《3的倍数的特征》教案

时间:2024-07-01 08:29:02 教案 我要投稿

《3的倍数的特征》教案

  在教学工作者实际的教学活动中,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的《3的倍数的特征》教案,欢迎阅读,希望大家能够喜欢。

《3的倍数的特征》教案

《3的倍数的特征》教案1

  教学目标:

  1、使学生经历探索3的倍数的特征的活动,知道3的倍数的特征,能判断一个数是不是3的倍数。

  2、使学生体会探索数的特征的一些方法,能通过分析、比较、归纳或猜想、检验等方法发现3的倍数的特征。

  3、在探索数的有关特征的过程中,体会数学内容的奇妙、有趣,产生对数学的好奇心。

  教学重难点:

  重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

  难点:让学生通过操作实验自主发现3的倍数的特征。

  教学过程:

  (一)复习

  1、我们已经掌握了2和5的倍数的特征,你能用2、3、5这三张数字卡片,摆出一个2的`倍数吗?

  学生摆,摆好后交流。(有两种摆法:352、532)

  教师追问:2的倍数有什么特征?

  2、你能用这三张数字卡片再摆出一个5的倍数吗?

  学生摆,摆好后交流。(有两种摆法:235、325)

  【设计意图:用数字卡片摆数,既复习了旧知,又为下面的“设疑”环节作了铺垫。】

  (二)设疑

  1、这节课我们学习“3的倍数的特征”(板书课题),用2、3、5这三张卡片能摆出一个3的倍数吗?

  (学生受前面的思维定势的影响,很可能会摆出253、523这两个数来)

  2、教师追问:你为什么这么摆呢?你猜想3的倍数会有什么特征?

  (学生可能会猜想:个位上是3、6、9……的数是3的倍数)

  3、这两个数是3的倍数吗?请你检验一下。

  (学生通过检验发现这两个数不是3的倍数)

  4、换一种摆法,看看能不能摆出3的倍数来。

  学生操作,结果发现无论怎样摆都摆不出3的倍数来。教师追问:为什么呢?

  5、老师把三张卡片换成3、4、5三个数字,让学生摆3的倍数。

  学生操作,结果发现无论怎样排列,组成的三位数都是3的倍数。教师追问:为什么呢?

  6、3的倍数到底有什么特征?你们想不想自己来探究呢?

  【设计意图:学生肯定会受2、5的倍数的特征的干扰,猜想个位上是3、6、9的数是3的倍数,因此设计了用2、3、5这三张卡片摆数,发现摆出的253、523不是3的倍数,让学生初步消除看个位的思维定势。经过再一次排列,发现2、5、3这三个数无论怎样摆,都摆不出3的倍数,然后把数字换成3、4、5再排列,发现无论怎样摆,摆出的三位数都是3的倍数,由此产生疑问,引发探索的愿望。】

  (三)探究

  1、在百数表中圈出3的倍数。

  2、分小组实验。

  实验要求:(1)同桌一组,共同在百数表中任意挑几个3的倍数,然后在计数器上摆出来,看看各用了几颗珠。

  (2)填好实验记录表

  3的倍数

  所用珠子的颗数

  3、汇报交流实验结果。

  (1)观察实验记录表,你发现了什么?

  (2)把你的发现在小组里交流一下。

  (3)交流、归纳:是3的倍数的数,用的算珠的颗数正好是3的倍数。

  4、第二次实验:

  (1)那么,猜想一下,不是3的倍数的数,所用算珠的颗数又会怎么样呢?

  (2)实验验证,填好实验记录表:

  不是3的倍数

  所用珠子的颗数

  (3)汇报交流实验结果。

  【设计意图:用实验的方法来教学3的倍数的特征,改变了以往由教师采用列举几个能被3整除的数,从而归纳特征的教法。这样做,培养了学生自己获取知识的能力,也有利于学会一些研究方法,开发智力。】

  (四)、概括

  1、通过实验,我们发现了3的倍数所用算珠的颗数正好是3的倍数。下面,老师报数,你们在计数器上拨数,看看这个数要用几颗珠,判断它是不是3的倍数。

  29、45、351、67、284、96、132、256……

  (多拨了几个数后,可能有的学生不用计数器拨,直接会判断了)

  2、教师故意追问:你怎么不拨计数器也知道用了几颗珠子?(引导学生发现,所用珠子的颗数,就是各位上数字之和。)

  3、不用计数器,你能判断下面这些数是否是3的倍数。

  54、49、114、163、20xx

  4、现在,你们能说一说3的倍数有什么特征了吗?

  学生归纳出:3的倍数,它各位上数的和是3的倍数。

  【设计意图:通过用计数器拨数的实验,学生初步发现凡是3的倍数所用珠子的颗数正好是3的倍数,这只是初步的结论,还需要进一步验证.因此,采用教师报一个数,学生再用计数器拨数的方法,每拨一个数就建立一个表象,当这些表象积累到一定的程度,学生的外部感知就逐步内化。当教师报到后来,学生不用计数器,也知道这个数是否是3的倍数了。于是教师因势利导,让学生不动手拨,而在脑子里想一个数是否是3的倍数。通过大量的表象积累,思维产生了飞跃,自然就慨括出结论。】

  (五)巩固

  1、不计算,你能很快说出哪几道题的结果有余数吗?

