- 有理数的乘法教学设计 推荐度:
- 相关推荐
有理数的教学设计
作为一位无私奉献的人民教师,就有可能用到教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。教学设计应该怎么写才好呢?下面是小编收集整理的有理数的教学设计,欢迎阅读,希望大家能够喜欢。
有理数的教学设计1
地区:云南省-大理-漾濞县
学校:漾濞县一中初中部
共1课时
1.3有理数的加减法初中数学人教20xx课标版
1教学目标
1、复习有理数加法法则要点。
2、经历探索加法运算律的过程,理解有理数的加法法则和运算律。
3、能熟练进行整数加法运算,并能用运算律简化运算。
2、学情分析
我班多数学生的数学基础较好,学习方法恰当。学生对新的课堂教学方法能够适应;不过,在新的教学理念的指导下,旧的教学方法和学习方法已逐步淡化,学生的观察,比较,归纳及自主探索和合作交流能力已逐步形成。现在,班级中已形成合作交流、勇于探究、积极回答问题的良好学风,学生间互相评价和师生互动的课堂气氛也已逐步形成。
3、重点难点
1、运用加法运算律简化加法运算。
2、对加法运算律的理解。
4、教学过程4.1第一学时教学活动活动1【导入】复习导入
一、复习有理数加法法则要点
1、同号两数相加取相同的符号,并把绝对值相加。
2、异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得零。
4、一个数同零相加仍得这个数。
活动2【讲授】讲授新课
二、讲授新课
1、发现、总结:
(1)提出问题:同学们,在小学,我们学过加法的哪些运算律?
(2)探讨:以前学习过的加法交换律、结合律现在还适用吗?
三、有理数运算中,加法交换律和结合律仍适用。
1、加法交换律:两个数相加,交换加数的位置,和不变。表示成:a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
表示成:(a+b)+c=a+(b+c)
3、一般地,任意若干个数相加,无论各数相加的先后次序如何,其和不变。
四、例题讲解
[例1]计算:
16+(-25)+24+(-35)
解:16+(-25)+24+(-35)
=(16+24)+[(-25)+(-35)]
=40+(-60)
=-20
1、在括号内填写运算律名称
(-193)+(-215)+(+193)
=(-193)+(+193)+(-215)
=[(-193)+(+193)]+(-215)
=0+(-215)
=-215
解题策略:(1)把正数和负数分别结合在一起相加。
(2)把互为相反数的结合,能凑整的结合。
(3)把同分母的`数结合相加。
2、例题,10袋小麦称后记录如图所示(单位:千克)10袋小麦一共多少千克?
解:91,91,91.5,89,91.2,
91.3,88.7,88.8,91.8,91.1
如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?
+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,1.8,+1.1
1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1
=5.4
答:10袋小麦一共905.4千克,总计超过5.4千克。
活动3【练习】算一算
1、你想算哪组?
A(1)(-10)+(-8)=
(2)(-6)+(+6)=
(3)(-37)+0=
B(1)(-843)+(-557)=
(2)(-3.86)+(+3.86)=
(3)(-416)+0=
2、做一做、议一议
(1)请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数(至少有一个是负数)。
△+□□+△
(△+□)+○△+(□+○)
(2)算出各算式的结果,比较左、右两边算式的结果是否相同呢?
(3)请同学们说说自己的结果,你发现了什么?
活动4【测试】交流总结
这节课你学习了什么内容?你学会了吗?
1、有理数加法交换律和结合律
2、运用加法交换律和结合律要注意:
(1)把正数和负数分别结合在一起相加。
(2)把互为相反数的结合,能凑整的结合。
(3)把同分母的数结合相加。
活动5【作业】拓展练习
1、-5+7+(-4)+5
2、-6+(-44)+13+17
3、-4+17+(-36)+73
1.3有理数的加减法
课时设计课堂实录
1.3有理数的加减法
1第一学时教学活动活动1【导入】复习导入
一、复习有理数加法法则要点
1、同号两数相加取相同的符号,并把绝对值相加。
2、异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
3、互为相反数的两数相加得零。
4、一个数同零相加仍得这个数。
活动2【讲授】讲授新课
二、讲授新课
1、发现、总结:
(1)提出问题:同学们,在小学,我们学过加法的哪些运算律?
(2)探讨:以前学习过的加法交换律、结合律现在还适用吗?
