- 相关推荐
《有理数》教案设计
作为一位不辞辛劳的人民教师,就难以避免地要准备教案,教案是教学活动的总的组织纲领和行动方案。教案要怎么写呢?下面是小编整理的《有理数》教案设计,希望能够帮助到大家。
《有理数》教案设计1
教学目标
1。了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2。 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3。通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的'关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
(二)知识结构
(三)教法建议
1。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2。关于去括号法则,只要学生了解,并不要求追究所以然。
3。任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4。先把正数与负数分别相加,可以使运算简便。
5。在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1。了解:代数和的概念。
2。理解:有理数加减法可以互相转化。
3。应用:会进行加减混合运算。
(二)能力训练点
培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。
二、学法引导
1。教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2。学生写法:练习寻找简单的一般性的方法练习巩固。
三、重点、难点、疑点及解决办法
1。重点:把加减混合运算算式理解为加法算式。
2。难点:把省略括号和的形式直接按有理数加法进行计算。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7。
师:(1)读出这两个算式。
(2)+、-读作什么?是哪种符号?
+、-又读作什么?是什么符号?
学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正)。
师小结:减法往往通过转化成加法后来运算。
《有理数》教案设计2
教学目标
1,在现实背景中理解有理数加法的意义。
2,经历探索有理数加法法则的过程,理解有理数的加法法则。
3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。
4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。
5,在教学中适当渗透分类讨论思想
教学难点
异号两数相加
知识重点
和的符号的确定
教学过程
(师生活动)设计理念
设置情境
引入课题回顾用正负数表示数量的实际例子;
在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?
师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。
(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。
分析问题
探究新知如果是球队在某场比赛中上半场失了两个球,下
半场失了3个球,那么它的得胜球是几个呢?算式应该
怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?
(学生思考回答)
思考:请同学们想想,这支球队在这场比赛中还可
能出现其他的什么情况?你能列出算式吗?与同伴交流。
学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。
2,借助数轴来讨论有理数的加法。I
一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)
(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?
(4)在学生归纳的'基础上,教师出示有理数加法法则。
有理数加法法则:
1,同号两数相加,取相同的符号,并把绝对值相加。
2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。
估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。
但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。
①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律
解决问题解决问题
例1计算:
(1)(—3)+(—9);(2)(—5)+13;
(3)0十(—7);(4)(—4。7)+3。9。
教师板演,让学生说出每一步运算所依据的法则。
请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)
例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。
(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)
学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过
程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。
拓宽学生视野,让学
生体会到数学与生活的密切联系。
课堂练习教科书第23页练习
小结与作业
课堂小结通过这节课的学习,你有哪些收获,学生自己总结。
本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。
2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。
3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听
别人的意见和建议。
附板书:1。3。1有理数的加法(一)
《有理数》教案设计3
教学目标:
1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:
(一)创设情境,导入新课
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?
a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)
(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?
1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.
(二)合作交流,解读探究
一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高
【例1】(1)(-4)3;(2)(-2)4;(3)-24.
点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何正整数次幂都是0.
【例2】计算:
(1)()3; (2)(-)3;
(3)(-)4; (4)-;
(5)-22×(-3)2; (6)-22+(-3)2.
(四)总结反思,拓展升华
1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值。
乘方的含义:(1)表示一种运算;(2)表示运算的结果。乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂。
乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的`任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数。注意(-a)n与-an及()n与的区别和联系。
(五)课堂跟踪反馈
1.课本P42练习第1.2题。
2.补充练习
(1)在(-2)6中,指数为,底数为.?
(2)在-26中,指数为,底数为.?
(3)若a2=16,则a= .?
(4)平方等于本身的数是,立方等于本身的数是.?
(5)下列说法中正确的是( )
A.平方得9的数是3
B.平方得-9的数是-3
C.一个数的平方只能是正数
D.一个数的平方不能是负数
(6)下列各组数中,不相等的是( )
A.(-3)2与-32 B.(-3)2与32
C.(-2)3与-23 D.|2.3与|-23|
(7)下列各式中计算不正确的是( )
A.(-1)20xx=-1
B.-12002=1
C.(-1)2n=1(n为正整数)
D.(-1)2n+1=-1(n为正整数)
(8)下列各数表示正数的是( )
A.|a+1| B.(a-1)2
C.-(-a) D.||
第2课时有理数的混合运算
教学目标:
1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序。
2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律。
教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算。
教学难点:有理数的混合运算。
教学过程:
一、有理数的混合运算顺序:
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
【例1】计算:
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1-×[3×(-)2-(-1)4]+÷(-)3.