  48÷3 57÷3 342÷3 567÷3 802÷3

  2、在每个数的□里填上一个数字。使这个数是3的倍数。

  7□ 20□ □12 3□5

  3、想想做做4。

  4、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  (六)拓展什么数既是2的倍数,又是3的倍数,5的倍数?(30)

《3的倍数的特征》教案2

  小学数学《3的倍数的特征》教案

  一、教学目标

  【知识与技能】

  理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。

  【过程与方法】

  经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。

  【情感、态度与价值观】

  在猜想论证的过程中,体会数学的严谨性。

  二、教学重难点

  【重点】3的倍数的特征,判断一个数是否是3的倍数。

  【难点】3的倍数的数的特征的归纳过程。

  三、教学过程

  (一)导入新课

  复习导入:我们是如何研究2、5的倍数的特征的?

  引出继续利用百数表研究3的倍数的特征并出示课题。

  (二)讲解新知

  组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?

  学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。

  组织学生小组讨论,重点讨论3的.倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。

  提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。

  师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  (三)课堂练习

  1。判断下面的数是否为3的倍数。

  24 58 46 96

  2。尝试在每个数后面加一个数使这个三位数成为3的倍数。

  (四)小结作业

  提问:今天有什么收获?

  带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。

  课后作业:

  思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。

  四、板书设计

《3的倍数的特征》教案3

  设计说明

  1.让学生产生探究的兴趣。

  兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。

  2.让学生发现学习的方法。

  本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。

  课前准备

  教师准备 PPT课件 计数器 记录表

  学生准备 百数表 计数器教学过程

  教学过程

  创设情境

  师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的倍数。

  师:能组成既是2的倍数又是5的倍数的数吗?为什么?

  师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)

  设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。

  探究新知

  1.提问:我们已经知道判断一个数是不是2或5的倍数,只要看这个数的个位即可,那么你们能猜出什么样的数是3的倍数吗?

  (学生可能会说个位上是3,6,9的数是3的倍数)

  师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。

  课件出示百数表。

  师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。

  师:请同学们观察一下,3的倍数个位上是哪些数?刚才那位同学的猜想正确吗?要判断一个数是不是3的倍数,能不能只看个位?

  2.观察百数表中圈出的3的.倍数,你们发现了什么?

  (1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。

  (2)引导学生斜着看,先看第一斜行的3,12,21。

  学生分组讨论这3个数有什么特征。

  汇报交流:第一斜行3的倍数各位上的数相加,和是3。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。

  3.操作验证。

  (1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。

  学生以小组为单位,用计数器拨出3的倍数,并填写记录表。

  总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。

《3的倍数的特征》教案4

  一、教学内容

  新人教版《义务教育课程教科书数学》五年级(下册)第10页。

  二、教学目标

  1.使学生掌握3的倍数的特征,能够正确地判断一个数是不是3的倍数。

  2.让学生经历科学的探究过程,激发学生探索新知的兴趣,培养学生的自主学习能力。

  3.结合知识的教学,培养学生的观察、猜想、分析、比较、归纳等思维能力。

  4.让学生获得探索成功的体验,增强学好数学的自信心,培养学生的数学兴趣。

  三、课前准备

  计数器、课件

  四、教学过程

  (一)复习旧知,引出新知 1.复习旧知

  出示:

  (1)如果将这些钱平均分给2所学校,每所学校得到的钱数是整元数吗?你是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

  (2)如果将这些钱平均分给5所学校,每所学校得到的钱数是整元数吗?你又是怎么知道的?有几种不同的方法可以判断?哪种方法比较好?

  2.引出新知

  如果将这些钱平均分给3所学校,每个学校分到的钱是整元数吗?你是怎么知道的?能不用计算3860÷3的方法判断吗?

  ⒊导入新课

  同学们,3的倍数有特征吗?有什么特征呢?今天我们就来研究3的倍数的特征。

  教学意图:一方面通过复习帮助学生回忆2、5倍数的特点,巩固前一节学习的知识,另一方面引出本节课要研究的知识――3的倍数的特征,自然过渡到新知教学。

  (二)猜想验证,制造悬念

  1.请同学们猜一猜3的倍数的特征可能是什么? 各种不同的数,都是3的倍数。

  2.用4颗珠子摆数研究

  (1)用4颗珠子可以摆出哪些数?

  学生先摆,并做搞好记录,最后汇报:4、40、31、22、13、400、310、301、220、202、211、130、103、121、112。

  (2)这些数是3的倍数吗?

  (3)你又有什么发现?

  教学意图:通过让学生摆数、计算等活动,发现规律:用4颗珠子摆成的不同的数,都不是3的倍数。

  3.观察比较,寻找简便方法

  (1)把3颗珠子和4颗珠子摆的数联系起来看一看,有什么发现?

  (2)从这里可以看出,只要看摆出的几个数就知道摆出的其他数是不是3的倍数了?

  教学意图:通过对3颗、4颗珠子摆数、判断的比较,发现规律:摆出的数要么全是3的倍数,要么全不是3的倍数,从而寻找到简便的判断方法:只要判断摆成的一个数是不是3的倍数就知道其他的数是不是3的倍数了,为下面快速地判断奠定基础。

  4.用n颗珠子摆数研究

  (1)用5颗珠子摆成的数是3的倍数吗?为什么?(如:104不是3的倍数,所以摆成的其他数都不是3的倍数)

  (2)用6颗珠子摆成的数是3的倍数吗?为什么?

  (3)用7颗珠子摆成的数是3的倍数吗?为什么?

  (4)用8颗珠子摆成的数是3的倍数的数吗?为什么?

  (5)用9颗珠子摆成的数是3的倍数吗?为什么?

