平行四边形的面积教案
作为一名人民教师,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。那么什么样的教案才是好的呢?以下是小编整理的平行四边形的面积教案,欢迎阅读,希望大家能够喜欢。
平行四边形的面积教案1
教学内容:练习十九的第11~15题。
教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。
教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。
教学过程:
一、复习平行四边形、三角形、梯形面积的计算公式。
出示下列图形:
问:这3个图形分别是什么形?(平行四边形、三角形和梯形)
平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)
平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)
三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)
为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)
梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)
梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)
量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)
二、做练习十九中的题目。
1、第12题,先让学生说一说题中的.图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。
2、第13题和第15题,让学生独立计算,做完后集体订正。
3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的?
这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)
4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。
三、作业。
练习十九第11题和第14题。
课后小结:
平行四边形的面积教案2
教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。
教学目标:
1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应
用公式正确计算平行四边形的面积。
2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。
3.情感目标:培养空间观念,发展初步的推理能力。
教学过程:
一、复习导入。
1.说出下面每个图形的名称。(电脑出示)
2.在这几个图形中,你会求哪些图形的面积呢?
3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题)
二、探究新知。
1.教学例1。
(1)出示例l中的第一组图形。
提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。
对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的':即数方格比较大小或把左边的图形转化后与右边的图形进行比较。
(2)出示例l中的第二组图形。
提出要求:你能用刚才的方法比较这两个图形的大小吗?
学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。
(3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。
2.教学例2。
(1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗?
(2)学生操作,教师巡视指导。
(3)学生交流操作情况。
提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程)
提问:有没有不同的剪、拼方法? (继续请学生演示)
教师用课件演示各种转化方法,进行小结。
(4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开?
启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。
(5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。
3.教学例3。
(1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系?
(2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:
转化成的长方形 平行四边形
长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡)
(3)小组讨论:
①转化成的长方形与平行四边形面积相等吗?
②长方形的长和宽与平行四边形的底和高有什么关系?
③根据,长方形的面积公式,怎样求平行四边形的面积?
(4)反馈、交流,抽象出面积公式。
根据学生的讨论进行如.下的板书:
因为 长方形的面积二长×宽
所以 平行四边形的面积二底×高
(5)用字母表示公式。
如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?
结合学生的回答,板书:
S=ah
(6)指导完成“试一试”。
先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。
三、巩固深化。
1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。
2.指导完成练习二第1题。
(1)明确要求,鼓励学生尝试操作。
(2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的底和高可以分别是多少?
(3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。
3.指导完成练习二第2题。
先让学生指出每个平行四边形的底和高,再让学生各自测量计算。
提醒学生:测量的结果取整厘米数。
4.指导完成练习二第3、4两题。
先让学生独立解答,再通过交流说说自己解决问题的思路。
5.指导完成练习二第5题。
(1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。
(2)指导观察、思考。
要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢?
(3)指导测量、计算,验证猜想。
(4)连续拉动长方形,启发思考面积的变化有什么特点。
四、全课小结。
通过今天的学习活动,你学会了什么?有哪些收获?
教学后记
通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。
平行四边形的面积教案3
教学要求:
1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。
2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。
教学重点:
1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。
2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。
3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。
教学难点:
1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。
1.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。
1.平行四边形面积的计算
第一课时
教学内容:平行四边形面积的计算(例题和做一做,练习十七第13题。)
教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3 . 引导学生运用转化的思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。
教学过程:
一、激发
1.提问:怎样计算长方形面积?