强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值。
【例2】观察下面三行数:
-2,4,-8,16,-32,64,…;①
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
【例3】已知a=-,b=4,求()2--(ab)3+a3b的值。
二、课堂练习
1.计算:
(1)|-|2+(-1)101-×(0.5-)÷;
(2)1÷(1)×(-)÷(-12);
(3)(-2)3+3×(-1)2-(-1)4;
(4)[2-(-)3]-(-)+(-)×(-1)2;
(5)5÷[-(2-2)]×6.
2.若|x+2|+(y-3)2=0,求的值。
3.已知A=a+a2+a3+…+a20xx,若a=1,则A等于多少?若a=-1,则A等于多少?
三、课时小结
1.注意有理数的混合运算顺序,要熟练进行有理数混合运算。
《有理数》教案设计4
教学目标
1、让学生能进行包括小数或分数的有理数的加减混合运算。
2、让学生进一步体会到有理数减法可以转化为加法进行计算,并体会有理数加减法在实际中的应用。
教学重点与难点
重点:有理数加法和减法的混合运算。
难点:减法统一成加法再写成代数和的形式。
教学过程
一、复习引入
课本P56图是一条河流在枯水期的水位图。此时,桥面距水面的高度为多少米?
可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。可得算式:12.5+0.3=12.8(米)。
第二个方法:利用有理数减法法则得算式:
12.5―(―0.3)=12.8(米)。
比较两个算式,使学生进一步体会减法可以转化为加法。另外,此题中进行了含有小数的有理数的减法运算。
二、新课的进行
某地区一天早晨的气温是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的温度是多少?
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的温度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的温度是-4℃。
比较以上两种解法,结果是一样的,而解法二中的算式是有理数加减的运算。
议一议:P57议一议
通过对此问题的讨论,学生将回顾有理数的加法法则,并用以进行有关小数的运算。计算如下:
4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)
此时飞机比飞点高了1千米。
注意运算顺序是从左到右的计算过程。
还可以这样计算:4.5-3.2+1.1-1.4
=1.3+1.1-1.4=2.4-1.4=1(千米)
此时飞机比飞点高了1千米。
比较以上两种算法,你发现了什么?
(1)我们可以把有理数的加减法的混合运算统一成加法运算,使加减法的混合运算化为单一的加法运算。
(2)有理数的加减混合运算统一为加法运算以后,保留各加数的.性质符号,去掉括号并把加号省略,而形成加减混合运算的简洁的形式。
例1 计算(P58例1)
例2 计算:(1) (2)
解:(1)
(2)
三、课堂练习
1、课本P58随堂练习1、(1),(2),(3)
2、计算:(1) (2)
四、课堂小结
根据有理数的减法法则,我们知道风是有理数的减法,都可以转化为加法,利用有理数的加法法则去运算。因此,我们可以把有理数加减法的混合运算统一成加法以后,可以将算式写成省略括号及前面加号的形式。
五、作业设计
1、P58 习题2.7 1,3
《有理数》教案设计5
【回顾思考】
1、请认真阅读课本P41-50,并把你认为重要的概念、法则和例题划出。
2、请合上课本,试着回答下列问题:
(1)说说什么是乘方?什么是幂?有什么符号法则?
(2)在做有理数的混合运算时运算顺序怎样?
(3)举例说明什么是科学记数法?
(4)举例说明如何确定一个数的有效数字?
【基础训练】
一、填空:
1、根据乘方的意义,(-3)4=;-34=.
2、的平方等于它本身;的立方等于它本身。
3、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=。
4、若(a-1)2+︳b+2︳=0,那么a+b=。
5、地球上的海洋面积用科学计数法表示为3.61×108平方千米,原来的数是。
6、一天有8.64×104秒,一年按365天计算,一年约有秒(保留3个有效数字)
一、填空:
1、若x20xx=1,则x20xx+2005=。
2、平方等于1/16的数是,立方等于-27的数是,立方后是本身的数有。
3、当n为奇数时,1+(-1)n=;当n为偶数时,1+(-1)n=。
4、若︳a-1︳+(b+2)2=0,那么(a+b)20xx+a20xx=。
5、若每人每天浪费水0.32升,那么100万人每天浪费的水为多少升。用科学记数法表示为升。
6、由四舍五入得到的近似数0.8080有个有效数字,分别是,它精确到位。
7、3.16×106原数为,精确到位。
8、写出3,-9,27,-81,243,…这行数的第n个数。
二、选择:
1、若规定a⊕b=(a+1)b,则1⊕3的值为()
(A)1(B)3(C)6(D)8
2、(-2)11+(-2)10的值是()
(A)-2(B)(-2)21(C)0(D)-210
3、下列语句中,正确的个数是()
①任何小于1的`有理数都大于它的平方
②没有平方得-9的数
二、选择:
1、下列各组数中,不相等的是()
(A)(-3)2与-32(B)(-3)2与32(C)(-2)3与-23(D)∣-2∣3与∣-23∣
2、(-2)11+(-2)10的值是()
(A)-2(B)(-2)21(C)0(D)-210
3、下列各式中正确的是()
(A)a2=(-a)2(B)a3=(-a)3(C)-a2=∣-a2∣(D)a3与∣a3∣
4、人类的遗传物质是DNA,他是一个很长的链,最短的也长达30000000个核苷酸。这个数用科学记数法表示为()
(A)3×106(B)0.3×107(C)3×107(D)0.3×108
5、用四舍五入法按要求对0.05019分别取近似值,其中错误的是()
(A)0.1(精确到0.1)(B)0.05(精确到百分位)
(C)0.05(精确到千分位)(D)0.0502(精确到0.0001)
三、计算:
1、8+(-3)2×(-2)
2、100÷(-2)2-(-2)÷(-2/3)
3、(-0.25)20xx×(-4)20xx×(-1)20xx
列方程解应用题的基本关系量:
(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度
(2)工程问题:工作效率×工作时间=工作量
(3)浓度问题:溶液×浓度=溶质
(4)银行利率问题:免税利息=本金×利率×时间
《有理数》教案设计6
一、背景知识
《有理数》选自浙江版《义务教育课程标准实验教科书·数学·七年级上册》第一章《从自然数到有理数》中的第二节,这一章是开启整个初中阶段代数学习的大门。《有理数》是本章的第二节。本节内容让学生在现实的情境中理解负数的引入确实是实际生活的需要,感受到有理数应用的广泛性,是在小学学习自然数和分数之后,数的概念的第一次扩充,是自然数和分数到有理数的衔接与过渡,并且是以后学习数轴、绝对值及有理数运算的基础。
二、教学目标
1、知识目标:理解有理数产生的必然性、合理性;会判断一个数是正数还是负数,能灵活运用正、负数表示生活中具有相反意义的量;会将有理数从不同的角度进行分类。
2、过程与方法:利用学生身边熟悉的事物引入负数、学习有理数;运用有理数表示现实生活问题中的量;让学生经历有理数概念的形成及运用过程,领会分析、总结的方法。
3、情感与能力目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,启迪思维,提高创新能力;通过实际问题的解决和从不同角度对有理数分类,可提高学生应用数学能力和培养学生的分类思想。
三、教学重点、难点
重点:能应用正、负数表示具有相反意义的量和对有理数进行合理的分类。
难点:用有理数表示实际生活中的'量。
四、教学设计
(一)创设情境 探求新知
如图表示某一天我国5个城市的最低气温。
请同学们合作讨论下列问题:
1、-20℃、-10℃、5℃、0℃、10℃ 这几个量分别表示什么?
2、你还在哪些地方见到过用带有“-”号的数来表示某一种量,请讲出来。
把学生讲出的较恰当的量写到黑板上,再引导学生把与之相对的量分别写在后边,如:零下20℃——零上10℃, 降低5米——升高8米, 支出100元——收入500元。指出这样的量就是具有相反意义的量,并从以下方面加以理解。
(1)具有相反意义的量是:意义相反,与值无关。
(2)区分“意义相反”与“意义不同”。
反问学生:以上具有相反意义的量能用我们学过的自然数和分数表示出来吗?
显然是不能的。为了解决这样的实际问题,我们需要引进一种新的数——负数。
我们把一种意义的量(如零上)规定为正,用学过的数(零除外)来表示,这样的数叫做正数,正数前面可以放上正号“+”来表示(常省略不写),;把另一种与之意义相反的量规定负,用学过的数(零除外)前面放上负号“-”来表示,这样的数叫做负数(负号不能省略)。
如:“+2”读做“正2”、“-3.3”读做“负3.3”等。
这样我们学过的数中又增加了新的数——负整数和负分数;相应地我们学过的自然数和分数分别称为正整数和正分数。
(二)运用新知 体验成功
填空:
1)规定盈利为正,某公司去年亏损了2.5万元,记做__________万元,今年盈利了3.2万元,记做__________万元;
2)规定海平面以上的海拔高度为正,新疆乌鲁木齐市高于海平面918米,记做海拔__________米;吐鲁番盆地最低处低于海平面155米,记做海拔__________米;
3)汽车在一条南北走向的高速公路上行驶,规定向北行驶的路程为正。汽车向北行驶75km,记做________km(或_______km),汽车向南行驶100km,记做________km;
4)下降米记做米,则上升米记做__________米;
5)如果向银行存入50元记为50元,那么-30.50元表示__________;
6)规定增加的百分比为正,增加25%记做__________,-12%表示__________.