  教学意图:通过快速地判断5、6、7、8、9颗珠子摆成的数是不是3的倍数的研究,为下面的研究规律提供丰富的素材,为发现和概括规律奠定基础。

  5.观察比较,发现规律

  (1)请同学们观察上面的研究,有什么发现?

  (2)猜想一下还可以用几颗珠子摆成的数都是3的倍数?为什么?验证一下猜想对不对?

  (3)为什么不猜10颗、11颗珠子摆的数?验证一下对不对?

  (4)请同学们想一想:摆成的3的倍数与珠子的颗数有什么关系?

  (5)再请同学们思考:珠子的颗数就是摆成的数的什么?

  (6)把珠子颗数换成“各位上数的和”说说3的倍数有什么特征?

  教学意图:先帮助学生寻找到摆成的3的倍数的数与珠子的颗数之间的关系,初步发现规律,再引导学生思考:珠子的颗数就是摆成的数的各位上数的和,最终发现3的倍数的特征。

  6.举例判断,验证规律

  师:这个规律对不对呢?怎样去验证?学生举几个例验证(略)。

  教学意图:因为这个规律是采用不完全归纳法归纳出来的,具有一定的局限性,正确与否还需要进行验证,学生随机举例验证,从而证明规律的正确性。

  (四)巩固练习,消化理解

  1.下面哪些数是3的倍数?你是怎么想的?

  45 546 7 7610 81 8180

  2.在下面每个数的□里填上一个数字,使这个数是3的倍数。你是怎么想的?

  4□ 3□5 12□ □12

  可以填哪些数?有什么规律?

  ⒊熊爸爸在狐狸办的工厂干了3个月的活,月工资856元,这一天,熊爸爸带着小熊到狐狸家里领工资。他们通过计算,得出以下的结果:狐狸:856×3=2468(元),小熊:856×3=2558(元),熊爸爸:856×3=2568(元),你知道谁算对了吗?为什么?

  ⒋有个很大的数,如:46091362930,它是3的倍数吗?你是把所有的数字都加来的吗?有更简便的方法吗?

  (五)回顾总结,结束全课

  通过今天的学习你学到了什么?你有什么收获?

  《3的倍数特征》教学反思

  3的倍数特征相对于2和5来说相对不易发现,在讨论3的倍数特征时,学生学习遇到困难,有学生得出结论:1、个位是3、6、9的数是3的倍数。2、个位是3的倍数,这个数就是3的倍数。…这时,我让学生用计数器上的3颗珠子和4颗珠子拨数,计算出是否是3的倍数,再次找3的倍数特征,学生交流后发现光看个位是不是3的倍数可不行。课件出示114,圈一圈,你有什么发现?让学生明确把各个数位上的数加起来,所得的和是3的.倍数,这样的数才是3的倍数。

  整个教学过程,我重点放在了教学方法上,着重学生“发现问题—探索问题—解决问题”的能力培养,让学生能在猜想、操作、验证、交流、反思、归纳的过程中获取知识,也有助于学生数学思维的培养。抓住一切可以利用的机会,激发学生的创新欲望,培养学生的创造意识,充分发展个性才能。

  《3的倍数的特征》说课稿

  一、教材简析

  《3的倍数的特征》是新人教版第十册的内容,属于“数与代数”领域中有关“倍数与因数”的知识。学生在已经学习“2,5倍数的特征”的基础上,继续学习3的倍数的特征。

  二、教学目标

  1.经历探索3的倍数的特征的过程,理解3的倍数的特征,能判断一个数是不是3的倍数。

  2.发展分析、比较、猜测、验证的能力。

  三、教学思路

  本节课我紧紧抓住猜想→观察→举证→归纳这条主线展开教学,让学生经历有效探究的学习过程。

  基于以上想法,本课设计以下两个大环节:

  探究 深化

  四、教学过程

  一.探究

  这个部分,我为学生提供了四个探究平台:

  (1)猜想

  复习:2和5的倍数特征。猜测3的倍数的特征。

  (2)观察

  在百数表中找出所有3的倍数,通过观察否定猜想。

  借助计数器,在百数表中任意选一个3的倍数,用计数器将它拨出来,并记录下拨这个数用了几颗数珠。再观察记录表,你能发现什么?

  学生很快能发现所用数珠的颗数都是3的倍数。

  当学生的认知出现困难时,借助计数器来研究3的倍数的特征,直观地降低了学生观察发现特征的难度,使得所学新知更贴近学生的“最近发展区”。

  如果给你3颗数珠,那你猜一猜在计数器上拨出100以内的数会是3的倍数吗?给出4颗、5颗…….,自己拨一拨,发现了什么?

  经过研究,学生发现100以内是3的倍数,所用数珠的颗数都是3的倍数,而不是3的倍数,所用数珠的颗数都不是3的倍数。也就是说:100以内的数,如果在计数器上拨它,所用数珠的颗数是3的倍数,这个数就是3的倍数。

  (3)举证

  我们之前的研究结论对所有的数都适用吗?学生马上会提出研究比100更大的数。

  小组合作:随意想出多个大于100的数,先用计算器算一下,然后记录下来。最后用计数器拨一拨看有什么发现?