板书:长方形面积=长宽
2.口算出下面各长方形的面积。
(1)长1。2厘米,宽3厘米。
(2)长0。5米,宽0。4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。
(1)请大家打开书64页(指名读第2段)。
(2)指名到投影上数。边数边讲解:我先数,它是平方厘米;再数,它是平方厘米;两部分合起来是平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形长方形。这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的`梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书:平行四边形的面积=底高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=ah
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作,也可以省略不写。所以平行四边形面积的计算公式可以写成S=ah或S=ah。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.P66页例题:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
2.完成P.72页做一做第1、2题。
订正时提问:计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个,它的面积与原平行四边形的面积。这个长方形的长与原平行四边形的相等。这个长方形的与原平行四边形的相等。因为长方形的面积等于,所以平行四边形的面积等于。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等
(2)平行四边形底越长,它的面积就越大
5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)
162015
20
6.练习十七第3题
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十六节第2题。
第二课时
教学内容:平行四边形面积计算的练习(P。74~75页练习十七第4~9题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。(练习十六第4题)
4。90。75。4+2。640。250。87-0。49
530+2703。50。2542-98612
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2。5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1。95公顷,
再求共收小麦多少千克:70001。95=13650千克
⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十六第7题。
四、作业
练习十六第5、8、9、11题。
平行四边形的面积教案4
一、教材简析和教材处理
1.教材简析
“平行四边形面积的计算”是北师大版五年级上册第二单元图形的面积的第四课时的内容。本节课是通过具体的情境提出计算平行四边形面积的问题。这节课是在学生已掌握了面积概念和面积单位、长方形和正方形的面积计算,以及认识平行四边形的基础上进行教学的,是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。
2.教材处理
以往,教师通常把《平行四边形面积的计算》看作是一种静态的规律性数学知识,只重视结论和应用,而不注意体验面积计算公式的生成过程,教学时简单演示操作,急于导出计算公式,然后让学生死记硬背公式,再通过进行枯燥无味的操练,强化技能。随着课程改革的深入,教师们越来越重视学生获取知识的过程。新的课程标准提出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的`机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。”基于这一认识,我认为教师可以为学生创设一个大问题背景下的探索活动,根据五年级学生的心智水平和认知规律,结合学生的实际,以活动为载体,放大探究过程,以“猜想”、“实践”、“验证”贯穿全课,为学生提供自主探索空间。以平行四边形面积的计算为重点,通过割补操作实验突破难点,把平行四边形转化为长方形,学生自主地从长方形面积计算公式推导出平行四边形面积计算公式。再实例应用进一步理解掌握图形之间的内在联系,把新知识纳入到原有的认知结构之中,感受数学的思想方法,激发自主学习兴趣,增强积极参与意识,体验成功。
二、教学过程设计和设计意图
1.创设情境,设疑激趣
一上课,投影出示公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?接着老师就拿出一个长方形活动框架,让学生说出这是长方形,并说出面积计算公式。然后对角一拉变成一个平行四边形,在学生好奇这个变化时,让学生大胆猜想变化后的平行四边形与原来的长方形的面积谁大?学生可能有三种猜想。
[设计意图:长方形拉成平行四边形后,由于四条边的长度不变,所以不少学生认为其面积也不变,“猜两个图形谁的面积大”既能很快抓住学生的好奇心,又让学生回忆旧知,找准新知的最佳切入点,迅速切入正题。]
2.实验操作,推导公式
(1)讨论数小方格求面积的方法
“数小方格个数求面积”的方法在“比较图形的面积”和“地毯上的图形面积”中已有所认识,学生基本能在方格纸上数出包括平行四边形等图形的面积。本课中我设计让学习小组自主实验。让学生用透明的方格胶片盖在图形上计算图形的面积,明确图中每个方格表示1平方厘米,不满一格的都按半格计算。请学生看一看,想一想,议一议,可从中发现什么?引导学生说出平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,面积也是相等的,为平行四边形面积计算公式的推导孕育铺垫。再结合生活的实际列举出如需计算较大平行四边形面积时,用“数小方格个数求面积”的方法麻烦,难以操作,从而进一步激发学生探索平行四边形面积计算方法急迫感。
(2)实验操作,推导验证
组织学生拿出已准备好的平行四边形假设为公园草坪,小组合作尝试操作实验,带着问题自主探索计算平行四边形面积的基本方法,集体交流,让学生汇报通过沿平行四边形的一条高把图形剪开,然后平移、拼接,把平行四边形转化为面积相等的长方形。老师让学生之间互相评价、激励。
课件再次演示操作过程,组织学生讨论你能发现什么?学生可能会说出
①平行四边形和转化后的长方形的关系:平行四边形和转化成后的长方形的面积不变,平行四边形的底和高与转化后的长方形的长和宽相等。②由此可推导出平行四边形面积计算公式为“平行四边形面积=底×高”。对学生的精采表现及时给以肯定和鼓励。
[设计意图:学生有疑后,给予充分的时间、空间、让学生借助学具,动手操作,亲身经历平行四边形面积计算方法的形成建构过程。学生的实际操作可能是笨拙的,观察、比较、概括可能会观点不一,或者不够完整,这都不重要,重要的这些都是学生自己实践操作,自主生成的知识。]
(4)阅读教材,反思质疑
当学生正沉浸在成功的喜悦时,教师给提供一个阅读、深入思考、反思、小结的机会。先让学生阅读教材第23页,自主完成填空,组织学生交流对用字母表示公式的理解;交流自学例题后的心得体会,学习计算的方法,最后让学生质疑。
[让学生阅读教材,反思质疑,不仅进一步让学生领悟平行四边形的面积计算方法,同时也使学生的思维与语言得到同步发展,培养回顾和分析解决问题过程的意识。]
平行四边形的面积教案5
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的`是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。
(二)拓展提升
一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?