利用第3)题说明在表示具有相反意义的量时,把哪一种意义的量规定为正,是相对的例如我们可以把向南100米记做+100km,那么向北记做-75km.但习惯上,人们常把上升、运进、零上、增加、收入等规定为正。
(请同学独立完成,然后同桌同学相互评价。)
(三) 师生互动,继续探究
(合作学习)读一读这些数0,880,-20xx,+123,-233,-2.5,+3.2,+918,-155,+75,-100,25%,-12%,请根据你认定的数的特征进行分类,并说出分类的特征。
让学生四人小组合作讨论完成。
估计可能出现的正确结论有:
;
;
对于较为正确的分类,并能说出特征的都将给予肯定,重视个体差异,体现多元评价的思想,发挥评价的激励作用,保护学生的自尊心,增强学生的自信心.然后教师给出规范的分类:
正整数、零和负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③零是整数,零既不是正数,也不是负数.
(四) 分层练习,巩固提高
为了使学生实现从掌握知识到运用知识的转化,使知识教育与能力培养结合起来,设计分层练习。
例 下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?
-8.4, 22, ,0.33, , -9.
练习1 判断表中各数属于什么数,在相应的空格内打“√” .
正整数
整数
分数
正数
负数
有理数
20xx
√
√
√
√
-4.9
0
-12
探究活动:
练习2 如图,两个圈内分别表示所有正数组成的正数集合和所有整数组成的整数集合.请写出3个分别满足下列条件的数:
1)属于正数集合,但不属于整数集合的数;
2)属于整数集合,但不属于正数集合的数;
3)既属于正数集合,又属于整数集合的数.
将它们分别填入图中适当的位置.你能说出这两个圈的重叠部分表示什么数的集合吗?
通过多角度的练习,并对典型错误进行讨论与矫正,使学生巩固所学内容,同时完成对新知的迁移。
(五)概括梳理,形成系统
采取师生互动的形式完成。即:
学生谈本节课的收获,教师适当的补充、概括,以本节知识目标的要求进行把关,确保基础知识的当堂落实。
(六)布置作业
1、课后作业
2、设计题可根据自己的喜好和学有余利的同学完成。
《有理数》教案设计7
第一章 有理数
课题:1.1 正数和负数(1)
【学习目标】:1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【导学指导】:
一、知识链接:
1、小学里学过哪些数请写出来: 、 、 。
2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。
请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的`量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。
(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1. P3第一题到第四题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数: , ,3.14,+3065,0,-239;
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 ( )
A.0既是正数,又是负数 B.O是最小的正数
C.0是最大的负数 D.0既不是正数,也不是负数
5.给出下列各数:-3,0,+5, ,+3.1, ,20xx,+20xx;
其中是负数的有 ( )
A.2个 B.3个 C.4个 D.5个
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.甲比乙大-3岁表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【总结反思】:
课题:1.1正数和负数(2)
【学习目标】:
1、会用正、负数表示具有相反意义的量;
2、通过正、负数学习,培养学生应用数学知识的意识;
【学习重点】:用正、负数表示具有相反意义的量;
【学习难点】:实际问题中的数量关系;
【导学指导】
一、知识链接.
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。
问题:零为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明。
参考例子:温度表示中的零上,零下和零度。
二.自主探究
问题:(课本第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
2)20xx年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率;
解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;
2)六个国家20xx年商品进出口总额的增长率:
美国___________ 德国__________
法国___________ 英国__________
意大利__________ 中国__________
《有理数》教案设计8
教学目标
1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;
2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;
3。三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;
4。通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;
5。本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
重点:
是否能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。
难点:
理解有理数的乘法法则。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的`符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。
(二)知识结构
(三)教法建议
1。有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。
2。两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。
3。基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。
4。几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。
5。小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。
6。如果因数是带分数,一般要将它化为假分数,以便于约分。
教学设计示例
有理数的乘法(第一课时)
教学目标
1。使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;
2。通过有理数的乘法运算,培养学生的运算能力;
3。通过教材给出的行程问题,认识数学来源于实践并反作用于实践。
教学重点和难点
重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;
难点:有理数乘法法则的理解。
课堂教学过程设计
一、从学生原有认知结构提出问题
1。计算(—2)+(—2)+(—2)。
2。有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)
3。有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[
4。根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)
二、师生共同研究有理数乘法法则
问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引导学生比较①,②得出:
把一个因数换成它的相反数,所得的积是原来的积的相反数。
这是一条很重要的结论,应用此结论,3×(—2)=?(—3)×(—2)=?(学生答)
把3×(—2)和①式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“6”的相反数“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“—6”的相反数“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
综合上面各种情况,引导学生自己归纳出有理数乘法的法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同0相乘,都得0。
继而教师强调指出:
“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。
用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。
因此,在进行有理数乘法时,需要时时强调:先定符号后定值。
三、运用举例,变式练习
例某一物体温度每小时上升a度,现在温度是0度。
(1)t小时后温度是多少?
