九年级数学教学设计

时间:2025-01-01 10:07:49 教学设计 我要投稿
  • 相关推荐

九年级数学教学设计范文

  作为一名人民教师,通常需要用到教学设计来辅助教学,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。怎样写教学设计才更能起到其作用呢?以下是小编精心整理的九年级数学教学设计范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

九年级数学教学设计范文

  九年级数学教学设计1

  一、知识与技能

  1.能灵活列反比例函数表达式解决一些实际问题.

  2.能综合利用几何、方程、反比例函数的知识解决一些实际问题.

  二、过程与方法

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

  2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

  三、情感态度与价值观

  1.积极参与交流,并积极发表意见.

  2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

  教学重点:掌握从实际问题中建构反比例函数模型.

  教学难点:从实际问题中寻找变量之间的关系.关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

  教具准备

  1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等).

  2.学生准备:(1)复习已学过的反比例函数的图象和性质;

  (2)预习本节课的内容,尝试收集有关本节课的情境资料。

  教学过程

  一、创设问题情境,引入新课

  复习反比例函数图象有哪些性质?

  反比例函数y?

  x是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

  二、讲授新课

  例1:市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

  (1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?

  (2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?

  (3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

  设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系.而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题。

  师生行为:

  先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动。

  在此活动中,教师有重点关注:

  ①能否从实际问题中抽象出函数模型;

  ②能否利用函数模型解释实际问题中的现象;

  ③能否积极主动的阐述自己的见解。

  生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=xx。

  所以储存室的底面积S是其深度d的反比例函数。

  104生:根据函数S=,我们知道给出一个d的值就有唯一的S的值和它相对应,反过来,知道S的一个值,也可求出d的值。

  题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=xxm.根据S=104104,得500,解得d=20.dd

  即施工队施工时应该向下挖进20米。

  生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=多少m2呢?

  104根据S=xx,把d=15代入此式子,得d。

  S=104≈666.67.15104.d

  当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要.师:大家完成的很好.当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的`值求相应的函数值,借助于方程,问题变得迎刃而解。

  三、巩固练习

  1、(基础题)已知某矩形的面积为20cm2:

  (1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;

  (2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?

  (3)如果要求矩形的长不小于8cm,其宽至多要多少?

  2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗.

  (1)漏斗口的面积S与漏斗的深d有怎样的函数关系?

  (2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?

  设计意图:

  让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望。

  师生行为:

  由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:

  ①学生能否顺利建立实际问题的数学模型;

  ②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;

  ③学生能否注意到单位问题。

  生:解:(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,漏斗的深为dcm,则容积为1升=,立方分米=1000立方厘米。

  13000所以,S·d=1000,S=.3d

  (2)根据题意把S=100cm2代入S=30003000中,得100=.d=30(cm).dd

  所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.

  3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.

  (1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?

  (2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?

  四、小结

  1、通过本节课的学习,你有哪些收获?

  列实际问题的反比例函数解析式

  (1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;

  (2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。

  2、利用反比例函数解决实际问题的关键:建立反比例函数模型.

  五、布置作业

  P54—55、第2题、第5题

  六、课时小结

  本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。

  九年级数学教学设计2

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:弦切角定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及直线形角的性质构成了完美的角的体系,属于工具知识之一.

  难点:弦切角定理的证明.因为在证明过程中包含了由一般到特殊的数学思想方法和完全归纳法的数学思想,虽然在圆周角定理的证明中应用过,但对学生来说是生疏的,因此它是教学中的难点.

  2、教学建议

  (1)教师在教学过程中,主要是设置学习情境,组织或引导学生发现问题、分析问题、研究问题和归纳结论,应用知识培养学生的数学能力;在学生主体参与的学习过程中,让学生学会学习,并获得新知识;

  (2)学习时应注意:

  (Ⅰ)弦切角的识别由三要素构成:①顶点为切点,②一边为切线,③一边为过切点的'弦;

  (Ⅱ)在使用弦切角定理时,首先要根据图形准确找到弦切角和它们所夹弧上的圆周角;

  (Ⅲ)要注意弦切角定理的证明,体现了从特殊到一般的证明思路

  教学目标

  1、理解弦切角的概念;

  2、掌握弦切角定理及推论,并会运用它们解决有关问题;

  3、进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法

  教学重点:弦切角定理及其应用是重点

  教学难点:弦切角定理的证明是难点

  教学活动设计:

  (一)创设情境,以旧探新

  1、复习:什么样的角是圆周角?