1.引导学生算出它的面积;
2.请学生在方格纸上画出这样的平行四边形;
3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。
4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。
5.思考:面积相等的平行四边形一定等底等高吗?为什么?
【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。
四、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
平行四边形的面积教案6
教学目标
教学目标:
知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。
能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。
情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。
教学重点和难点
教学重、难点:
理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。
培养学生运用公式解决实际问题的能力。
教学过程
(一)创设情境,设疑引入
谈话:出示两个美丽的花坛(课件呈现)。
提问:请大家观察一下,这两个花坛哪一个大呢
然后给出长方形的长和宽让学生计算长方形的面积。
提问:那平行四边形的面积你会算吗?从而导入新课。
(二)操作探索,获取新知
数方格感知平行四边形和长方形之间的关系
(1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)
(2)汇报交流自己的发现。
小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。
2、应用“转化”思想,引入割补、平移法
(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)
(2)精彩展示:要求边讲边操作。
提问:为什么都要转化成长方形?
为什么一定要沿着高剪开呢?
接着电脑演示其它方法,渗透割补、平移法
3、建立联系,推导公式
(1)小组合作探索:
a、原来的.平行四边形转化成长方形后,什么变了?什么没变?
b、拼成长方形的长与原来平行四边形的底有什么关系?
c、拼成长方形的宽与原来平行四边形的高有什么关系?
d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )
(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)
提问:用字母怎么表示呢?自学课本。
学生回答s=ah(板书)
提问:s、a、h分别表示什么呢?
提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)
(三)巩固应用,内化新知
前面的花坛题
课本第2题:你能想办法求出下面两个平行四边形的面积吗?
拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?
(四)课堂总结,深化新知
师:同学们,通过今天的学习,你有什么收获呢?
平行四边形的面积教案7
【教学内容】
平行四边形面积的计算
【教学目标】
1、通过教学向学生渗透事物之间普遍联系并在一定条件下相互转化的辨证唯物主义思想的启蒙教育。
2、掌握平行四边形面积的计算公式及应用所学的知识解决实际问题。
3、培养学生手、脑、眼、口多种感官并用的综合能力;培养学生积极参与、团结合作、主动探索的精神。
【教学重难点】
1重点:理解平行四边形面积的计算公式的推导过程并运用公式进行正确计算,解决实际问题.
2难点:理解平行四边形面积的计算公式的推导过程。
【教具、学具准备】
自制平行四边形的多媒体教学软件一套。教师、学生准备平行四边形、长方形硬纸若干张、剪刀一把。
【教学过程】
一、迁移训练
1视频台出示两组图形。提问:比较下面两组图中阴影图形面积的大小,并说明方法。
教师小结:比较以上两组图形的大小都可用一种方法,那就是把不规则的图形转化成已学过的图形再比较,运用这种"转化"的方法,可以解决很多实际问题。
2、出示活动四边形
问:这是什么形状?(长方形)
你会求它的周长、面积吗?
教师用手拉长方形的边,使其变成平行四边形。
问:这是什么图形?(平行四边形)你会求它的面积吗?
二、提问导入
教师:平行四边形与长方形之间有什么关系呢?今天这节课,我们就来研究平行四边形面积的计算。(板书课题:平行四边形面积的计算)
三、进行新课
(一)引导学生数方格算面积,为引导面积公式做准备。
1、视频台出示教科书第154页的长方形方格图(如图)
提问:在这个图形里,每一格代表1平方厘米,不满一格的都按半格计算。请你用数方格的方法,求出这个长方形的面积是多少?(18平方厘米。)
你还有别的办法能求出它的面积?(可以利用长方形面积公式求出。)
2、视频台演示长方形变成多边形(如图)。
教师问:谁能说出这个多边形的面积是多少?