(2)当a,t分别是下列各数时的结果:
①a=3,t=2;②a=—3,t=2;
②a=3,t=—2;④a=—3,t=—2;
教师引导学生检验一下(2)中各结果是否合乎实际。
课堂练习
1。口答:
(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
(7)(—6)×0;(8)0×(—6);
2。口答:
(1)1×(—5);(2)(—1)×(—5);(3)+(—5);
(4)—(—5);(5)1×a;(6)(—1)×a。
这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以—1都等于它的相反数。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同时教师强调指出,a可以是正数,也可以是负数或0;—a未必是负数,也可以是正数或0。
3。填空:
(1)1×(—6)=______;(2)1+(—6)=_______;
(3)(—1)×6=________;(4)(—1)+6=______;
(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判断下列方程的解是正数还是负数或0:
(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小结
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。
五、作业
1。计算:
(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
(3)如果a>0时,那么a____________2a;
(4)如果a<0时,那么a__________2a。
探究活动
问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?
答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“—1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成—1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1)。而7个杯口全部朝下时,7个数的乘积等于—1,这是不可能的。
道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。
《有理数》教案设计9
教学目的:
1。知识目标 使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。
2.能力目标 通过本节教学,培养学生的想象能力、理论联系实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;
3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
教学设计
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
重点
正、负数的意义,
难点
负数的意义及0的内涵。
教学方法:
鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
教学过程的设计,分为四部分。
一、创设情境,引入负数;
二、联系对比,突出重点;
三、课堂练习,及时反馈;
四、总结提高,渗透德育。
在引入部分,我通过介绍数的产生与发展,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。
随之提问:同学们小学都学过哪些数?
为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。
那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?
为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果,采取形象化教学。
(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?
通过创设问题情境,激发学生的求知欲望让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。
以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?
使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。
既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。
接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。
从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。
以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。
在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。
为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:
(1)意义相反 (2)同一种量
并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。
由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。
"+""-"作为性质符号有着更深层的`涵义:
"+"表示与问题中给出意义的相同意义,
"-"表示与问题中给出意义的相反意义,
如:前进+5米,表示真正前进5米,
前进-5米,表示后退5米,
那么,后退-5米就表示前进5米。并通过课本例2加以巩固。
为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:
图中所示是一个零件的剖面图。用φ30±0。07表示轴直径的误差范围,说明±0。07的意义。
因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程当中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0。07表示比30mm大0。07mm,-0。07表示比30mm小0。07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。
接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程当中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。
在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程当中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。
在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。
通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。
《有理数》教案设计10
学习目标:
1、要熟记有理数除法的法则,会进行有理数除法的运算。
2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。
3、能熟练地进行简单的有理数的加减乘除混合运算。
4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有
学习重点:有理数除法的法则及应用;求一个有理数的倒数。
学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。
学习过程:
一 前置复习 :
1、有理数的乘法法则是:
举例说明。
2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。
(2)几个有理数相乘, ,积就为零。
二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的)
自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:
(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。
____________________。
(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。
0除以任何_______________________________。
(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。
如,3与____互为倒数,-6与_____互为倒数,2.25是____的.倒数,___是 的倒数。
三 新知应用:
例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)
学以致用 计算:
(1) (42)7 (2) ( )( )
例2、计算(1) ( )( )( ) (2) ( )( )
(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)
四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)
五 达标测试:(独立完成)
1 填空:(1)2 的倒数与 的相反数的积是_______。
(2)(1)(3)( )=______。
(3)两个数的商为正数,那么这两个数一定是_________。
(4)一个数的倒数是它本身,则这个数是____________。
2、计算:(1) (2)
(3)、 (4) ( + )
六 总结反思:
1、说一说:
本节课我学会了 ;
使我感触最深的是 ;
我感到最困难的是 ;
我想进一步探究的问题是 。
2、:评一评
自我评价 小组评价 教师评价
七 布置作业
1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)
2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)
《有理数》教案设计11
一、知识与技能
(1)会用计算器计算有理数的除法运算。
(2)掌握有理数的加减乘除混合运算。
二、过程与方法
通过本节课的数学活动,培养学生分析问题,综合应用知识解决实际问题的能力。
三、情感态度与价值观
培养学生动手操作能力,体会数学知识的应用价值。
教学重、难点与关键
1.重点:掌握有理数的加减乘除混合运算。
2.难点:符号的确定。
3.关键:掌握运算顺序以及运算法则。
四、教学过程、课堂引入
1、在小学里,加减乘除四则运算的顺序是怎样的'?
先乘除后加减,同级运算从左往右依次进行,有括号的,先算括号内的,另外还要注意灵活应用运算律。 有理数加减、乘除混合运算顺序与数的运算顺序一样。
五、新授
例8.计算:(1)-8+4(-2);
(2)(-7)(-5)-90(-15)。
分析:(1)按运算顺序,先做除法,再做加法。(2)先算乘、除法,然后做减法。
解:(1)-8+4(-2)
=-8+(-2) =-10
(2)(-7)(-5)-90(-15)
=35-(-6)=35+6=41
例9:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈利情况如何?