三、有理数运算中,加法交换律和结合律仍适用。
1、加法交换律:两个数相加,交换加数的位置,和不变。表示成:a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
表示成:(a+b)+c=a+(b+c)
3、一般地,任意若干个数相加,无论各数相加的先后次序如何,其和不变。
四、例题讲解
[例1]计算:
16+(-25)+24+(-35)
解:16+(-25)+24+(-35)
=(16+24)+[(-25)+(-35)]
=40+(-60)
=-20
1、在括号内填写运算律名称
(-193)+(-215)+(+193)
=(-193)+(+193)+(-215)
=[(-193)+(+193)]+(-215)
=0+(-215)
=-215
解题策略:(1)把正数和负数分别结合在一起相加。
(2)把互为相反数的结合,能凑整的结合。
(3)把同分母的数结合相加。
2、例题,10袋小麦称后记录如图所示(单位:千克)10袋小麦一共多少千克?
解:91,91,91.5,89,91.2,
91.3,88.7,88.8,91.8,91.1
如果每袋小麦以90千克为标准,10袋小麦总计超过多少千克或不足多少千克?
+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,1.8,+1.1
1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1
=5.4
答:10袋小麦一共905.4千克,总计超过5.4千克。
活动3【练习】算一算
1、你想算哪组?
A(1)(-10)+(-8)=
(2)(-6)+(+6)=
(3)(-37)+0=
B(1)(-843)+(-557)=
(2)(-3.86)+(+3.86)=
(3)(-416)+0=
2、做一做、议一议
(1)请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数(至少有一个是负数)。
△+□□+△
(△+□)+○△+(□+○)
(2)算出各算式的结果,比较左、右两边算式的结果是否相同呢?
(3)请同学们说说自己的结果,你发现了什么?
活动4【测试】交流总结
这节课你学习了什么内容?你学会了吗?
1、有理数加法交换律和结合律
2、运用加法交换律和结合律要注意:
(1)把正数和负数分别结合在一起相加。
(2)把互为相反数的结合,能凑整的结合。
(3)把同分母的数结合相加。
活动5【作业】拓展练习
1、-5+7+(-4)+5
2、-6+(-44)+13+17
3、-4+17+(-36)+73
Tags:有理数,加减法,通用,教学设计,一等奖
有理数的教学设计2
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的`问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
有理数的教学设计3
【教学目标】
1.会进行有理数加法运算.
2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.
3.会将有理数的减法运算转换成加法运算.
4.会进行加减混合运算.
此外,感受有理数加法法则的合理性以及“分类”的思想方法,感受有理数减法与加法的对立统一,体
会“化归”的思想方法.
【教学过程设计建议(第一课时)】
1.情境创设
除课本提供的情境外,还可以用学生熟悉的生活实例,如用水位变化、存钱取钱等问题引进有理数加法.例如:
第1天水位上涨了3 cm,第2天上涨了2 cm,两天共上涨了多少?第1天水位上涨了3 cm,第2天下降了2 cm,两天共上涨了多少?第1天水位下降了3 cm,第2天下降了2 cm,两天共下降了多少?第1天水位上涨了3 cm,第2天不升也不降,两天共上涨了多少?
如果将上涨记为正,上涨“3 cm"可记为“3”,下降记为负,下降“2 cm"可记为“一2”,你能用含正、负数的算式表示水位的变化过程和结果吗?两天的水位还
可能出现哪些变化?请用含正、负数的算式表示变化过程和变化结果.
2.探索活动
(1)需要特别注意的是,算式“( 3) (一2)= 1”
只是借助正、负号,记录计算净胜球的计算过程与结果,算式的左边是加法,而右边的“1”是根据生活经验得到的.
课本提供的情境是“先赢后输”、“累计为赢”的类型,在将其写成含正、负数的算式并根据生活经验得出结果后,可问学生:除“先赢后输”外,两场比赛的结果还会出现哪些情况?在学生列举出“赢了再赢”,“先输后赢”,“输了再输”,“先赢后平”,“先平后赢”及“平局”等情况后,再让学生填写净胜球计算表,感受两个有理数相加的各种情况,提高学生探求运算规律的积极性.
与小学不同的是,由于有理数由符号和绝对值两部分组成,所以运算时既要考虑符号也要考虑绝对值.例如,首先要确定两场比赛的输赢,这是符号问题,然
后确定输赢球的个数,这是绝对值问题.
(2)设置“数学实验室”的目的是让学生从“形”上感受有理数的加法运算法则.采用人人都可以动手操作的笔尖在数轴上两次移动的方法,直观感受两次连续运动中,点的运动方向与移动的距离对实际移动效果产生的影响,通过“形与数”的转换,加深学生对有理数加法运算法则的理解.
3.例题教学
例1第(1)小题是求一个正数与一个负数的.和;第(2)小题是求两个负数的和;第(3)小题是求两个互为相反数的和;第(4)小题是求0与一个有理数的和.为突出运算法则,4个题目都设计为简单的整数运算.