你是怎么知道的?(启发学生说出通过割补把长方形拼成长方形,然后根据长方形面积计算就可以求出多边形的面积是18平方厘米。)
3、视频台出示平行四边形(如图)。
教师问:谁来数一数这个平行四边形占多少格?(让学生通过数方格得到平行四边形面积是18平方厘米。每两个半格算1平方厘米。)
教师:如果有很大很大的一块平行四边形的草地,需要求它的面积,你愿意用数方格的方法去测量它的面积吗?你们觉得用这样的方法方便吗?能不能想出一个不用数方格并且能很快求出它面积的方法呢?下面我们将作进一步研究。
(二)推导平行四边形面积计算公式
1、教师:同学们,刚才我们用转化的方法把多边形转化长方形,你能不能用同样的方法,把平行四边形转化成我们已学过的图形,来求出它的面积呢?现在请你们分小组讨论,然后利用你们准备的平行四边形纸板和剪刀,剪一剪、拼一拼,把它转化成自己会算面积的图形。
学生讨论,老师参与学生的讨论。活动完后,让学生互相检查,看是不是把平行四边形转化为长方形,让用不同拼剪方法的同学展示自己的.结果,并说说自己的想法。
结合剪拼过程,组织学生分小组讨论
(1)平行四边形转化长方形后,两种图形面积 有什么联系? (把平行四边形转化成一个长方形,它的面积与原来平行四边形相同。)
(2)教学平行四边形各部分名称
高
底
引导学生逐个分析:沿平行四边形任意一条高剪开、平移,都可以得到长方形。
2、推导平行四边形面积计算公式
因为长方形的面积=长×宽,所以平行四边形的面积=底×高
长 长方形的面积 = 长 × 宽
宽
底平行四边形的面积 = 底 × 高
高 用字母表示为 S = a × h
= a . h
= ah
3、推导学生验证平行四边形面积计算公式
视频台出示:教科书第154页的平行四边形方格图
让学生用面积公式算一算,看结果与数方格方法求得的面积结果是不是一样。
四、 运用新知,解决问题
1、视频台出示
例1:一块平行四边形的钢板(如下图),它的面积是多少?
3米
6米
2、巩固练习
(1)视频台出示:第156页的"做一做"
学生结合图示,计算出这块地的面积大约有多少平方米。
(2)练习三十七的第1题。
学生独立完成,集体订正
五、课堂总结
教师以提问的方式进行课堂总结:这堂课学习了哪些知识?通过学习,你都有哪些收获?
教师在学生回答基础上进行小结:
平行四边形面积的计算方法,是通过把平行四边形转化长方形,利用长方形面积计算公式推导出来的。这种把新知识转化已学的知识,用旧知解决新知的方法经常要用到,希望同学们较好的掌握。
六、课后作业
练习三十七的第1、2两题
【板书设计】
平行四边形面积计算公式
长 长方形的面积 = 长 × 宽
宽
底 平行四边形的面积 = 底 × 高
高 S = a × h
=a.h
=ah
平行四边形的面积教案8
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。
教学目标:
1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
平行四边形面积计算公式的推导。
教学过程:
一、情境激趣
1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。
2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!
3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。
提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?
4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)
二、自主探究
1.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的'宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(4)利用课件演示把平行四边形变成长方形过程。
(5)观察并思考以下两个问题:
A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑
四、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
五、巩固运用
1.练习十五第1题,让学生独立完成后反馈答案。
2.你会计算下面平行四边形的面积吗?
3.你能想办法求出下面平行四边形的面积吗?
4.练习十五第3题。
六、全课小结(略)
平行四边形的面积教案9
教学内容:课本第72页。
教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。
教学过程:
一、复习。
1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)
2.填空。
0.28平方米=()平方分米=()平方厘米
32000平方米=()公顷
0.5平方千米=()公顷。
3.求下面平行四边形的面积。(口答)
(1)底18厘米,高10厘米
(2)底25分米,高4分米
(3)底12.5米,高8米
(4)底16米,比高多6米
(5)底和高都是30厘米
二、新授。
1.揭示课题。
师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)
2.出示例题。
一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
学生口述解题思路:求钢板的面积就是求平行四边形的面积。
学生独立解答
4.8×3.5?17(平方米)
答:它的面积约是17平方米
补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?
总重量=每平方米重量×平方米数
学生试做。
集体评讲。
钢板重量:3.9×17=66.3(千克)
三、巩固练习。
1.P72页做一做。
通过书面练习第1题达到巩固求平行四边形面积的计算能力。
指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。
2.练习十七第6题。
先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的`面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)
学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)
得出:底和高分别相等的平行四边形,面积也相等。
判断:下面的平行四边形面积相等吗?
3.练习十七第7题。
学生独立完成。集体核对。
4.练习十七第8题。
先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。
四、作业。
练习十七第9题。
五、补充练习。
已知一个平行四边形的面积是28平方米,底是7米,求高是多少?