  2、弦切角的概念:

  电脑显示:圆周角CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,得BAE

  引导学生共同观察、分析BAE的特点:

  (1)顶点在圆周上;

  (2)一边与圆相交;

  (3)一边与圆相切

  弦切角的定义:

  顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

  3、用反例图形剖析定义,揭示概念本质属性:

  (二)观察、猜想

  1、观察:(电脑动画,使C点变动)

  观察P与BAC的关系.

  2、猜想:BAC

  (三)类比联想、论证

  1、首先让学生回忆联想:

  (1)圆周角定理的证明采用了什么方法?

  (2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

  2、分类:教师引导学生观察图形,当固定切线,让过切点的弦运动,可发现一个圆的弦切角有无数个

  如图由此发现,弦切角可分为三类:

  (1)圆心在角的外部;

  (2)圆心在角的一边上;

  (3)圆心在角的内部

  3、迁移圆周角定理的证明方法

  先证明了特殊情况,在考虑圆心在弦切角的外部和内部两种情况

  组织学生讨论:怎样将一般情况的证明转化为特殊情况

  圆心O在CAB外,作⊙O的直径AQ,连结PQ,则BAC=BAQ-APQ-APC

  圆心O在CAB内,作⊙O的直径AQ.连结PQ,则BAC=QAB十QPA十APC,

  (在此基础上,给出证明,写出完整的证明过程)

  回顾证明方法:将情形图都化归至情形图1,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:

  弦切角定理:弦切角等于它所夹的弧对的圆周角.

  4、深化结论

  练习1直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.

  练习2DE切⊙O于A,AB,AC是⊙O的弦,若=xx,那么DAB和EAC是否相等?为什么?

  分析:由于和分别是两个弦切角OAB和EAC所夹的弧.而=xx,连结B,C,易证B=C.于是得到DAB=EAC.

  由此得出:

  推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.

  (四)应用

  例1已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,ADCE,垂足为D

  求证:AC平分BAD.

  思路一:要证BAC=CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证ACD=B.

  证明:(学生板书)

  组织学生积极思考.可否用前边学过的知识证明此题?由学生回答,教师小结.

  思路二,连结OC,由切线性质,可得OC‖AD,于是有3,又由于2,可证得结论。

  思路三,过C作CFAB,交⊙O于P,连结AF.由垂径定理可知3,又根据弦切角定理有1,于是3,进而可证明结论成立.

  练习题

  1、AB为⊙O的直径,直线EF切⊙O于C,若BAC=56,则ECA=______度.

  2、AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3:1,则夹劣弧的弦切角BAC=________

  3、经过⊙O上的点T的切线和弦AB的延长线相交于点C.

  求证:ATC=TBC.

  (此题为课本的练习题,证明方法较多,组织学生讨论,归纳证法.)

  (五)归纳小结

  教师组织学生归纳:

  (1)这节课我们主要学习的知识;

  (2)在学习过程中应用哪些重要的数学思想方法?

  (六)作业:教材P13,习题7.4A组,(2),5,6,7题

  探究活动

  一个角的顶点在圆上,它的度数等于它所夹的弧对的圆周角的度数,试探讨该角是否圆周角?若不是,请举出反例;若是圆周角,请给出证明。

【九年级数学教学设计】相关文章:

数学的教学设计12-07

数学教学设计11-25

数学教学设计09-10

数学教学设计11-30

数学的教学设计01-03

数学《厘米》教学设计11-22

数学秋游教学设计06-15

初中数学教学设计04-12

数学游戏教学设计07-27

初中数学教学设计12-31