地板”的问题研究清楚后,鼓励学生继续思考,提出对继续探究有价值的问题:如通过改变正多边形的种数可继续研究用两种、三种、甚者用n种正多边形进行铺地板的情形,体会从特殊到一般的数学思想,挖掘研究的深度。通过改变多边形的形状可继续研究用任意的三角形、任意的四边形进行铺地板的情形,拓宽研究的广度。

  教师将学生的问题记录下来,快速分类。有的可以当堂解决,有的可以放到课后继续探究。

  4.5归纳提炼,小结课题(3分钟)

  充分让学生畅所欲言谈体会,教师做简练的评价,顺势给出平面图形的密铺的概念,并为课后撰写数学小论文提供适合学生认知水平和能力的题目。

  如:

  ①对用一种正多边形进行平面图形的密铺的研究。

  ②对用两种正多边形进行平面图形的密铺的研究。

  ③对用多种正多边形进行平面图形的密铺的研究。

  ④对用任意多边形进行平面图形的密铺的研究。

  5、课后结题阶段

  5.1将课堂探究的成果进一步整理,对自己有兴趣的问题作进一步的探究。

  5.2上网查找撰写论文的一般形式和方法。

  5.3根据探究结果撰写数学小论文。

  6、课题学习成果:

  关于图形的密铺知识的数学小论文

  7、设计说明

  创设情境,引出课题:给学生展示生活中的图片,希望能够使学生认识生活中的数学,激发学生学习的兴趣和动机,培养学生的问题意识。

初中数学教学设计8

  教学目标

  1.了解的概念和的画法,掌握的三要素;

  2.会用上的点表示有理数,会利用比较有理数的大小;

  3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

  教学建议

  一、重点、难点分析

  本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用这个工具打下基础。

  二、知识结构

  有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:

  定义

  三要素

  应用

  数形结合

  规定了原点、正方向、单位长度的直线叫

  原 点

  正方向

  单位长度

  帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数

  比较有理数大小,上右边的数总比左边的数要大

  在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。

  三、教法建议

  小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的'概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

  关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

  四、的相关知识点

  1.的概念

  (1)规定了原点、正方向和单位长度的直线叫做。

  这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。

  (2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。

  以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。

  2.的画法

  (1)画直线(一般画成水平的)、定原点,标出原点“O”。

  (2)取原点向右方向为正方向,并标出箭头。

  (3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

  (4)标注数字时,负数的次序不能写错,如下图。

  3.用比较有理数的大小

  (1)在上表示的两数,右边的数总比左边的数大。

  (2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

  (3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。

  五、定义的理解

  1.规定了原点、正方向和单位长度的直线叫做,如图1所示。

  2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).

  A点表示-4; B点表示-1.5;

  O点表示0; C点表示3.5;

  D点表示6.

  从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

  正数都大于0,负数都小于0,正数大于一切负数。

  因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。

  同理, ,表示 是负数;反之 是负数也可以表示为 。

  3.正常见几种错误

  1)没有方向

  2)没有原点

  3)单位长度不统一

  教学设计示例

初中数学教学设计9

  1、该节课能以旧引新,寻找新旧知识的关联和生长点,注重知识的发生发展过程,能找到教材特点及本课的疑点,并恰当处理,在课堂上设疑问难,引导点拨,是一节很有个性特点的课

  2、本节课各种学习活动设计具体、充分注意学生学习习惯的培养,因材施教,调动学生自主学习的积极性,遵循常规但不拘泥,根据学生的差异和特点,从具体到抽象对教材进行处理,是一节很成功的课

  3、该节课教学过程设计完整有序,既体现知识结构,知识点,又注意突出学生活动设计,体现教学民主、培养学生良好的`学习品质

  4、课堂结构完整,密度恰当。

  5、该节课很有艺术,教学安排清晰有序,科学规范。在教材处理上从具体到抽象,化难为易,以简驾繁突破难点。各环节有详细的练习,科学合理有效地培养学生自主,探究,创新能力的发展。

  6、本节课非常成功,设计突出了以学生为本的理念、全面培养学生素养、自主合作探究学习的理念。教师配以亲切活泼的教态,能较为恰当地运用丰富的表扬手段,让学生在学习中感受到成功的快乐。