  经过合作探讨,交流汇报,学生发现在这些较大的数当中,之前的研究结论依然适用。

  所研究的对象范围越广,代表性越强,研究结论就越可靠。本环节通过“更大的数”和“随意想”两方面,让研究对象范围更广,培养了学生缜密思考的意识和习惯。

  (4)归纳

  现在如果给你一个数,不做除法,你怎样快速地判断它是不是3的倍数呢?咦!我发现有的同学没有用计数器也判断对了,还很快呢!你们是怎么想的呢?学生会说所用数珠的颗数其实就是各个数位上的数字之和。

  “各个数位上的数字之和”这种稍复杂的表述方式,由学生在操作中自然归纳得出,突出了学生探究学习的自主性,彰显了学生的主体地位。

  二.深化

  让学生拿出事先准备好的从0到9的十张卡片,在游戏中解决以下问题:

  (1)你能任意选3张卡片,摆出一个3的倍数吗?用你选的这3张卡片,还能摆出不同的3的倍数吗?一共能摆出几个?

  (2)随意抽取3张卡片,在它的基础上加卡片,使摆出的数还是3的倍数。如果加一张怎样加?加两张呢?三张?……你最多能用到几张?

  (3)当十张卡片全部用上时,我们就得到了比较大的3的倍数,你能快速去掉一些卡片,让这个数依然是3的倍数吗?

  如果要去掉一张卡片,你怎么做?如果要去掉两张?三张?……

  刚才的练习有没有给你什么启发?

  用你们的方法判断下面的这些数是不是3的倍数:

  36996969336, 1827457874。

  判断数位多的数是否是3的倍数,运用常规方法比较麻烦。如何突破这一难点?通过这一系列的卡片游戏,学生在操作中自然而然地摸索出解题的捷径,完成了对所学知识的拓展。

  各位老师,刚才我描述的这个教学过程,是让学生在探究3的倍数的特征过程中不但为学生积累了数学活动经验,而且也积淀了基本的数学思想:让学生逐步领悟到猜想、观察、举证、归纳是解决数学问题的一般方法。

  谢谢!

《3的倍数的特征》教案5

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  2、通过自主探究的活动,培养学生的推理、观察、概括能力。

  3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征及探究过程。

  教学过程:

  一、回顾知新、揭示课题

  1、游戏复习:我们已经掌握了2和5的倍数的特征,下面我们来做一个游戏,请你们根据老师的要求高高举起你的学号,看谁反应快。请其他同学进行判断。准备好了吗?开始。学号是2的倍数的。思考:什么样的数是2的倍数?(个位是0、2、4、6、8的数)学号是5的倍数的数。怎样的数是5的倍数?(个位是0或5的数)

  2、猜猜:3的倍数会有什么特征呢?谁能猜测一下?

  二、自主探索,交流总结

  1、圈数探索:先请在下表中找出3的倍数,并用圆圈做上记号。(教师出示百以内数表,学生利用p10的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如课本内容)

  师:

  (1)请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  (2)像判断2和5的倍数那样,只看个位上的数字来判断3的倍数,行不行?

  2、全班交流。

  (1)横着看,圈起来的前10个数,个位分别是哪些数字?判断一个数是不是3的倍数,能不能像判断2和5的倍数那样,只看个位行吗?

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  (2)换位探索:引导发现3的倍数与数字的顺序无关。

  师:斜着看,你发现了么?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的'和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  学生先自己写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  四、课堂小结:

  这节课你有什么收获?还有什么问题吗?

  五、教学反思

  本课主要使学生在原有认知的基础上产生认知冲突,进而产生新的探索欲望,突出了对学生“提出问题-探索问题-解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。当然,培养学生的创造个性,仅仅停留在教学活动的情境上是不够的,教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。

  板书设计: 3的倍数特征

  一个数各位上的数字的和是3的倍数,那么这个数就是3的倍数。

  如:234:2+3+4=9,因为9是3的倍数,所以234是3的倍数

  105:1+0+5=6,因为6是是3的倍数,所以105是3的倍数

  245 :2+4+5=11,因为11不是3的倍数,所以245不是3的倍数

《3的倍数的特征》教案6

  教学内容:

  教材第10——13页,例2,学习3的倍数的特征。

  教学目标

  1、经历在100以内经的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:

  重点:理解3的倍数的特征,能正确判断一个数是不是3的倍数。

  难点:探索发现和归纳3的倍数的特征。

  教学准备:

  计算器、多媒体课件

  教学过程

  一、复习引入

  12、18、20、25、48、60、72、90

  2的倍数有:

  5的倍数有:

  既是2的倍数又是5的`倍数有:

  师:我们学会了2.5的倍数的特征,你们想不想学习3的倍数的特征?

  生:想。

  二、探究新知

  师:课件出示百数表,请同学们在上面找出所有3的倍数。

  学生汇报课件演示圈出3的倍数。

  师:请观察这个表格,你发现3的倍数有什么特征吗?把你的发现与同桌交流一下。

  生1:这个表格里第一个数和第二个数相差3。

  生2:3的倍数的个位上可以是任意数。

  生3:我发现3的倍数不管横着看和竖着看,3的倍数都是隔两个数出现一个。

  师:这个百数表里的3的倍数排列有什么规律?

  生:表格里3的倍数都按一条一条斜线排列很有规律。

  师:我们可以按斜线把它分组,可以一组一组来研究。每条斜线上的数有什么规律吗?

  生:从上往下看,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1,个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现了“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都是等于3。

  师:这是一个重大发现,其它斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外两个数的和是12、15、18。

  师:100以内3的倍数有这个特征。不是3的倍数的可有这个特征,能举例验证码?

  生:比如74、47、37……。不是3的倍数没有这个特征。

  师:你们真厉害!这个规律对100以内的数适用,100以外的数是否适用,能举例验证吗?

  找学生说数,其他学生用计算器验证。

  归纳:一个数各个数位上数字的和是3的倍数,这个数一定是3的倍数。

  练习

  1、下面这些数中,哪些是3的倍数?