学生应能熟练进行有理数的加法运算,但运算难度要以《标准》要求为准.教师在补充例题、习题时不宜在数字运算上设置障碍,当学生熟练掌握运算法则后,随着知识的积累、技能的提高、数感的增强、计算器的引入,学生处理繁难运算的能力也会逐渐增强。
【教学过程设计建议(第二课时)】
1.探索活动
从复习有理数的加法运算开始,由问题“在含有负数的加法运算中,加法交换律和结合律还成立吗?”引发思考,让学生感受验证的必要性,主动投入验证活动.采用在几何图形中填数字的验证方法,直观性强且易于操作.通过心算、观察、比较及更改数字等活动,学生很容易认同加法“交换律”和“结合律”的合理性.这种验证方法也适用于乘法对于加法的分配律.
在认同加法“交换律”和“结合律”后,可让学生口述这两个运算律,然后再用字母来表述,从中体会用字母表示数的优越性.
此外,按课本中对扑克牌的约定,随意抽取扑克牌进行计算,也是验证有理数加法运算律的好办法.
2.例题教学
例2没有要求“用运算律进行计算”,只是通过卡通人的旁白告诉学生“这样算简便”,让学生感受有时可以用运算律简化运算,练习和作业时不宜强求学生要用运算律来运算.
【教学过程设计建议(第三课时)】
1.情境创设
小丽从观察温度计上的读数出发,借助生活经验得出了日温差;小明由减法的意义,利用加法“凑”出了日温差.教学时可让学生直接观察温度计,也可制作温度计的教学课件或利用数轴演示日温差.
2.探索活动
(1)用问题串引导学生展开探索活动,例如:
小丽从温度计上看到,从5℃降到一3℃,温差为8℃.你认为小丽的结论正确吗?小丽是在做加法运算还是在做减法运算?
小明根据“日温差”的意义,联想小学里加法与减法的关系,“算出”日温差也是8℃.你认为他的算法行吗?说说你的理由.
小明与小丽的结论相同,是偶然巧合吗?请举例说明.
(2)比较小明与小丽的算式,感受有理数减法运算转化为加法运算的转化过程:减号变为加号,减数变为它的相反数.
3.例题教学
例3、例4的教学中,要注重“减法转化为加法”的过程,引导学生加深对“减去一个数等于加上这个数的相反数”的认识.例4之后,课本指出有理数的加、减法运算可以统一为加法运算,并出现了“2 5—8”可以看成“2 5 (一8)”这样的例子,但没有提出“代数和”的概念.
设计课本上“练一练”的程序运算和习题第ll题的仿“幻方”问题,是为了吸引学生积极参与,用寓教于乐的方式提升学生的运算能力.可以在此基础上,让学生自行设计一些易于操作的有趣活动,进行有理数加、减混合运算的练习.
教学中,如有必要可适当补充加、减混合运算的例题、习题.
4.小结
除对有理数加、减法的运算法则进行小结外,还应向学生指出,由于有理数的减法运算可以转化为加法运算,所以,小学里无法解决的被减数比减数小的减法问题,现在就有了合理的解释.换言之,在有理数范围内减法运算总可以实施.但是,两个有理数相减,差不一定比被减数小,这就是引进负数后对运算带来的重大变化.
有理数的教学设计4
教学目标
1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3,体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类
知识重点正确理解有理数的概念
教学过程(师生活动)设计理念
探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。
问题1:观察黑板上的9个数,并给它们进行分类。
学生思考讨论和交流分类的情况。
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。
例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。
看书了解有理数名称的由来。
“统称”是指“合起来总的名称”的意思。
试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会
练一练
1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。
2,教科书第10页练习。
此练习中出现了集合的'概念,可向学生作如下的说明。
把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。
思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。
创新探究
问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结
到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。
本课作业
(1)必做题:教科书第18页习题1、2第1题
(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。
2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。
初中数学教学策略
一、激发学生的学习兴趣
兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。
激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。
比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。
二、建立民主平等的师生关系
素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。
三、建立多元化的教学目标
教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。
除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。
四、总结
综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。
有理数的教学设计5
教学目标
1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。
3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。
重点难点重点:了解有理数加法的`意义,会根据有理数加法进行运算。
难点:有理数加法中的异号两数的加法运算。
教学过程
教学活动
师生活动
设计意图
一、问题情境
小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?
5+3=8
如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?
(-5)+(-3)=-8
如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?
5+(-3)=2
足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。
图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的净胜球数如何表示?
二、知识点拔:
有理数加法法则:
1.同号两数相加,取相同符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。
三、例题指导
例1 计算
(1) (-3)+(-9)
(2) (-4.7)+3.9
解:(1)(-3)+(-9)=-(3+9)
=-12
(2)(-4.7)+3.9=-(4.7-3.9)
=-0.8
四、练习巩固:P22 1、2。
五、小结:
这节课我们学习了哪些知识?