分析:盈利与亏损是具有相反意义的量,我们把盈利额记为正数,亏损额记为负数,那么公司去年全年亏盈额就是去年1~12月的所亏损额和盈利额的和。
《有理数》教案设计12
三维目标
一、知识与技能
掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
二、过程与方法
通过例题学习,发展学生观察、归纳、猜想、推理等能力。
三、情感态度与价值观
体验获得成功的感受、增加学习自信心。
教学重、难点与关键
1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算。
2.难点:灵活应用运算律,使计算简单、准确。
3.关键:明确题目中各个符号的意义,正确运用运算法则。
四、课堂引入
1.我们已经学习了哪几种有理数的'运算?
2.有理数的乘方法则是什么?
五、新授
下面的算式里有哪几种运算?
3+5022(-)-1 ①
这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?
有理数的混合运算,应按以下运算顺序进行:
1.先乘方,再乘除,最后加减;
2.同级运算,从左往右进行;
3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如上面①式
3+5022(-)-1
=3+504(-)-1
=3+50(-)-1
=3--1
=-
例3:计算:(1)2(-3)3-4(-3)+15;
(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。
分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。
解:(1)原式=2(-27)-(-12)+15
=-54+12+15
=-27
(2)原式=-8+(-3)(16+2)-9(-2)
=-8+(-3)18-(-4.5)
=-8-54+4.5=-57.5
例4:观察下面三行数:
-2,4,-8,16,-32,64,①
0,6,-6,18,-30,66, ②
-1,2,-4,8,-16,32, ③
(1)第①行数按什么规律排列?
(2)第②、③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。
《有理数》教案设计13
把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算
按教师要求口答并读出结果
师生共同小结:
有理数加减法混合运算的题目的步骤为
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算。
采用同桌互相测验的方法,以达到纠正错误的目的。针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
这两个题目是本节课的重点.采用测验的方式来达到及时反馈。
归纳小结
教师提问:
1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法各是什么?
学生讨论后口答小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
布置作业必做题:(一)计算:
(1)-8+12-16-23;
(2)- + - -
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当b>0时,a,a-b,a+b哪个最大,哪个最小? (2)当当b<0时,a,a-b,a+b哪个最大,哪个最小?
综合考察
学以致用
体现分层次教学使不同学生得到不同的发展
附板书设计:
2.7有理数的.加减混合运算
例题:计算: 练习处
1.(+3)-(-9)+(-4)-(+2)
2. - + - +
教学反思:
本节课是一节计算课,是学生们在学习了有理数的加法和减法的基础上进行教学的。通过本节课的学习使学生掌握代数和的概念,知道所有含有有理数的加、减混合运算的式子都可以化为有理数的加法的形式即代数和的形式,并能熟练掌握有理数的加减混合运 算及其运算顺序。还要培养学生理解事物发展变化是可以相互转化的辩证唯物主义观点。本节课本着“扎实、有效”的原则,既关注课堂教学的本质,有注重学生能力的培养,且面向全体学生来设计教学。通过教学实践,在本节课上不足的地方是:1.时间掌握的不好有一些前松后紧,以至于后面没有时间来进行本节课的小结,就显得有一些虎头蛇尾了。2、练习的形式还有些单调,如时间富裕还可以准备一些判断练习,把学生在做题时容易出错的地方写出来,让学生来进行判断,用这种方式来进行强化来练习,可以收到比较好的效果。
《有理数》教案设计14
有理数及其运算复习教案
一、有理数的意义
1.有理数的分类
知识点:大于零的数叫正数,在正数前面加上﹣(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上﹣号后这个量就有了完全相反的意义;3, ,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴
知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数
3. 相反数
知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值
知识点: 一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a0,则∣a∣=a. 若a=0,则∣a∣=0. 若a0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
二、有理数的运算
1. 有理数的加法
知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a; 加法结合律:a+b+c=a+(b+c)
多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
2. 有理数的减法
知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即 a-b=a+(-b)。
注意:运算符号+加号、-减号与性质符号+正号、-负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。
3. 有理数的加减混合运算