  354 160 72 375 820 964 6000

  找学生回答并说出理由

  2、请你在口里填上一个数字,使这个数字是3的倍数,比比谁的填法多。

  4口口1 1口4 84口

  猜一猜:

  王叔叔家的电话号码是63665269,它是3的倍数吗?

  方法一:6+3+6+6+5+2+6+9=43

  方法二:6 3 6 6 5 2 6 9

  5+2=7,所以63665269不是3的倍数。

  三、巩固练习

  1、快速判断出哪些数是3的倍数?

  96 2963 1963 1605 20xx

  2、数学游戏

  从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的3位数?

  0、5、6、7

  所选的三张卡片上的数相加的和应具备有什么特征?

  (1)、用选的三张卡片能组成几个3的倍数?

  (2)、组成的数既是2的倍数,又是3的倍数,还是5的倍数。

《3的倍数的特征》教案7

  [教学内容] 3的倍数特征

  [教学目标]

  1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。

  2、发展分析、比较、猜测、验证的能力。

  [教学重、难点] 发展分析、比较、猜测、验证的能力。

  [教学过程]

  一、3的倍数的特征的猜想

  我们研究了2、5的倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。

  二、3的倍数的特征的探究

  让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。

  引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。

  试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。

  三、练一练:

  第2题:

  让学生准备几张卡片:3、0、4、5 边摆边想,再交流讨论思考的过程。

  (1)30、45、54 (2)30、54 (3)30、45 (4)30

  四、实践活动:

  让学生运用研究3的`倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。

  [板书设计]

  3的倍数的特征

  3的倍数的特征:这个数各位数字之和是3的倍数。

《3的倍数的特征》教案8

  教学目标:

  1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数。

  2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。

  教学重点:使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。

  教学难点:探索3的倍数的特征。

  教学准备:有学号的卡片,学生准备小棒若干。

  教学过程:

  课前:

  一、复习引入

  对口令复习2、3、5的乘法口诀,由屏幕中的小游戏引入。

  二、操作探索,验证猜想

  1、合作发现

  百数表是咱们认识数的好帮手,找规律的好帮手。每个人手里都有一张百数表,请你在上面圈出出3的倍数。和小组内的同学商量一下3的倍数有什么特征。

  自主探究,小组合作,师巡视,帮助找3的倍数有困难的学生。

  小组代表合作,全班交流

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:3的倍数个位上0~9这十个数字都有可能。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  让我们在组数的过程中再深入研究一下3的倍数的特征。

  课件出示四组卡片和活动要求。

  学生合作探索,教师巡视参与。

  师:谁来代表你们小组汇报研究的情况?

  课件出示各组数字之和。

  师:请同学们观察各位上的数字和,你有什么发现吗?到底什么样的数才是3的倍数?你能大胆地进行猜想吗?

  生:我的猜想是一个数的数字和是3的倍数的数,这个数就是3的倍数。(板书:各个数位上数字之和是3的倍数,这个数就是3的倍数)

  2、举例验证

  师:咱们发现的这个规律是不是具有广泛性,如果是更大的数是不是符合这个特征呢?谁能任举一例子并说明具体的`验证方法?

  生:如4572这个数。我先把4572各位上的数字加起来,看数字之和是不是3的倍数,再看这个数是不是3的倍数。

  师生共同讨论验证,并引导学生体会验证方法。(略)

  学生在小组内举例验证。

  汇报验证结果,形成共识,得出结论,总结出规律。

  三、课堂巩固练习

  3的倍数的特征你掌握了吗?我们做一下练习题。过五关斩六将,看谁是英雄好汉。闯关即将开始,你准备好了吗?

  第一关:下面哪些数是3的倍数?

  42 134 78 268

  第二关:在下面每个数的□里填上一个数字,使这个数是3的倍数。

  ① 3□ ② 2□6 ③ 2□ 5 ④ 47□

  学生在4□的□中填出0、3、6、9后,师:请你们观察填的3个数字,能发现其中的规律吗?

  生:它们依次相差3。

  第②、③④题的过程同上。

  生:因为0不能做一个数的最高位。

  四、拓展:生活中的数学

  课件出示小游戏

  五、课堂小结

  咱们今天学的是什么内容?谁来具体地说说3的倍数的数有什么特征?

  六、板书设计

  3的倍数的特征

  3的倍数的特征:各个数位上数字之和是3的倍数

《3的倍数的特征》教案9

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的'表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案10

  自学预设:

  自学内容P19做一做,P20的T4-11

  指导方法

  复习:1、判断下面哪些数是2的倍数,哪些数是5的倍数?

  18,25,46,85,100,325,180,90

  2、2的倍数和5的倍数各有什么特征?

  3、既是2的倍数又是5的倍数的数有什么特征?

  思考:

  1、1×3=

  2×3=

  3×3=

  4×3=

  5×3=……..

  你发现上面的式子有什么特点?

  2、3的倍数有什么特点?举例说明

  3、哪些数既是2、5的倍数又是3的倍数?

  小组讨论

  尝试练习

  1、试着完成P19的做一做练习

  2、判断下列数哪些是3的倍数?