六、作业:
习题1.3 1、8、12题
有理数的教学设计6
1.4.1有理数的乘法(第一课时)
1.教材分析
1.1教材的地位与作用
教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。
1.2教材的重难点分析 1.2.1教学重点
运用有理数乘法法则正确进行计算。 1.2.2教学难点
有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;
2.2过程与方法
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观
通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析
本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。
附:板书设计
“有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的.法则
前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养
有理数乘法两步骤 练习处
和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。
“有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。
“有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。
在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。
在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维
方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。
有理数的教学设计7
一、教材分析
有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。
二、学情分析
对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。
三、教学目标(核心素养立意)
1、使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
2、初步培养学生发现问题、分析问题、和解决问题的能力。
3、通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣
4、传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。
四、教学重、难点
重点:有理数的乘法法则。
难点:有理数乘法的符号法则
五、教学策略
我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。
六、教学过程(设计为七个环节)
(一)复习导入创设情境
我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的'迁移。进而引入本节课题,以问题引领来激发学生求知欲。
(二)师生互动探究新知
要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)
这样设计的目的是
(1)构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。
(2)通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。
(三)分析法则掌握实质
(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。
(四)解决问题综合运用
通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数—乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。
(五)体验成功享受快乐
利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。
(六)总结收获畅谈体会
在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。
(七)布置作业巩固深化
七、课后反思
在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!
有理数的教学设计8
一.教材分析
“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。
二.学情分析
学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。
三.教学目标
1.知识与技能
(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。
(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。
(3)能熟练进行整数加法运算,并能用运算律简化运算。
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。
3.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
4.重点与难点
会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。
四.教学过程
(一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。
问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。
(二)师生共同探究有理数加法法则
之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:
(1)答错3题时:
(-4)+(-4)+(-4)=-12分
(2)答对5题时:4+4+4+4+4=20分
(3)答对3题,答错5题时,答对的3题与答错的.3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
(三)应用法则解决问题
例1(教科书的例1)
解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)
=0(互为相反数的两个数相加得0)(4)0+(-2)
=-2(一个数同0相加,仍得这个数)
例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。
强调异号两数相加时符号的确定及绝对值的确定。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、基础练习:
教材36页知识技能1.计算
(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);
(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成
数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。
2、提升练习
1.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
2.已知如图:
那么a+b ______0;
a
0
b
五、教学反思:
本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。
有理数的教学设计9
《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:
1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用
教学难点:异号两数相加
教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:
一、复习回顾
1、一个不为零的有理数可以看做是由哪两部分组成的?
2、比较下列各组数绝对值哪个大?
①—22与30;②—与;③—4.5和6
3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?