引导学生思考:因为:a·h=S
所以:h=S÷a
平行四边形的面积教案10
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的`厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
平行四边形的面积教案11
一、 教学目的:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2、培养学生运用转化的方法探索规律、解决实际问题的能力,发展学生的空间观念。
3、并通过实例培养学生热爱家乡、爱护环境的意识。
二、教学重难点:
1、教学重点:掌握平行四边形的面积计算公式,并能正确运用。
2、教学难点:理解平行四边形面积计算公式的推导过程。
三、教具:
电脑、课件(cai),实物投影,两个平行四边形的硬纸,剪刀一把。
四、学具:
学生每人准备平行四边形的两个,方格纸一张,剪刀一把。
教学过程:
一、谈话引入:
1、鼓励学生。
师:王老师听说四(1)班的同学特别棒,我想考考大家,愿意接受挑战吗?(愿意)
(cai:出示十运会吉祥物金麟的形象)认识吗?(金麟)这就是今年南京将要举办的十运会的吉祥物金麟,)为了使南京以更加优美的环境来迎接十运会,政府投入了大量的资金绿化环境,连小动物们也行动起来了。一天金麟到小狗家做客,它们在一起商量着什么呢?同学们请看:(cai出示一只小狗并播放录音,出示商量的内容)
小狗说:“金麟,我家前、后面各有一块空地,我想把它们绿化一下,但我不知道空地的面积各是多少,你能帮我吗?”(cai:出现两块不规则空地,书第42页上面右边的两幅图。)
(评析:注重数学问题生活化,生活问题数学化,培养学生生活中处处有数学的思想。如课中联系实际,选择学生感兴趣的、社会生活中鲜活的题材:十运会的吉祥物金麟引入绿化环境,再引出求图形的面积。既激起了学生对家乡的热爱,又使学生体会到:原来这就是数学。培养学生用数学的眼光去观察世界、了解世界。使学生对数学产生亲切感,激发了学生的学习兴趣。)
2、师:“这就是那两块空地,同学们,你能用学过的方法帮帮小狗吗?(数方格)(cai:覆盖上方格)数方格时,不满一格按?(半格计算)数第二幅图王老师想请同桌两位同学合作,一人数整格、一人数半格。数一数这两个图形各有几个方格?(15个)。(cai:闪动一个小方格,接着闪动各个图形的方格换颜色。如果每一个方格表示1平方米,它们的面积各是多少?(各是15平方米)
3、小组讨论:不数方格,还有别的办法吗?
(生1:把左边凸出的部分剪下来,补到右边凹进去的地方。生2:这样就拼成了一个长方形。)(cai出示剪拼的过程。)
4、小结:
先沿虚线剪下,再向左平移到缺口处,就将不规则的图形转化成了学过的长方形,这是一种重要的数学思想即“转化思想”。在今后的数学学习中会经常用到。(板书:转化)现在转化成了什么图形?面积怎么求?公式?
5、到此为止,求平面图形的面积用了两种方法,第一种数方格求面积,第二种应用公式计算,你觉得哪一种方法更简便,为什么?
6、观察思考:小结:大家想一想,我们在转化的过程中,图形的什么变了?什么没变?(形状变了,面积没有变)
转化成什么图形?(长方形)面积怎样计算?板书:长方形的面积=长×宽
7、引入:今天我们就要用转化思想来学习新的知识——平行四边形面积的计算。(板书课题)
(评析:在数、算、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,得出自己喜欢的方法。同时也渗透了“转化”的数学思想,为后面的学习研究作铺垫。)
二、教学新知。
1、创设情境。
(1)出示平行四边形。(cai)师:这是什么图形?(平行四边形)请同学们拿出这个平行四边形,你能告诉我它的.底和高各是多少。(底是6厘米、高是3厘米)(师板书 )你能马上说出它的面积是多少吗?(18)怎样算的?(用6乘3)为什么?(底乘高)你知道为什么用底乘高呢?这就是我们这节课所要研究的内容。同学们大胆地猜想一下,平行四边形可以转化成我们学过的什么图形呢?(长方形),对不对?我们需要验证。
(评析:教师抓住契机,引导学生大胆地提出解决问题的方法,并渗透验证的思想。)
2、引导发现。
(1)下面我们就来做平行四边形转化成长方形的实验,请同学们拿出这个平行四边形,在小组内边讨论边操作,看哪个小组研究得认真,完成得快!