  333427180

  69390405300

  教学内容:3的倍数的特征(P19及P20题4~5)

  教学目标:

  ①使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。

  ②能应用3的倍数的特征,会判断一个数是否是3的倍数。

  ③培养学生观察、分析、概括、推理能力。

  ④让学生在探索发现过程中体验到成功的乐趣,培养学习数学的信心。

  教学重点:探求3的倍数的特征。

  教学难点:会判断一个数是否是3的倍数。

  教学过程:

  一、预习反馈,探究新知

  我们已经知道了2、5倍数的特征,那么3的倍数又有什么特征呢?现在我们就来学习和研究3的倍数的特征(板书课题)

  1.反馈3的倍数的特征。

  (1)思考并回答:①什么样的数是3的倍数?

  ②要想研究3的倍数的特征,应该怎样做?

  (2)学生反馈:(根据学生说的逐一板书,先找出一些3的倍数)

  1×3=35×3=15

  2×3=66×3=18

  3×3=97×3=21

  4×3=128×3=24

  ……

  (3)观察:3的倍数的各位数字又什么特征?它是不是3的倍数?其它位数又什么特征?

  (4)提问:如果老师讲这些3的倍数的各位数字和十位数字调换,它还是3的倍数吗?(学生自己动手验证)

  我们发现:调换位置后还是3的倍数,那么3的倍数有什么奥妙呢?(分组讨论,汇报)可以提示:将各个数字加起来

  汇报:如果把3的倍数的各位上的数字相加,他们的和是3的倍数。

  验证:下面各数,哪些是3的倍数呢?210,54,216,129,9231,9876543204

  (5):一个数各位上的`数的和是3的倍数,这个数就是3的倍数。

  2.练习:完成P19做一做

  三、课堂:学生今天学习的内容。

  四、巩固练习:完成P20题4~5

  五、能力拓展:

  (1)在□里填上适当的数,使它是3的倍数

  3□5□1646□400□

  (2)在□里填上适当的数,使它成为偶数,并且是3的倍数。

  □7□3□□06□0□81□□

  (3)有一个数有因数3,又是5的倍数,在两位数中最大的一个数是,在三位数中最小的一个数是。

  六、课后:

  七、作业:

  八、课后反思:

《3的倍数的特征》教案11

  【学习内容】

  教材P10例2。

  【学习目标】

  1.经历探索3的倍数的特征的过程,理解3的倍数的特征。(重、难点)

  2.能判断一个数是不是3的倍数。(难点)

  【知识链接 温故知新】

  1.判断下面各数哪些是2的倍数?哪些是5的倍数?哪些既是2的 倍数又是5的倍数?

  92 13 28 70 33 78 125

  50 735 426 515 210 3055 1560

  2的倍数:_________________________________________

  5的倍数:_________________________________________

  既是2的倍数,也是5的倍数:_________________________________________

  2.说一说你是怎样判断的?它们各有什 么特征?

  2的倍数的特征:_________________________________________

  5的倍数的特征:_________________________________________

  既是2的倍数,也是5的倍数的特征:_________________________________________

  【自主学习 个体探究】

  1.下表中哪些数是3的倍数?把它们圈起来或涂上颜色。

  2.观察圈出的数,有什么发现?

  温馨提示:可根据上节课知识的研究方法:找数、观察、猜想、验证、归纳,试着探索3的倍数的特征。

  思路导航:

  1.横着看,圈起来的前10个数,个位分别是哪些数字?判断一个数是不是3的倍数,只看个位行吗?

  2.斜着看,你发现了什么?

  【合作探究 交流分享】

  1.交流与讨论:四人小组交流发现。

  2.探索与猜想:

  (1)横着看,圈起的前 10个数:3,6,9,12,15,18,21,24,27,30

  个位上0-9十个数字都有,只看个位数行吗?

  (2)斜着看,你发现了什么?说说你的发现与猜想,3的倍数的特征是什么?

  任意找几个3的倍数,把各位上的数相加,看看你有什么发现。

  3.验证与归纳:

  (1)根据猜想,每人各想一个符合猜想的数,检验是不是 3的倍数(可用计算器)。

  (2)全班交流:3的倍数的特征是什么?你们验证了哪几个数?

  (3)试着 找一个反例:各位上数的和是3的倍数,但这个数却不是3的`倍数。

  (4)归纳3的倍数的特征。

  3的倍数的特征:_______________________________________

  【归纳小结 整合知识】

  这节课我们运用了数学上很重要的研究方法:观察、猜想、验证、归纳,研究3的倍数的特征,与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。一个数( )是3的倍数,这个数就是3的倍数。课下大家可以运用这种方法,继续研究9的倍数、11的倍数什么特征。

  【当堂检测 达标演练】

  1.判断。

  (1)个位上是3、6、9的数都是3的倍数。 ( )

  (2)是9的倍数的数一定是3的倍数。 ( )

  (3)由7、3、2组成的三位数都是3的倍数。 ( )

  (4)凡是3的倍数的都是奇数。 ( )

  (5)一个非零自然数,不是奇数就是偶数。 ( )

  2.不计算,在没有余数的算式后面画“√”。

  154÷5= 38÷3= 207÷3=

  297÷3= 189÷2= 358÷3=

  3.下面用数字卡片摆出的数中,哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。

  4.圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 222 7203

  思 考:像99999、7203这么大的数,你是怎么判断的?