  7、该节课教学重难点把握准确,教学内容主次分明,抓住关键;结构合理,衔接自然紧凑,组织严密,采用有效的教学手段,引导自主探究、合作交流,成功地教学生“会学”。

  8、该节课堂结构层次清楚、运用恰当的教学方法和手段启迪学生思维、解决重点、突出难点。精心设计练习,并在整个教学过程中注重学生能力的培养,是一节优秀的课。

  9、该节课很有创意,对教材把握透彻、挖掘深入、处理新颖,针对学生基础和学生发展性目标,设计各种教学活动,引导学生自主学习,有条理地将旧知识综合进行运用。

  10、本节课教学目标包括思想教育要求和知识要求两部分,在课堂教学中注重后进生的补辅,尖子生的拔尖工作,做到对学生动之以情,爱之以诚,使网页比赛取得完美的成果。

  11、该节课教学设计非常巧妙,结合教材特点,学生、教师实际,一法为主,多法配合,优化组合。练习提供了学生喜闻乐见的资料,课堂练习紧扣重点,并注意在“趣”字上下功夫。

  12、该节课教学环节清晰、完整具体,能活化教学内容,使之生活化,课堂教学的开放性、师生关系的民主性、教学模式的多样性,培养学生良好的学习品质,体显出该教师教学能力非常强。

  13、该节课很有特色,创设情景,通过建站,让学生亲自体验、实践、感悟,收集、整理、筛选资料,突出体现了以人为本、以学生发展为本的教育理念。是一节很成功的课。

  14、本节课很有艺术,在教材内容的基础上作了适当的必要的扩展,精心安排学生自主学习、质疑、操作实践等活动以启发式、讨论式为主。学生在完成任务的过和程中学会合作。

  15、该节课重点突出,目标全面、准确、具体,整体现知识与能力、方法与过程、情感态度与价值观三个维度,布局合理,设计各种教学活动,引导学生自主学习,有条理地将旧知识综合进行运用。

  16、该节课堂结构清晰、运用恰当的教学方法和手段启迪学生思维、解决重点、突出难点。根据班级实际情况,精心设计练习,并在整个教学过程中注重因材施教,是一节优秀的课。

  17、该节课十分有创意,教学目的明确,方法得当、语言清晰,具有感染力,习题典型,题量适当,激发学生兴趣,引导自主探究、合作交流完成任务,整个课堂效率非常高。

  18、本节课对教学内容把握透彻、挖掘深入、处理新颖,在课堂教学中,对重难点言简意赅,分析透彻。对练习以思维训练为核心,落实双基,是一节非常成功的课

初中数学教学设计10

  新学期已到来,我们又要投入到紧张、繁忙而有序地教育教学工作中,使自己今后的教学工作中能有效地、有序地贯彻新的教育精神,围绕我校新学期的工作计划要求制定初中一年级数学教学设计方案:

  一、教材分析:

  本学期是本年级学生初中学习阶段的第二学期、新授课程主要有相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、现行教材、教学大纲要求学生从身边的实际问题出发,乘坐观察、思考、探究、讨论、归纳之舟,去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教师在灵活选用现有教材的基础上,应适度引用新例,把初中数学各单元的知识明晰化、条理化、规律化,激励学生自主、合作、探究学习,培养学习兴趣和习惯品质、

  二、教学目标:

  本学期的数学教学要从学生的实际问题出发,积极引导学生观察、思考、探究、讨论、归纳数学问题,要鼓励学生去探索、发现数学的奥妙,用学到的本领去解决复习巩固、综合运用、拓展探索等不同层次的问题、教学中既要注意知识的覆盖面,关注中考的重点、热点和难点,又要突出数学知识在社会、科技中的运用,让学生在学习、练习中熟记知识要点、考试内容,掌握应试技巧和数学思想方法,提高综合素质,培养创新意识和探索能力、在期末考试中力争生均分87分左右,及格率75%以上,并将低分率控制到10%以下,综合成绩县前五、

  三、教学措施:

  1、认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,努力培养学生的.学习兴趣和个性品质、

  2、把握学生思想动态,及时与学生沟通,搞好师生关系、

  3、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、

  4、改进教学方法,用挂图,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、

  5、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、

  6、开辟第二课堂,在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、

  7、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:

  (1)课前预习习惯;

  (2)积极思考,主动发言习惯;

  (3)自主作业习惯;

  (4)课后复习习惯。

初中数学教学设计11

  一、内容和内容解析

  (一)内容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

  (二)内容解析

  现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

  二、目标和目标解析

  (一)教学目标

  1.理解不等式的概念

  2.理解不等式的解与解集的意义,理解它们的区别与联系3.了解解不等式的概念

  4.用数轴来表示简单不等式的解集

  (二)目标解析

  1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

  2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

  3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

  4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

  三、教学问题诊断分析

  本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

  因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

  四、教学支持条件分析

  利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

  五、教学过程设计

  (一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

  (二)立足实际引出新知

  问题一辆匀速行驶的'汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

  小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

  1.从时间方面虑:2.从行程方面:<>50 3.从速度方面考虑:x>50÷

  设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

  (三)紧扣问题概念辨析

  1.不等式

  设问1:什么是不等式?