(2) 拼好的请举起来让大家看看是不是长方形。谁愿意把你转化的方法告诉大家?(学生投影仪上展示)
(3)观察:你是怎样剪的?这种转化方法是沿着什么剪的?(都是沿着高剪的)为什么要沿高剪开呢?(这样才能形成直角。因为长方形的四个角都是直角)
(4) 教师演示:
(师拿出两个平行四边形),我这儿也有两个平行四边形,现在我把它们?(重合)说明什么?(这两个平行四边形完全一样)请大家仔细观察,同时思考一个问题:平行四边形转化成长方形后,这个长方形与原来的平行四边形之间有什么关系。(师动手操作)
第一步剪:沿着平行四边形的高剪,剪下了一个什么?(直角三角形)
第二步移:把剪下的直角三角形沿着底边慢慢地向右平移。我是怎样移的?(沿着平行四边形的底平移。)
第三步拼:直至拼成了一个?(长方形)
(5)、我分了几个步骤?(剪)剪下了什么?(直角三角形)、然后呢?(移)沿着什么平移?(底边)最后呢?、(拼),拼成了什么图形?(长方形)
(6)、想看电脑演示吗?(cai演示剪、移、拼的过程。)
(7)、你能像电脑演示的那样把平行四边形转化成长方形吗?(能)好,请同学们把刚才剪下的直角三角形放回原处,再重新操作一遍。(学生操作)
3、引导学生得出结论。
(1)思考讨论:
①转化后的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?(形状变了,面积没变)(cai分别闪动两个图形的表面。)
平行四边形的面积我们不会求,但是你们却把它转化成了一个已经学过的长方形,如果我们把长方形的面积求出来,不就是平行四边形的面积吗?要求长方形的面积我们需要知道什么条件?(长和宽)(板书)各是多少?(长6宽3)为什么?(长就是底,高就是宽)面积怎么计算?(6乘3得18平方厘米)那么平行四边形的面积是多少?(18)为什么?(面积相等)
②是不是每个平行四边形都能转化成长方形?都有这些联系呢?我们需要验证。想做这个实验吗?(想)请同学们自己制作一个平行四边形。(学生操作)
要求:把这个平行四边形也转化成长方形,并填写书第43页的表格,再在小组内讨论,现在的这个长方形与原来的长方形有什么关系?(学生操作、填表、讨论)
(小黑板出示书43页表格,指名多位学生填数据。)请同学们观察表中的这些数据,你有什么发现?(底就是长,高就是宽,面积相等)(cai出示书43页的填空),学生填在书上,(cai出现答案)。
(2)讨论得出:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,长方形的面积与平行四边形的面积相等。(板书)(3)长方形的面积是怎样计算的(长×宽)。那么平行四边形的面积怎样计算?为什么?板书:
因为 长方形的面积 =长×宽,所以 平行四边形的面积=底×高。
师:同学们真了不起,通过实验看出:(屏幕显示)我们可以把一个平行四边形转化成一个长方形这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,那么长方形的面积与平行四边形的面积相等。(同桌互说)
(4)用字母怎样表示呢,请打开书第44页,自己读一读。(指读师板书)
(5)、问:要求平行四边形的面积,需要知道哪两个条件?(需要知道平行四边形的高和底)如果给出平行四边形的底和高,你会求它的面积吗?(会)
(评析:教师根据教学内容和目的,为学生创造了充分地动手操作的空间,每一次操作目的都很明确。
第一次,猜想、尝试:让学生根据自己的猜想进行尝试,动手剪、拼、割、补,动脑思考,进一步感知平行四边形与长方形的关系。采用小组合作的形式,为学生创设了主动参与学习活动的机会,提供了探究的材料,真正地把学生推到了学习的主体地位。
第二次,交流、思考:请学生介绍自己的探究结果,在实物投影上操作转化的过程,并说一说怎样想的。让学生交流彼此的方法,培养学生善于倾听他人发言进行思考、取长补短的能力。
第三次,观察、思考:教师操作转化的过程,对学生的发现进行整合,帮助学生整理出完整的过程,学生仔细观察明晰步骤。
第四次,观察、比较:cai再演示剪、移、拼的过程,既形象直观、又生动,发挥了其它教学手段不可替代的作用。让学生再一次完整连贯地体会整个转化的过程,进一步比较平行四边形与长方形,明确它们之间的联系。
第五次,练习、比较:让学生在已有的基础上再一次操作,边操作边观察边思考边比较,从而得出平行四边形与长方形之间的联系,并整理成文字叙述的形式。
第六次,提问、验证:提出是不是每个平行四边形都能转化成长方形,都有这样的关系呢?让学生自己剪一个任意的平行四边形进行再验证,从而得出结论引导出公式。
培养了学生通过观察、尝试、交流、练习、思考、提问、猜想、验证、比较等活动,自主探索求异创新的能力。)
4、应用公式进行面积计算。
(1)(cai出示例题):一块平行四边形玻璃(如右下图),它的面积是多少?