  学法指导:

  (1)9是3的倍数,99999每一位上都是9,这个数就是3的倍数。

  (2)7203中先把3和0划去,剩下的7+2=9,是3的倍数,所以,这个数是3的倍数。这种方法叫“弃3”法,就是 先把3的倍数划去,剩下的数再相加判断。

  5.根据要求,在□里填上一个合适的数字。

  (1)既是2的倍数,又有因数5。 675□

  (2)是5的倍数,不是2的倍数。 38□

  (3)既是3的倍数,又是5的倍数。 334□

  (4)能同时被2、3、5整除。 8□8□

  【学习反思】

《3的倍数的特征》教案12

  教学内容:九年义务教育六年制小学数学第八册P76-77。

  教学目标:

  1、让学生通过观察、操作、猜想、验证等活动,认识3的倍数的特征,会判断一个数是不是3的倍数。

  2、让学生在学习过程中学会用分析、比较、归纳或猜想,检验等方法,并培养学生动手实践能力。

  3、在探索3的倍数的特征的过程中,提高学生合作交流的能力,感受数学学习的乐趣,体会数学思维的严谨。

  教学重点:探索3的倍数的特征。

  教学难点:运用3的倍数的特征解决实际问题。

  设计理念:通过活动,让学生经历一个完整的探索过程,从中认识3的倍数的特征并提高学习能力。

  教学步骤

  教师活动过程

  学生活动过程

  一、复习导入

  你能用2、3、5、6、9这些数字中任先三个数字组成是2的倍数的三位数吗?为什么这样组数?

  同样选三个数组成是5的倍数的数。

  如果仍从这些数中任选三个数字,你能不能组成是3的倍数的三位数呢?这些数有什么共同的特征?

  学生回答

  学生练习

  学生讨论回答

  二、新授

  请你拿出百数表,在表中圈出3的所有的倍数。

  从这些数中你发现了什么?

  在计数器上拨几个3的倍数,并数一数一共用了多少颗珠子?

  所用算珠的总颗数有什么特点?

  总颗数与这个数的各位上的数有什么关系?你能得出3的倍数的.特征吗?

  说说你们研究发现了什么?3的倍数有什么特征?

  用你们发现的3的倍数的特征来检验下面的哪些数是3的倍数:

  245432141903651

  三、完善认识

  1、提出试一试中的问题:

  2、全班交流,明确认识。

  1、如果一个数不是3的倍数,这个数各位上数的和会是3的倍数吗?

  要求:分别找几个这样的数算一算,并将研究结果在小组里交流一下。

  2、如果一个数不是3的倍数,这个数各位上数的和不会是3的倍数。进一步要求:把例题中发现的结论和试一试中结论结合起来说一说。

  四、判断练习

  1、做想想做做第1题

  2、做想想做做第2题

  3、做想想做做第3题

  4、做想想做做第4题

  5、做想想做做第5题

  要求学生独立作出判断,并把题中3的倍数圈起来。

  交流:题中哪些数是3的倍数,你是怎样判断的?

  明确方法:判断一个数是不是3的倍数,可以先把这个数各位上数相加,看得到的和是不是3的倍数。

  启发:这几道除法算式有什么共同特点?如果一个数除以3没有余数,说明这个数与3存在什么关系?反过来,如果一个数是3的倍数,那么这个数除以3的结果会有余数吗?你打算怎样进行判断?

  让学生独立填写,再在小组里交流,你能找到几种不同的填法。

  学生按要求操作,指名问答:9的倍数都是3的倍数吗?

  各自组数,并把组成的数记录下来。指名报答案,全班学生评议。

  提问:你今年几岁?再过几年你的岁数是3的倍数?你是怎样想的?

  五、全课小结:

  3的倍数有什么特征?

  判断一个数是不是3的倍数时,你会怎样想?有哪些经验告诉全班同学?

  学生回答

  六、作业设计

  练习与测试

  教后反思:

《3的倍数的特征》教案13

  设计说明

  本课通过动手操作帮助学生发现3的倍数的特征,培养学生大胆猜想、动手实践、归纳概括的能力,同时让学生利用3的倍数的特征解决生活中的一些问题,培养应用意识。本课教学在设计上主要体现以下两点:

  1、一个数是不是2,5的倍数,只需看这个数个位上的数就可以了,而3的倍数的特征则不然,一个数是不是3的倍数,不能只看个位上的数,要把这个数各个数位上的数相加,如果和是3的倍数,这个数就是3的倍数。这样,既发展了学生的思维,提高了认知,又培养了学生动脑、动口的能力。

  2、使学生在原有认知的基础上产生认知冲突,进而产生新的探究欲望,让学生在猜想、操作、验证、交流、反思、归纳的数学活动中获得较为丰富的数学经验,培养学生提出问题、探索问题、解决问题的能力。

  课前准备

  教师准备

  PPT课件、百数表

  学生准备

  百数表、数位表

  教学过程

  ⊙游戏激趣,导入新课

  1、复习导入。

  师:我们已经掌握了2和5的倍数的特征,下面我们来做一个游戏(游戏要求:师随机说“2的倍数”或“5的倍数”,生根据老师的指令举起自己的学号卡片)。

  提问:什么样的数是2的倍数?(个位上是0,2,4,6,8的数)什么样的数是5的倍数?(个位上是0或5的数)

  2、设问质疑。

  师:请学号是3的倍数的同学站起来。(是3的倍数的同学站起来)同学们猜测一下:3的倍数可能有什么特征呢?

  生猜测结果:(1)个位上是3,6,9的数是3的倍数。

  (2)个位上的数能被3整除的数是3的倍数。

  ……

  师:这节课我们就来探究3的倍数的特征。

  设计意图:

  通过猜想,产生疑问,把学生求知的欲望推向高潮,为新知的探究做好铺垫,为有效地教学创设时机。

  ⊙自主探究,合作交流

  1、圈数探究。

  (1)课件出示书上的百数表,请学生观察。

  师:百数表中圈出的是什么数?