  设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

  2.不等式的解

  设问1:什么是不等式的解?设问2:不等式的解是唯一的吗?由学生自学再讨论.

  老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

  3.不等式的解集

  设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

  老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

  4.解不等式

  设问1:什么是解不等式?由学生回答.

  老师强调:解不等式是一个过程.

  设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

  (四)数形结合,深化认识

  问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

  设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

  (五)归纳小结,反思提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

  1、什么是不等式?<的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它与不等式的解有什么区别与联系?

  4、用数轴表示不等式的解集要注意哪些方面?

  设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

  (六)布置作业,课外反馈

  教科书第119页第1题,第120页第2,3题.

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

  六、目标检测设计

  1.填空

  下列式子中属于不等式的有___________________________

  ①x +7>

  ②x≥ y + 2 = 0

  ③ 5x + 7

  设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

  2.用不等式表示

  ① a与5的和小于7

  ② a的与b的3倍的和是非负数

  ③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

初中数学教学设计12

  一、教学设计:

  1、学习方式:

  对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。的关系。它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线互相垂练地掌握全等三角形的判定方法,并且灵活的应用。为了使学生更好地掌握这一部分内形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、出几何模型和运用所学内容,解决实际问题的过程,真正把学生放到主体位置。

  2、学习任务分析:

  充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动问题、解决问题的方法,积累数学活动经验。培养学生有条理的思考,表达和交流的能将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己以后的证明打下基础。

  3、学生的认知起点分析:

  学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边全等的条件做好了知识上的准备。另外,学生也具备了利用已知条件作三角形的基本作课的操作、探究成为可能。

  4、教学目标:

  (1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用

  (2)掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定三角形的全等解决一些实际问题。

  (3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验

  5、教学的重点与难点:

  重点:三角形全等条件的探索过程是本节课的重点。

  从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将数学。

  难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要情况进行讨论,对初一学生有一定的'难度。

  根据初一学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。

  6、教学过程(略)

  教学步骤教师活动学生活动教学媒体(资源)和教学方式

  7、反思小结

  提炼规律

  电脑显示,带领学生复习全等三角定义及其性质。

  电脑显示,小明画了一个三角形,怎样才能画一个三角形与他的三角形全等?我们知道三个角分别对应相等,那麽,反之这六个元素分别对应,这样的两个三角形一定全等.但是能否尽可能少吗?对学生分类中出现的问题,予以纠正,对学生提出的解决问题的不同策略,要给予肯定和展学生个性思维。

  按照三角形“边、角”元素进行分类,师生共同归纳得出:

  1、一个条件:一角,一边

  2、两个条件:两角;两边;一角一边

  3、三个条件:三角;三边;两角一边;两边一角

  按以上分类顺序动脑、动手操作,验证。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。

  下面将研究三个条件下三角形全等的判定。

  (1)已知三角形的三个角分别为40°、60°、80°,画出这个三角形,并与同伴比学生得出结论后,再举例体会一下。举例说明:

  如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很再如同是:等边三角形,边长不等,两个三角形也不全等。等等。

  (2)已知三角形三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

  由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确实物演示:

  由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质举例说明该性质在生活中的应用

  类比着三角形,让学生动手操作,研究四边形、五边性有无稳定性

  图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。

  题组练习(略)

  4、(对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理由,并能说明每一步的根据。)教师带领,回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想在教师引导下回忆前面知识,为探究新知识作好准备。

  议一议:

  学生分小组进行讨论交流。受教师启发,从最少条件开始考虑,一个条件;两个条件;三个况渐渐明朗,进行交流予以汇总,归纳。

  想一想:

  对只给一个条件画三角形,画出的三角形一定全等吗?画一画:

  按照下面给出的两个条件做出三角形:(1)三角形的两个角分别是:30°,50°(2)三角形的两条边分别是:4cm,6cm(3)三角形的一个角为30,一条边为3cm

  剪一剪:

  把所画的三角形分别剪下来。

  比一比:

  同一条件下作出的三角形与其他同学作的比一比,是否全等。学生重复上面的操作过程,画一画,剪一剪,比一比。学生总结出:三个内角对应相等的两个三角形不一定全等

  学生举例说明

  学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。

  鼓励学生自己举出实例,体验数学在生活中的应用.学生那出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具稳定性。