解答后提问:你是根据什么来计算平行四边形的面积?注意单位名称是?
5、指导看书,小结质疑:
师:这节课你学会了什么?重点知识是什么?还有什么不明白的地方?
三、巩固练习
1、书第44页的“练一练”,(学生自己读题、再独立完成、集体核对问清根据什么列式计算的?)
2、书第45页练习九的第3题。(同上)
四、(cai)以下练习共有三关,每闯过一关,屏幕就会出现一幅画面,如果闯过全部四关,屏幕上将会向你展示一幅完整的画面(十运会已经建成的场馆外观和周遍的绿化结合图。),向你表示祝贺。想闯过去吗?(想)1、三个平行四边形a、b、c中哪一个的面积是3×2=6(平方厘米)?(单位:厘米)
2、求下图的面积。(强调找准对应的底和高)
3、为了迎接“十运会”,金麟打算在家门前的空地上开辟出一块面积是24平方米的平行四边形绿地,你能同时说出它的底和高吗?有不同的吗?看谁想出的答案多。
最后教师在揭晓有关十运会所拍摄的画面中以宣传爱护绿化、保护环境,争做“小小东道主”结束全课。
(评析:体现了练习的趣味性和开放性,学生情绪高涨,课堂气氛活跃。不仅巩固了知识提高了能力,而且加深了学生对家乡的热爱和积极争当“小小东道主”,为南京将要举行的十运会献一份力的意识。)
案例总评:
《数学新课程标准》(实验稿)指出:“学生的数学学习内容应当是现实的有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理和交流等数学活动。” 教材是主要的课程资源,但不是唯一的课程资源。教材所提供的仅仅是学生学习活动的基本线索,如果一味的固守“教材决定论”,认为教材就是唯一的教学资源,生搬硬套地使用教材,利用现有的有限的教材对学生实施着以教材为本的数学教学,完全忽略了教师在课堂教学中的主导作用,也放弃了学生在学习过程的主体地位,把教学进程限制于数学课本的教学之中,学生的学习目标只是为了会解几道书上的习题而已,教材怎样说教师就怎样教。必然难以实现生动活泼的、主动的和富有个性的数学学习。
我们作为教师应该要创造性地使用教材,积极开发、利用各种教学材料以及数学课程可以利用的各种教学资源,为学生提供丰富多彩的学习素材,使我们的教学内容源于教材而高于教材。根据学生学习的实际情况,采用灵活的方式,从多种角度、多个途径为学生的学习提供有结构的学习资源,为学生的数学学习提供更具现实性与挑战性、探索性与人文性的丰富素材,赋予数学学习材料以生命的活力,让学生自主建构自己的数学知识体系,且拥有高品位的数学学习过程,发展情感,生成智慧,使数学学习活动更具生命的价值。
在本节课中我选择了南京将要举行的十运会为切入点,即对学生进行了十运会的宣传,也很好的过渡到了知识点的教学上,在学生充满兴趣的氛围中开始了这节课的学习。变枯燥的图形教学为学生感兴趣的解决实际问题的亲身的实践过程,在动画演示和自己“动手操作中,学生都得到了运用所学知识、通过自己的思考动脑解决一个又一个他们感兴趣的实际问题的成功感,获得了满足感。在闯关的过程中、在画面揭晓的过程中,不仅激发了学生强烈的闯关的欲望,同时还进行了热爱南京、以南京为傲的教育。在这节课的最后我对学生提出了倡议:爱护花草树木、积极参加保护环境的活动“争做小小东道主”。
平行四边形的面积教案12
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学重点:
通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:
能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:
教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的`底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
平行四边形的面积教案13
本节课,采用了“导学――精教――勤练”六字教学法,在新课导入的过程中,运用猜想使学生初步勾勒出知识的轮廓,从整体上了解所学的内容。在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,然后放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设。学习目标是一节课的主旨,在关键处设问,学生从课题中自己寻找目标,变“被动”为“主动”。自学指导的出示,既激发了学生学习的积极性,又培养了学生的自学能力。符合数学教学简洁明了的特点。
教学目标:
1、认知目标:掌握平行四边形面积的计算公式,并能正确计算平行四边形的面积。
2、能力目标:通过操作,进一步发展学生的思维能力,培养学生运用转化的方法解决问题的能力,发展学生的空间观念和。
3、情感目标:让学生初步感受到事物是相互联系的,提升学生的数学素养。
教学重点:掌握平行四边形面积的计算公式,并能正确计算平行四边形的面积。
教学难点:推导平行四边形的面积计算公式的过程
教具准备:多媒体课件、方格纸、平行四边形纸,剪刀
教学过程:
一、情景引入,激趣导课:
情景引入(出示课件)师:同学们请看屏幕,你发现了什么?(从平行四边形的花坛中引出“平行四边形的面积”)。师:这两个花坛哪一个大?(生自由说)随机板书课题。
二、出示学习目标:
学会平行四边形面积的计算公式,并能正确计算平行四边形的面积。
三、动手操作,探究发现
1、用数方格的方法计算面积。
看教材第80页方格图:小组合作,用数方格的方法计算图形面积,填好表格。观察表格的数据,小组讨论你发现了什么?