  引导学生发现:是3的倍数。

  (2)请学生在书上的百数表中接着圈出3的倍数。

  快速浏览一遍所圈出的'数,说一说3的倍数的个位上是哪些数。

  (3)观察圈出的数,探究3的倍数的特征。

  预设生:3的倍数都排列在几条斜线上。

  师:像判断2和5的倍数那样,只看个位上的数来判断3的倍数可以吗?单独看这些数的个位和十位上的数能发现规律吗?

  引导学生发现:单独看3的倍数个位和十位上的数都没有什么规律。

  2、换位探究。

  引导学生发现:3的倍数与该数各个数位上的数的顺序无关。

  (1)引导学生看两组3的倍数:3,12;6,15,24,33,42,51。

  师:请大家看看这些数各个数位上的数的和有什么特征。

  (2)请学生依次说出这些数的各个数位上的数的和,教师板书。

《3的倍数的特征》教案14

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。

  (二)核心能力

  在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。

  (三)学习目标

  1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。

  2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。

  (四)学习重点

  探索3的倍数的特征。

  (五)学习难点

  归纳举证3的倍数的特征

  (六)配套资源

  百数表、计算器

  二、教学设计

  (一)课前设计

  (1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。

  (2)自制一张百数表。

  (二)课堂设计

  1.复习引入

  师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?

  学生自由发言,重点引导学生回忆知识形成的过程。

  小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。

  师:这节课我们来研究“3的倍数的特征”。(板书课题)

  【设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的记忆,为探求3的倍数的特征做铺垫。】

  2.问题探究

  (1)找3的倍数

  师:研究“3的倍数的特征”,你们准备怎样研究?

  生自由发言。

  师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?

  (2)全班交流、讨论

  ①发现问题

  学生展示圈好的百数表。

  师:说说你们的发现?

  预设:只看个位不行。

  师:为什么不行?

  横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。

  ②分析问题

  师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?

  学生自由发言,引导学生斜着看。

  师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?

  生独立观察、发现。

  【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的.特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】

  ③解决问题

  师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)

  小组合作交流后全班汇报。

  (3)归纳3的倍数的特征

  师:你们的发现和猜想是什么?

  小组汇报,引导学生评价补充。

  引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。

  师:这个猜想对不对呢?你们是怎么验证这个猜想呢?

  生汇报验证的过程。

  师:举什么样的例子既简单又有代表性?

  举的例子包含有两位数、三位数、四位数……,多举几个

  师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。

  师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?

  归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。

  【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】

  3.巩固练习

  (1)课本第11页“练习二的第3题”

  圈出3的倍数。

  92 75 36 206 65 3051 779 99999

  111 49 165 5988 655 131 2222 7203

  (2)课本第10页“做一做”

  (3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?

  请说明理由。

  先独立完成,然后同桌合作操作验证。

  4.全课总结

  师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?

  在探究的过程中我们遇到了什么新问题?

  小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。

  师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。

《3的倍数的特征》教案15

  课题:3的倍数的特征

  教学目标:

  1、让学生找3的倍数,通过活动感悟3的倍数的特征,并用自己的话进行总结 。

  2、通过探索活动,感受数学的乐趣;同时使学生明白数学活动就是找规律。

  教学重、难点:3的倍数的数的特征。

  教学过程:

  一、出示课题:3的倍数的特征。

  (课件出示课题)

  师:同学们,我们已经知道了2、5的倍数的特征,首先我们来回忆一下,哪位同学来说一说?(大部分同学会举手。)

  (课件展示2 、5倍数的特征)

  那么3的倍数会有什么特征呢?谁能猜测一下?

  (课件出示疑问)

  二、讨论学习

  首先教师预设:个位上是3、6、9的数是3的倍数。

  老师就此让学生讨论。

  教师预设:个位上是3、6、9的数不一定是3的倍数,如23、7 6、109都不是3的倍数。

  师:90、12、21、27、108等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的.倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)

  师:出示下列数字,让学生判断是否有因数3

  105 25 372 56 981 42 21 36 89 90 123 48

  再问:是怎么找出来的?能说说3的倍数的特征了吗?如果不能。请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,让学生圈出3的倍数。)

  (课件展示下表,先有数字,根据教学进度再划线)

  三、自主探索,总结3的倍数的特征

  师:先请在表中找出3的倍数,并做上记号。(教师出示百以内数表,并和学生一起勾画。)(如下图)

  师:有规律吗?相互说说看。可能还是无所适从。

  这时候老师不能再为难学生了,提示:把把每位上的数加起来,看看和3有什么关系?

  教师预设:和是3的倍数。

  老师进一步就让学生分组实验:

  一组:1--30以内的

  二组:31--60以内的

  三组:61--100以内的

  学生很快就有了答案:每个数都符合刚才说的特征。

  老师就势让学生口头表述,并加深记忆。

  四、巩固练习

  同桌之间相互出题:各写几个三、四位的数判断是否是3的倍数。

  教师逐个检查练习效果。

  五、课堂小结:全班齐读书上的结论,一个数各位上的数字加起来,和是3的倍数,这个数就是3的倍数。

  六、课外练习:完成相应习题

【《3的倍数的特征》教案】相关文章:

3的倍数的特征教案02-26

3的倍数特征说课稿07-16

《3的倍数特征》说课稿03-29

《3的倍数的特征》说课稿11-09

3的倍数特征教学反思11-09

《3的倍数特征》教学反思04-11

《3的倍数的特征》教学反思04-11

《2和5的倍数的特征》教案08-25

3的倍数的特征说课稿5篇12-17

2倍数特征教学设计05-21