  学生练习

  学生在教师引导下回顾反思,归纳整理。

  z+z平台演示

  z+z平台演示,教师加以分析。学生分组讨论,师生互动合作。

  经过对各种情况得分析,归纳,总结,对学生渗透分类讨论的数学思想。结论很显然只需学生想像即可,z+z平台辅助直观演示。学生动手操作,通过实践、自主探索、交流,获得新知。

初中数学教学设计13

  一、教材内容及设置依据

  【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

  【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

  二、教材的地位和作用

  本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,特别是减法可以转化为加法为后面的'除法可以转化为乘法的学习提供了类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

  三、对重点、难点的处理

  【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:

  1、知识巩固型

  2、实际应用型

  3、方法多变型

  4、知识拓展型等。

  【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

  四、关于教学方法的选用

  根据本节课的内容和学生的实际水平,本节课可采用的方法:

  1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

  2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

  3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

  五、关于学法的指导

  “授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

  六、课时安排:1课时

  教学程序:

  一、复习铺垫:

  首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

  1、45+(-23)

  2、9-(-5)

  3、-28-(-37)

  4、(-13)+0

  5、(-29)+(-31)

  6、(-16)-(-12)-24-(-18)

  7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)

  从四排学生中个推选一名学生代表板演6、7、8、题。

  通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

  然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

  二、新知探索:

  1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作

  上升4.5千米+4.5千米

  下降3.2千米-3.2千米

  上升1.1千米+1.1千米

  下降1.4千米-1.4千米

  此时飞机比起飞点高了多少米?

  让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

  ①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4)=1.3+1.1-1.4

  =2.4+(-1.4)=2.4-1.4

  =1千米=1千米

  教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。

初中数学教学设计14

  7月8日至7月11日去宁波大学参加了“以深度学习为指导的初中数学习题教学与设计”培训活动,感受颇多。

  本次培训在3月份已经报名,在负责人解老师第一次发短信确定是否参加培训时,我是打了退堂鼓的,担心疫情,不敢参加,但是我老公告诉我疫情形势还可以,你去去没问题的,然后我才再次确定参加的,再加上从嘉善去宁波路程遥远,我们中午才到,以致于解老师一口叫出我和蒋老师的姓名,我是很惊喜的。通过后面的听课,心里暗自庆幸幸亏过来了,真是不虚此行!

  第一堂课是宁波市名师、鄞州区曙光中学教研组长章剑雄老师的课,看着名字以为是一位高大的男老师,结果居然是一位瘦弱的女老师,小小地惊讶了一下,通过听章老师的讲座发现章老师瘦弱的身材却聚集着庞大的能量,她的几何直观教学策略完美地诠释了几何直观的内涵以及“数形结合百般好”。听了章老师的课我才发现原来有些几何图形的题目不用复杂的计算单凭图形的剪拼就可以快捷得出答案,这对于计算困难的同学来说是一场及时雨。很多时候,学生会列式,但很难算对,图形的计算往往都很复杂若是单凭图形变换就能得出结果将大大减少学生的.计算量,从而提高正确率。还有很多代数题从代数的角度很难解决或者比较麻烦,若是能够画出与之相对应的图形,则可以事半功倍!虽然我们平时也在用数形结合,但是章老师用的是炉火纯青,我们自愧不如!哎,得抓紧修炼呀!

  第二堂课是浙江省特级教师、宁波市鄞州区初中数学教研员潘小梅老师的《解题教学的思考与实践》。潘老师的第一句话就指明数学教学以及学习的核心:掌握数学就意味着善于解题。然后灵魂拷问:这三句话每个数学老师都应该牢记,你们会背吗?(会用数学眼光观察现实世界、会用数学思想思考现实世界、会用数学眼光表达现实世界)我暗暗汗颜┅┅潘老师以具体的题目来一点点给我们展示思维如何变无限为有限,如何找到问题的突破口等等。然后潘老师还给我们展示了她这一年来关于解题教学的尝试:从中考复习解题教学到基本图形的教学,再到中考数学压轴题,最后是学生说题。每一块内容都讲得非常详细,对于培训的我们来说是满满的收获!