(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。)
二、新知探究
1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?
3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?
4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)
三、运用法则
例:计算
(1)(+2)+(—11)(2)(—12)+(+12)(3)(+20)+(+12)
(4)(—)+(—)(5)(—3.4)+(+4.3)(6)(—5.9)+0
思维过程:一“看”二“定”三“和差”
(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)
四、巩固法则
1、开火车游戏。
第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。
2、填数游戏。
将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0
3、思考:两个有理数相加,和一定大于每一个加数吗?
(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)
五、小结
加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。
(用一段“顺口溜”识记加法法则)
六、作业设计
1、练习完成在书上,习题1~2完成在作业本上。
2、在圆圈内填上彼此都不相等的数,使得每条线上的三个数之和为0。
五、小结:
用一段“顺口溜”识记加法法则。
反思:“运算能力”是修订后的课程标准提出的“十大核心概念”之一,而“有理数加法”是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础,有理数加法法则是有理数加法运算的准绳,更是难倒了一大片初学者,有的同学学习了有理数的加法法则不但不能叙述法则,反倒连小学学过的非负数的加法运算也不会了,如何突破这个障碍,我认为关键还是加法意义的理解,应让学生置身于现实情境中搞清楚加法究竟是怎么回事,这样一来“和”的.符号的确定与“和”的绝对值的确定也就是顺理成章的事儿了。
对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,熟知加法就是连续两次变化的总结果,然后再给这些算式赋予新的实际意义更利于理解加法的意义。其实,只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些,通过操作,学生对于将算式置于实际情景非常感兴趣。对于接下来将算式按加数分类,探究和的符号与加数符号的关系,还有和的绝对值与加数绝对值的关系都有着浓厚的兴趣,尤其是得到“互为相反的两数相加和为零”时就有学生提到:异号两数相加其实就是正负一抵消,余下的部分就是和。看来只要在课堂上通过适当的引导让学生自身释放出琢磨的能量比让学生打开大脑的录音系统录音要好得多。通过后续学习的考察,学生对于加法法则的记忆与应用并非停留在表面的记忆上,而是对法则有了更深层次的理解,也没有学生刻意追求用教材上的句子一字不漏地来叙述加法法则,他们都能用自己理解的语言来说明到底是为什么。
再思考:这节课是我调入新的学校上的汇报课,领导还有同事们对我的课都做出了中肯的点评,最后一位颇有资历的领导谈到:数学教学应体现其本质,用“数轴”探究有理数的的加法更能体现加法的本质,授课者应做好合理的应用。换言之,本节课未能很好体现加法的本质。个人思考再三认为加法的本质就是“连续两次变化的总结果”,用数轴表示向东走向西走,还是举生活中的盈亏实例等都体现了加法的本质。新旧版本的华师大教材都是以“数轴”为载体探究有理数加法法则的,这种载体的应用主要凸显了直观,变化的结果一清二楚,也体现了数与形的有效结合,无疑是一种很好而有效的载体,但我们为什么不在教材现有载体的基础上做一些突破,让学生从多角度多方位理解加法运算呢!其实现实生活中的“盈”与“亏”生活气息浓郁,且学生熟知,会吸引众多的学生参与,“同号相加”就是“盈盈”型或“亏亏”型,“异号两数相加”就是“盈亏”型,(+5)+(—5)为什么是0?显然盈亏一样,最终兜里没钱!而(+3)+(—10)为什么结果取“—”且用“10—3”,盈少亏多呗!最终还是亏了7元!将加法置身于这样的情景更有利于理解加法的意义,总结加法法则,理解加法法则。
有理数的教学设计10
一、初中数学教学情境的创设原则
第一,生动性原则。初中数学教学情境的创设应当遵循生动性的原则。用直观形象的情景设置来诠释理论性较强的数学原理,从不同的感觉渠道向学生大脑传输数学信息,有利于学生对数学结论的理解和掌握;第二,实践性原则。初中数学教学情境的创设应当遵循实践性的原则。初中学生的大部分时间是放在生活上的,对教学情境的创设应当结合生活中学生经常接触到的知识或者将数学故事的讲述落脚在学生实际问题的解决上,让学生学会用用掌握的数学知识去处理实际问题;第三,悬念性原则。初中数学教学情境的创设应当遵循悬念性的原则。情境创设的目的是激发学生对数学问题的兴趣,让他们产生求知的欲望。所以,情境的创设就离不开学生的兴趣,悬念性比较强的情境才可以让学生身心投入到数学问题的学习和探究之中。
二、初中数学教学情境渗透与融合中存在的一些问题
1.传统教学方式的影响导致学生课堂参与性低下。
受传统灌输式教学方式的影响,有些情况下,虽然教师进行了比较生动的教学情境创设,但是却很难激发起学生主动参与数学问题学习和探究的兴趣,导致出现成绩比价差的学生没有兴趣去学习数学,成绩比较好的学生学习数学的热情也日益低下,逐渐失去了对初中数学的学习兴趣。
新课表对培养学生自主创新能力的要求,给教师教学情境的设置提出了新的挑战。但是,部分教师创设教学情境的创新能力却比较有限,导致部分数学老师在课堂教学中创设的情境大致相同。久而久之,就越来越难以调动学生的积极性和好奇心,不利于学生对数学知识的学习和掌握。
2.教学情境的创设一味追求新意,却不具有实用性。
与教学情境创设千篇一律问题相对应的'就是教师一味追求教学情境创设的新颖性,而脱离了初中学生的生活实际,不具有实用性。这种脱离学生生活实际的教学情境虽然具有新颖性的特点,但是,由于受限于自身的理解能力,大多数学生并不能真正理会老师进行教学情境创设的真正目的,起不到应有的教学效果,甚至有适得其反的不良影响。
三、完善初中数学教学情境渗透与融合应当遵循的策略
1.通过数学故事、数学典故来创设教学情境。
数学故事和数学典故在教学情境的创设中具有独特的作用,尤其是用熟知人物,但不知晓人物具体事迹的数学故事、典故,更能起到激发学生学习兴致,保持学生对数学学习热情的积极作用。例如,讲述勾股定理时,可以引用古典数学巨著《九章算术》的知识,让学生体会到数学知识的博大精深。
2.通过现实生活中的数学现象来进行情境创设。
初中学生认知中最熟悉的部分就是生活中经常接触和用到的知识,甚至有些知识已经在他们头脑中产生根深蒂固的影响。所以,在进行教学情境创设中,结合学生的生活实际,更容易引起学生情感的共鸣,更有利于数学知识的教授。
3.教学情境的创设要注重师生之间的互动。
新课标要求进行互动性强的教学,在初中数学的教学情境创设,要求老师转变自身高高在上的思想观念,与学生建立人格平等的关系,老师要与学生一起进行数学理论的学习和探讨,要从学生认知状况和生活实际进行考虑,更多的让学生发挥在教学中的主体作用,实现师生的良性互动。
4.情境创设应当贯穿整个教学过程。
在现实初中数学的教学过程中,教师一般比较重视在教授之前利用创设情境进行知识的引入,而忽略在教学过程中利用教学情境进行教学辅助。教学情境的创设应当贯穿整个教学过程,根据不同的教学阶段和学生不同阶段的理解能力创设内容各异、难易有别的教学情境更有利于学生学习热情的保持和对数学知识的掌握。
四、结束语
成功的初中数学教学不在于让学生硬性的掌握多少数学知识,而是让学生形成数学知识探索和求知的习惯和方法。教学情境的渗透与融合要更多地服从于教学内容,服务于教学牧鞭,服务于教学重点,服务于学生学习能力的养成和自身素质的全面提高,让学生开心的学习数学,开心的锻炼能力,开心的全面发展,成长为知识、能力、情感和谐共进的有用之才。
有理数的教学设计11
教学目标:
1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用
教学难点:异号两数相加
教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:
一、复习回顾
1、一个不为零的有理数可以看做是由哪两部分组成的?