知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把+号省略,使算式变得更加简洁。
4. 有理数的乘法
知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。
几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。
乘法交换律:ab=ba 乘法结合律:abc=a(bc) 乘法分配律:a(b+c)=ab+bc
5. 有理数的除法
知识点:除法法则1:除以一个数等于乘上这数的倒数,即ab= =a (b0即0不能做除数)。
除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
倒数:乘积是1的两数互为倒数,即a =1(a0),0没有倒数。
注意:倒数与相反数的区别
6. 有理数的乘方
知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。
乘方的符号法则:正数的'任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。
7. 有理数的混合运算
知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。
技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。
【巩固练习1】一.选择题
1. 关于数0,以下各种说法中,错误的是 ( )
A. 0是整数 B. 0是偶数 C. 0是自然数 D. 0既不是正数也不是负数
2. 3.782: ( )
A. 是负数,不是分数 B. 不是分数,是有理数 C. 是分数,不是有理数 D. 是分数,也是负数
二、将下列各数填入相应的集合中。 ,-1,12,0,-3.01,0.62,-15,- ,180,-42,-45%,,1。
整数:______________________ 自然数:___________________________
正数:______________________ 负数: ___________________________
偶数:______________________ 奇数: ___________________________
分数:______________________ 非负数:___________________________
非负整数: _________________ 非正分数:_________________________
非负有理数:________________ 有理数: __________________________
三、 填空题
1、一个数的绝对值是 6 ,这个数是 。 2、绝对值小于3的整数有 个。
3、 的相反数的倒数是 。 4、计算: 。
5、如果 ,那么 a= 。 6、如果规定上升8米记作8米,那么-7米表示 ______________。
7、最小的正整数是____,最大的负整数是_____,绝对值最小的有理数是_______
8、 河道中的水位比正常水位低0.2m记作-0.2m,那么比正常水位高0.1m记作________。
9、一潜艇所在深度是-80米,一条鲨鱼在艇上30m处,鲨鱼所在的深度是________。
【巩固练习2】一.填空题
1. 数轴上与表示﹣2点相距3个单位的点所表示的数是________。
2. 数轴表示+3和﹣3的点离开原点的距离是______个单位,这两个点的位置分别在_______点右边和左边。
3. 在有理数中最大的负整数是________, 最小的正整数是________, 最大的非正数是________, 最小的非负数是________.
4. 用或号填空:
1)3.5 ____ 0 ; 2) ﹣2.8 ____ 0 ; 3) ﹣1.95 ____ 1.59 ; 4) ____ ;
5) ____ ﹣0.3 ; 6) ﹣0.67 ____ ; 7) ____ ;
8) ﹣ ____ ﹣3.14 ; 9) ﹣1.6 ____ ﹣1.6 ; 10) ﹣( ) ____ ﹣(﹣∣ ∣) .
【巩固练习3】一.填空题
1. 如果一个数的相反数是它本身, 则这个数是________.
2. 如果一个数的相反数是最小的正整数, 则这个数是________.
3. 若 , 则a与b________; 若 , 则a与b________; 若a+b=0, 则a与b________.
4. 在数轴上与-3距离4个单位的点表示的数是
5.写出大于-4且小于3的所有整数为______________;
二、 求下列各数的相反数
0.26 ; ;﹣a ;﹣x+1 ; m+1 ;2xy ;a-b 。
三、 在数轴上表示出下列各数的相反数的点,并比较大小。
,4,﹣1.5, ,0,1,8,﹣2,﹣(﹣4.5),∣ ∣
【巩固练习4】一.选择题
1. ﹣∣﹣3∣是 ( ) A. 正数 B. 负数 C. 正数或0 D. 负数或0
2. 绝对值最小的整数是 ( ) A. 0 B. 1 C. 1 D. 1和-1
二、填空题 1.若a= , 则∣a∣=________; 若∣a∣=3, 则a=________.
2.﹣∣﹣ ∣=______; ∣﹣ ∣-∣﹣ ∣=______; ∣﹣0.77∣∣+ ∣=_______;
3.绝对值小于4的负整数有 个,正整数有 个,整数有 个
三、解答题
1. 已知∣x+y+3∣=0,求∣x+y∣的值。
2. 已知 A,B是数轴上两点,A点表示﹣1,B点表示3.5,求A,B两点间的距离。
3. 已知:∣a+2∣+∣b-3∣=0,求2a2-b+1的值。
【巩固练习5】计算:1) ﹣ - + -( ); 2) 1-2+3-4+5-6++99-100;
3) ﹣(﹣8)-∣﹣6∣-∣+8∣-(+7); 4) 。
【巩固练习6】计算:1)( ) 2) 3)
4)( ) 5) ( ) ; 6) (-5);
【巩固练习7】1.计算:(-5)3; -53; ; ;(-1)20xx; 3。
2. 若∣x+1∣+(2x-y+4)2= 0 ,求代数式x5y+xy5的值。
【巩固练习8】计算:(1)3 ; (2) (3) (4)
(5) (6) (7) (8)
(9) (10)32-∣(-5)3∣ -18∣-(-3)2∣;
(11) -3- -6∣ ∣3; (12)(-1)5[ (-4)+ (-0.4)]
(13)如果 ,求 的值.