  后面的课我就不一一赘述了,总之每个老师的课都很接地气,很实用,干货满满,期间解老师还安排李小红老师给我们来了一场《向易经借智慧》的讲座,李老师用诙谐幽默的话语给我们带来了一场艺术的盛宴,最后以黄伟健老师的《不仅仅只是解题》的讲座完美收官。黄老师是最接地气的一位老师,他一直致力于如何让不会做题的人也能得分的研究,也给予我很多启示。

  在本次培训中,不仅上课的老师让我们感到不虚此行,本次培训负责接待和安排的解老师也让我们非常感动,一切事宜都考虑的非常周到,我们的吃、住、学都很舒适,感谢本次上课的所有老师以及解老师,谢谢你们!

初中数学教学设计15

  讲评目标:

  1、通过讲评,进一步巩固本单元知识点。

  2、通过对典型错误的剖析、矫正、帮助学生掌握正确的思考方法和解题策略。

  学习目标:

  认真细致进行错例分析,用心思考,积极交流,总结经验,查漏补缺,体会数学方法和思想在解题中的应用。

  教学重点、难点:

  典型错误的剖析与矫正。

  讲评过程:

一、整体回顾、介绍本次考试情况

  1、本次考试平均分87.3分,及格率94.1%,优秀率68.6%,最高分110分,最低分21分。

  2、根据本次成绩对前五名和进步比较大的学生进行表扬和鼓励。成绩前五名:李xx110分,翁x110分,张xx110分,杨x,王x,石xx,赵xx,时xx,沈xx,王xx107分。进步比较大的前五名学生:xxx。

  二、教师分析学生在答题中存在的问题

  1、部分学生对基础知识掌握不扎实,没有养成良好的学习习惯表现在不认真审题,不细心答题,如第6小题结果没有化简,第16小题没有注意x与y的顺序,第五大题的应用题,有的同学没有按题目的要求解,等。

  2、部分学生计算的能力不强,表现为计算速度慢,计算的准确率低,不能灵活的使用运算律及一些运算方法。如第1小题判断四个数能不能成比例的'技巧,解比例时的一些运算方法,等。

  3、不能运用所学知识灵活解决实际问题,分析问题、解决问题的能力有待提高。例如,解决实际问题的第2题,有部分学生按边长和数量成反比例关系进行计算,解决实际问题的第3题,有的同学先算面积,然后再用比例尺算实际面积,有半数以上的学生对于附加题无从下手,等。

  三、学生自我分析试卷

  学生的有一些问题是因为一时的疏忽做错;有一些是自己的知识不够牢固,经过自己的学习是可以自己解决的;有一些问题经过学生自己的再思考是可以自己解决的。象这一类的问题肯定可以学生自己处理好,那么就不需要老师来帮忙,只要给以时间和信心就可以了。

  四、小组内互帮互助学习

  当学生的问题自己解决掉自己能解决的之后,这时转入学生的互帮互助阶段,在小组内由学生提出不会的问题由会做的同学进行讲解。在这个阶段由学生给学生讲解达到学会的目的。组内都不会的问题就由组长记录并交给老师。

  五、老师组织讲解

  根据各小组的统计,根据各组情况由多到少(不会的小组数)的顺序来解决。经过了两次纠正(自纠和互纠),学生的问题基本解决,剩下的问题再由老师组织,让会做的小组给同学们讲解。讲解题思路,老师适当补充、引导、评价。

  六、老师检查学生的掌握情况

  学生自己的学习和相互帮助有没有成效要靠自觉,老师可以检查,拿出一部分比较有意义的,需要老师来讲解的问题检查学生,顺便让学生说出老师要说的话,然后有必要就补充、评价。让学生说出每一道题的考察内容解题技巧。

  七、当堂检测

  1、用2、4、8、4、写出比例式:( )。

  2、行驶的路程一定,则车轮的周长和它的转数成( )比例。

  3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( )

  4、若5X-7Y=0,X:Y=( )

  5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。

  6、一间房子要用方砖铺地,用边长3分米的方砖,需要86块。如果改用边长是2分米的方砖要( )块,当堂检测:

  1、用2、4、8、4、写出比例式:( )。

  2、在A×B=C中,当A一定时,B和C 成( )比例。

  3、一种精密零件长5毫米,把它画图上长6厘米,则比例尺是( )

  4、若5X-7Y=0,X:Y=( ) 5、在比例尺是1:200的图上,一个长方形的长是4㎝,宽是3㎝,这个长方形的实际面积是( )平方米。

【初中数学教学设计】相关文章:

初中数学教学设计04-12

数学初中教学设计02-21

初中数学教学设计04-09

初中数学教学设计精彩10-08

初中数学教学设计[精华]02-17

初中数学教学设计[集合]03-01

人教版初中数学教学设计08-02

初中数学教学设计大全07-23

初中数学教学设计模板07-23

初中数学优秀教学设计02-16