2、比较下列各组数绝对值哪个大?
①—22与30;②—与;③—4.5和6
3、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?
(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。)
二、新知探究
1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?
3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?
4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的'符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
(设置问题情境,探究、总结、归纳法则。对比了华东师大版教材和北师版教材,都是以数轴为载体探究法则的,并且这种载体非常有利于理解加法的意义,以前也听过其他老师上这节课,用多媒体课件展示向东走、向西走,要么一晃而过,要么总是纠缠不清,法则刚出来,便下课了,所以,我就更换了一种模式,让学生先预习,然后说出这些算式的实际意义更利于理解加法的意义。我认为只要理解了加法的意义,应该说理解法则中“和”的符号与“和”的绝对值的由来更容易一些。)
三、运用法则
例:计算
(1)(+2)+(—11)(2)(—12)+(+12)(3)(+20)+(+12)
(4)(—)+(—)(5)(—3.4)+(+4.3)(6)(—5.9)+0
思维过程:一“看”二“定”三“和差”
(主要是通过设置一组题目,理解法则,并展现思维过程“一看、二定、三和差”,规范学生的解题过程)
四、巩固法则
1、开火车游戏。
第一位同学说一个算式,第二位同学说答案,第三位同学接着说一个加法算式,第四位同学说答案,依次类推,谁卡住,谁表演节目。
2、填数游戏。
将-8,-6,-4,-2,0,2,4,6,8这9个数分别填入右图的9个空格中,使得每行的三个数,每列的三个数,斜对角的三个数相加均为0
3、思考:两个有理数相加,和一定大于每一个加数吗?
(设置了两个游戏:开火车和填数,另外就是打破了小学的思维定势“和总是大于加数”,引入负数后,是有变化的。设置问题“两个有理数相加,和一定大于每一个加数吗?”让学生对有理数加法理解的更深一些。)
五、小结
加法顺口溜:有理加减不含糊,同号异号分清楚;同号相加号相随,异号相减号大绝;相反数、和为0;碰见0、不变形。
(用一段“顺口溜”识记加法法则)
六、作业设计
1、练习完成在书上,习题1~2完成在作业本上。
2、在圆圈内填上彼此都不相等的数,使得每条线上的三个数之和为0。
有理数的教学设计12
【教材分析】《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。
【教学目标】
1.通过现实背景知道乘方运算与乘法运算的关系,理解有理数乘方的意义;知道底数、指数和幂的概念,会求有理数的正整数指数幂。
2.培养学生观察、归纳能力;培养学生互相讨论、合作交流的能力;培养学生思考问题、解决问题的能力,切实提高学生的运算能力,培养学生勤思,认真和勇于探索的精神。
3.感悟数学来源于生活,从而热爱生活;感悟数学符号的简洁美;积极参加数学学习活动,增强自主学习、合作学习意识与习惯。
【教学重点】正确理解乘方的意义,能利用乘方的运算法则进行有理数 的乘方运算。
【教学难点】
1、建立底数、指数、和幂三个概念,并会进行有理数的乘方运算。
2、有理数乘方运算的符号法则。
【教具准备】教具准备:多媒体课件一套。
学具准备:每个学生一张纸。
【教法分析】基于本节课内容的特点和初一学生的年龄特征,我以“探究式”体验教学法为主进行教学。让学生在开放的情境中,在教师的引导启发下、同学的合作帮助下,通过探究发现,合作交流经历数学知识的形成和应用过程,加深对数学知识的理解。教师着眼于引导,学生着眼于探索,学生的探索发现贯穿始中,整个过程侧重于学生能力的提高、思维的训练,情感的成功体验。同时考虑到学生的.个体差异,在教学的各个环节中进行分层施教
【学法分析】从自己已有的知识经验出发,自主参与整堂课的知识构建。在各个环节中进行观察、猜想、类比、分析、归纳,以动手实践、自主探索为主,学会合作交流,在师生互动、生生互动中充分调动学习的积极性和主动性,使自己由“学会”变“会学”和“乐学”。
【学情分析】学生在小学六年级已学习了一个数的平方、立方运算。前面又学习了有理数的乘除法运算,现在所学的有理数乘方,只是在小学所学正数范围扩充到有理数的范围。所以学生在教学活动中能大胆说出自己的体会。在动手,思考和合作交流的过程中,能主动探索,敢干实践,勇于发现。学生间的相互提问的互动的气氛较浓,有良好的学习氛围。
【教学过程】
一、创设情境
问题1、请哪一位吃过兰州拉面的同学说一说拉面的制作过程?(结合学生口述过程)多媒体展示
制作过程如下图(多媒体展示)
教师设法引导学生将生活问题用数学的眼光来观察解决。
引导:
1、这样经过几扣可拉出64根?128根?