一、 选择题(10小题,每小题3分,共30分,答案填入表格中)
1. 在下列各数中,-3.8,+5,0,- 1 2 , 3 5 ,-4,中,属于负数的个数为( )
A.2个 B.3个 C.4个 D.5个
2. 计算:-6+4的结果是( )
A.2 B.10 C.-2 D.-10
3. 一个数的倒数等于它本身的数是( )
A.1 B. C.1 D.0
4. 下列判断错误的是( )
A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;
C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;
5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是( )
A.a0c B.bac
C.b
6.两个有理数的和是正数,积是负数,则这两个有理数( )
A.都是正数; B.都是负数;
C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。
7.若│a│=8,│b│=5,且a + b0,那么a-b的值是( )
A.3或13 B.13或-13 C.3或-3 D.-3或-13
8. 大于-1999而小于20xx的所有整数的和是( )
A.-1999 B.-1998 C.1999 D.20xx
9. 当n为正整数时, 的值是( )
A.0 B.2 C. D.2或
10. 补充下列表格:
31 32 33 34 35 36 37
3 9 27 81 243
根据表格中个位数的规律可知,325的个位数是( )
A.1 B.3 C.7 D.9
二、填空题(8小题,每小题2分,共16分)
11. 的相反数是 .
12.若水位上升20cm记作+20cm,则-15cm表示__________________.
13.4个-3相乘写成乘方的形式是__________________.
14.比较大小: .
15. 在数轴上距2.5有3.5个单位长度的点所表示的数是 .
16. 用偶数或奇数填:当 为_________时,
17. 一根2米长的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,
第五次后剩下的长度为______米.
18. 观察下列图形:
它们是按一定规律排列的,依照此规律,第10个图形共有 个★.
三、解答题(6小题,每小题5分,共30分)
19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)6- (-4)
21. (- + - )(-12) 22. 16(-2)3-(- )(-4)2
23. (用简便方法) 24. - -[-5 + (0.2 -1)(-1 )]
25. 若│a│=2,b=-3,c是最大的负整数,求a + b-c的值.(6分)
26.某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米
处;B店位于O店的北面1千米处,C店在O店的北面2千米处.
(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.
在数轴上分别表示出O,A,B,C的位置吗?(4分)
(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,最后回到O店,
那么走的最短路程是多少千米?(4分)
27.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:
星期 一 二 三 四 五
每股涨跌 +2.20 +1.42 -0.80 -2.52 +1.30
(1)星期三收盘时,该股票涨或跌了多少元?(4分)
(2)本周内该股票的最高价是每股多少元?最底价是每股多少元?(2分)
(3)已知小杨买进股票时付了1.5的手续费,卖出时还需要付成交额的1.5的手续费和1的交易税,
如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何? (4分)
《有理数》教案设计15
一、教学内容
《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。
在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。
三、教学目标与重难点
目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;
2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;
3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。
重点:会用有理数加法法则进行运算.
难点:异号两数相加的法则.
四、学情分析
1.学生非常熟悉正数加正数,正数加零的情况。
2.有理数的分类、数轴、绝对值的相关知识已经掌握。
3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;
2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
1.回顾旧知,启发思维
展示课件上的三个问题,请同学们思考并回答。
(1)有理数是怎么分类的?
(2)有理数的绝对值是怎么定义的?
(3)下列各组数中,哪一个数的绝对值大?
7和4; -7和4; 7和-4; -7和-4
【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。
2.创设情境 引入课题
问题一:两个有理数相加,有多少种不同的情形?
答:正+正,负+负,正+负,正+0,负+0,0+0.
【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。
问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?
请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)
师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?
(出示课题)
【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。
(二)分析问题探究新知
问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的'运算规律吗?
学生们各抒己见,总结法则。
1、 同号两数相加,取相同的符号,并把绝对值相加。
2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。
3、 一个数同0相加,仍得这个数
老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。
【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力
(三)运用新知深入体会
例1计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对
解题时,先确定和的符号,后计算和的绝对值.
课堂练习:
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
3.用“>”或“<”填空:
(1)如果a>0,b>0,那么a+b____0;
(2) 如果a<0,b<0,那么a+b____0;
(3) 如果a>0,b<0,|a|>|b|,那么a+b____0;
(4) 如果a<0,b>0, |a|<|b|,那么a+b____0;
【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。
问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?
(1)如果a>0,b>0,那么a+b=+(|a|+|b|)
(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)
(3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)
(4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)
(5)a+0=a.
【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。
(四)延伸拓展敢于挑战
问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?
问题六:小学学过的运算律是否适用于有理数的加法?
【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。
(五)归纳总结感受思想
(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?
(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业
(1)P56 习题1、3
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;
2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。
4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
【《有理数》教案设计】相关文章:
有理数说课稿11-20
《有理数》说课稿12-03
有理数说课稿06-25
有理数的乘方教案02-14
《有理数的乘方》说课稿01-12
有理数的教学设计08-06
《有理数》教学设计10-17
有理数的加法教案07-31
《有理数的加法》说课稿05-28
有理数的加法说课稿07-02