(学生小组活动活动,教师巡视)
(2)合作完成,汇报结果,可展示学生填好的表格。
(3)观察表格的数据,你发现了什么?
通过学生讨论得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的.面积
2、推导平行四边形面积计算公式。
我们已经知道长方形的面积用长乘宽计算,那么我们平行四边形的面积计算是不是就只用数方格的办法来计算呢?(不是)那该怎样计算呢?
拿出准备的平行四边形,小组合作,根据书81页的图用剪刀剪一刀,把它拼成一个长方形。小组讨论你发现了什么?
(学生活动,教师巡视指导)。
(2)汇报演示剪拼的过程。
(3)教师用课件演示剪――平移――拼接的过程。
(4)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
3、师:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高。
请同学们把平行四边形的面积计算公式用字母表示出来。
S=a×h
S=a.h或S=ah
四、巩固应用
课件出示自学指导三:
独立完成例1,然后同桌之间交流做法和结果。
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
例1:一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
S=ah=6×4=24(m2),答:它的面积是24平方厘米。
五、当堂训练
出示学案:
六、课堂小结
你有哪些收获?
平行四边形的面积教案14
教材分析
1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。
2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的.底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。
学情分析
五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。
教学目标
(1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。
(2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
(3)培养学生学习数学的兴趣及积极参与、团结协作的精神。
教学重点和难点
教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。
教学难点:通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。
教学过程
一、情感交流
二、探究新知
1、旧知铺垫
(1)、说出平面图形名称并对它们进行分类。
(2)、计算正方形、长方形的面积。(强调长方形面积计算公式)
设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。
2、 导入新课
3、 探究平行四边形面积计算方法。
(1)、在方子格中数出长方形的面积。
(2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。
(3)、通过观察表格,试着猜测平行四边形的面积计算方法。
(4)、共同探讨如何计算平行四边形的面积。
①出示平行四边形,引导学生明确其底和高。
②学生在学具上标明其底并画出对应的高。
③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化)
④小组交流如何操作的。(割补法)
⑤学生代表汇报各组的操作方法以及得到的结论。
⑥幻灯片演示割补的过程。
⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件)
4、 课堂小练笔。
设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。
三、课堂练习
四、小结本课
五、课堂作业
板书设计
平行四边形 面积 = 底 × 高
长方形 面积 = 长 × 宽
S表示平行四边形的面积 a表示底 h表示高
S=a×h s=a.h S=ah
平行四边形的面积教案15
第五册平行四边形、三角形面积公式
教学过程
师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?
生1:卡片。
生2:奖品。
……
师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?
(学生逐个上台从信封中拿出物品)
生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)
生2:我拿出的是一格格的东西,打算用它来量。
师: 我们给它一个名字,透明方格纸,用它量什么呢?
生2:我想用它量书本。
师: 书本的 ……(停顿)
生2:书面有几格?
师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)
生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。
师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它
这节课我们就用刚才这些学具来研究平行四边形的`面积。
教学反思
这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?
不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。
……
教学过程
师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?
(学生动手操作,不久就纷纷举手)
生1:老师,我把对角一剪就变成了两个三角形。
生2:老师,我剪出的三角形两个一样的。
师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的
面积公式推导出三角形的面积公式吗?
(学生小组讨论)
生3:就是除以2。
师: 你能完整的说一说什么除以2吗?
生3:平行四边形的面积除以2。用字母表示:S=ab2。
生4:我能把它剪成两个梯形教后反思
教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?
现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”
【平行四边形的面积教案】相关文章:
平行四边形的面积教案03-30
《平行四边形的面积》教案优秀03-13
面积的教案11-19
圆的面积教案02-21
《圆的面积》教案03-06
圆的面积教案09-20
平行四边形的面积教学反思04-14
《平行四边形的面积》教学反思04-03
平行四边形的面积教学设计12-09