2、能否用算式表示这种关系?
这就是我们今天要研究的课题
有理数的教学设计13
1.3.1有理数的加法
一、教学目标
(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;
(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;
(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。
二、教学重、难点
重点:了解有理数加法的意义,会根据有理数加法法则进行运算;难点:有理数的加法中异号两数如何进行加法运算。
三、教学过程
(一)创设情境,导入问题
活动1学校的运动会刚结束不久,我们知道在足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。那么,在本次运动会中,我们学校红队进4个球,失两个球。蓝队进一个球,失一个球。请问两队的净胜球数分别是多少?如何表示?
红队:4+(-2)蓝队:1+(-1)
师:请同学们观察这两个式子,和我们小学所学的加法运算有什么不同呢?生:有了负数的参加师:像这种有了负数的参加的加法运算我们称为什么?想知道有理数是如何进行相加的呢?那么我们今天就来共同研究——有理数的加法(引出课题)。设计意图:采用与生活实际相关的足球比赛引入,通过净胜球数说明实际问题中要用到正数与负数的加法,从而提出问题,让学生思考,可以激发学生探究的热情。
(二)启发探索,获取新知活动2看下面的问题
1、一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m.
如果物体先向右运动5m,再向右运动3m,那么两次运动后总的`结果是什么?
两次运动后物体从起点向右运动8m.写成算式就是:5+3=8①
2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动8m.写成算式就是:(-5)+(-3)=-8②
这个运算也可以用数轴表示,其中假设原点O为运动起点:
-3–9–8–7–6–5-8–4-5–3–2–1O 4、如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的问题。
活动31、如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算式就是:5+(-3)=2③
用数轴表示为:
5-3O122345
2、探究;利用数轴求以下情况时物体两次运动的结果:
(1)先向左运动5m,再向右运动3m,物体从起点向___运动了___m;(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___m;(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___m;
(4)如果物体第一秒向右(或左)运动5m,第二秒原地不动,两秒后物体从起点向右(或左)运动了___m.
师生行为:让学生自己探究,利用数轴可得出相应结果,依次填空;引导列算式为:-5+3=-2④
5+(-5)=0⑤-5+5=0⑥5+0=5或-5+0=-5⑦
设计意图:通过表演、结合数轴,其目的是让学生了解用数轴表示加法的方法,从而为后面利用数轴探究其他情况做准备。
异号相加有三种情况,要充分利用数轴,由在数轴上表示结果的点所处的位置以及表示结果的点与原点的距离,就可以确定两次运动的结果。
引导学生观察①到⑦的式子中可以发现什么规律?(①②两式是同号两数相加、③④⑤⑥是异号两数相加且⑤⑥是两加数绝对值相等、⑦是一个数与0相加)
请同学们分组讨论研究和的符号以及绝对值与两个加数之间的符号以及加数绝对值之间有什么关系?从而分组概括有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0
3、一个数同0相加,仍得这个数
有理数运算三个步骤:①确定类型②确定和的符号③确定和的绝对值
设计意图:运算法则是从实例引出的,这时说明法则的合理性。使理解法则并学会运用法则
(三)运用新知
活动5例1计算(1)(-3)+(-9)(2)-4.7+3.9
解:原式=-(3+9)解:原式=-(4.7-3.9)=-12=-0.8
例2足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数。
(四)巩固新知,变式练习(课本P22)1.用算式表示下面的结果:(1)温度由-4℃上升7℃;
(2)收入7元,又支出5元。2.计算:
(1)15+(-22);
(2)(-13)+(-8);
(3)(-0.9)+1.5;
(4)+(-).
(五)课堂总结,布置作业
这节课我们学习了哪些知识?你有什么收获?(师生一起回顾有理数加法法则)
作业:习题1.3第1、7、11
有理数的教学设计14
教学目标
1,经历探索有理数减法法则的过程;
2,理解有理数减法法则,渗透化归思想;
3,能较为熟练地进行两个有理数减法的运算;
4,能解决简单的实际问题,体会数学与现实生活的联系.
教学难点
1,通过实例引人有理数减法的法则;
2,转化过程中两类符号的改变.
知识重点有理数的减法法则,减法转化为加法的条件,把减数变为它的相反数。
教学过程(师生活动)设计理念
设置情境
引入课题同学们,在前面的学习中,我们知道生活中有许多地方需要用到有理数的加法,那么请同学们想一想,生活中有没有需要用减法的呢?
(学生思考,举例)小明同学前段时间就碰到过这样一个问题:某地一天的气温是一3~4℃,求这天的温差,可是他不会算,同学们能帮助他解决
这个问题吗?—提出课题.创设一个小明需要解决的问题情境,让学生主动地参与思考与探索。
分析问题
探究新知多媒体显示温度计及以下案例:
小红说:“我知道-3 ~ 4℃这一天的温差是多少度,
但我不知道4-(-3)该怎么算.”
问题1:你能从温度计上看出4℃比-3℃高多少摄
氏度吗?
先请同桌两位同学相互讨论交流,然后请2~3个学
生发言.
问题2:如何计算4-(-3)呢?
先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数
如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.、
即X+(-3) =4,因为7+(-3) =4,所以4-(-3) =7
(板书上述几个步骤,最后一步用彩色粉笔写出)
这时,教师可适时小结:
刚才,我们用多种方法得出了4- (-3) =7,可是,如果每次进行减法运算都要这样做的话,太麻烦了;看来我们还要继续努力,争取找到更简洁的方法.
问题3:请同学们想一想,4十?=7?
请学生回答,教师板书:4+(+3) = 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:
4(-3)=4+(+3).
这时教师问:你发现这个等式有什么特点?
学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:
1,把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?
2,计算9-8,9+(一8),15一7,15+(一7),你发现了什么?
请小组代表全班汇报,教师在此基础上归纳:
有理数减法法则:减去一个数,等于加上这个数的相反数.
问题4:你能够用字母把法则表示出来吗?
[a-b=a+(-b)]
允许学生从不同角度观察得出温差为7℃,如
采用温度计从4℃数到零下3℃等,只要学生的方法合理,都应效励.
此处先让学生回顾加法与减法互为逆运算关
系,有助于学生理解4-(-3)=7.
通过学生的合作探讨,培养学生与他人合作交流的习惯与意识,改变他们的学习方式,争取让他们的学习方式,争取让每个学生都在同伴的交流中获益。
此处也是让学生验证前面所提的猜想的正确性,用字母把减法法则表示出来,有利于学生的理解和记忆。
解决问题例1即教科书第27页例5.
先请学生思考并尝试解决,然后教师板书规范解答
之后引导学生反思:“通过这几道题目的计算,你能发现什么?”
(1,有理数的减法可以转化为加法;2,减正数即加负数,减负数即加正数。)
例2世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?
请学生思考后,解决此问题(可请一名学生板演)
想一想:8848米有多少层楼高?渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。
让学生感受8848米这个高度,培养学生的数感。
课堂练习引导学生思考并讨论教科书第28页的“思考”
教科书第27页的练习
小结与作业
课堂小结通过这节课,你有什么收获?
本课作业教科书第31页习题1.3第11题
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的`温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生学习的引导者、伙伴的新型师生关系.
2,在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。
有理数的教学设计15
教学目标
1.了解的概念和的画法,掌握的三要素;
2.会用上的点表示有理数,会利用比较有理数的大小;
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用这个工具打下基础。
二、知识结构
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义
三要素
应用
数形结合
规定了原点、正方向、单位长度的直线叫
原 点
正方向
单位长度
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数
比较有理数大小,上右边的数总比左边的数要大
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念。是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的.相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点
1.的概念
(1)规定了原点、正方向和单位长度的直线叫做。
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。
以是理解有理数概念与运算的重要工具。有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想。另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对的学习。
2.的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。
五、定义的理解
1.规定了原点、正方向和单位长度的直线叫做,如图1所示。
2.所有的有理数,都可以用上的点表示。例如:在上画出表示下列各数的点(如图2).
A点表示-4; B点表示-1.5;
O点表示0; C点表示3.5;
D点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数。
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。
同理, ,表示 是负数;反之 是负数也可以表示为 。
3.正常见几种错误
1)没有方向
2)没有原点
3)单位长度不统一
教学设计示例
【有理数的教学设计】相关文章:
有理数的乘法教学设计07-22
有理数教学反思04-06
《有理数乘方》教学反思01-14
有理数的加减混合运算的教案设计08-26
有理数说课稿11-20
《有理数》说课稿12-03
有理数说课稿06-25
有理数的除法教案03-21
有理数的加法教案07-31