比的意义教案

时间:2024-06-19 13:12:09 教案 我要投稿

比的意义教案

  作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。怎样写教案才更能起到其作用呢?以下是小编为大家收集的比的意义教案,欢迎大家借鉴与参考,希望对大家有所帮助。

比的意义教案

比的意义教案1

  教学内容

  乘法的意义,乘法算式的写法及各部分名称

  教学目标:

  1、通过具体的生活情景使学生初步体会乘法的意义。

  2、通过同数连加引出乘法算式,掌握写法、读法及各部分名称。

  3、培养学生发现问题、提出问题、解决问题的能力和意识。

  重点难点:

  1、理解乘法的意义。

  2、乘法算式的写法及各部分名称。

  教具准备:

  多媒体课件

  教学时间:

  2课时

  教学过程

  一、导入

  1、算一算

  2+2+2+2= 4+4+4=2 3+3+3=

  2、思考:像这样加数都相同的加法算式用什么方法计算比较简便呢?

  二、探究新知

  今天我们就来研究一下有关乘法的知识。(此处我认为不是提出“乘法”这一概念的最佳时机)

  1、电脑出示课件,根据画面你能提出问题吗?(你能提出什么问题?)

  小组合作,提出问题并列式计算。

  2、交流。

  3、针对5+5+5+5+5+5+5+5= 40进行乘法教学。

  用加法算宝葫芦的'个数太麻烦了,用乘法计算比较简便。(在这里提出乘法自然而然,让学生充分体会出学习乘法的必要性)

  问:相同加数是几?有几个这样的加数?

  相同加数是5有8个这样的数,可以用乘法表示。

  板书:8×5= 40 5×8= 40,介绍各部分的名称,读法。

  4、小组将本组的加法算式改写成乘法算式,并汇报。

  一共有多少只小鸟?

  4 + 4 + 4 =( )(只)

  写成乘法算式:( )×( )=( )(只)

  或( )×( )=( )(只)

  三、试一试

  1、课本第6页自主练习1

  ( )+( )=( ) ( )+( )+( )+( )=( )

  ( )×( )=( ) ( )×( )=( )

  2、填一填

  3+3+3+3=( )×( ) 5+5+5+5+5+5=( )×( )

  7+7+7=( )×( ) 6+6+6+6+6=( )×( )

  3、写出乘法算式,再读出来。

  4个2相加 3乘5 6和4相乘

  ( ) ( ) ( ) ( ) ( ) ( )

  4、找朋友

  7×3 4×6 2×5 6×4 5+5

  2+2+2+2+2 7+7+7 6+6+6+6 3×7 4+4+4+4+4

  5、把图画补充完整。

  2×4

  6、课本第7页第7题。

  (1)一共有多少个小朋友在滑冰?

  (2)你还能提出什么问题?

  四、小结

  这节课你有什么收获

  教学反思

  学生理解乘法的意义有一定的难度,教师要适时引导,加强学生的理解。

比的意义教案2

  教学内容:

  教材第75~76页内容及练习与应用第1—7题。

  教学目标:

  1、通过回顾与整理,使学生进一步加深对分数意义的理解

  2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题

  3、进一步理解分数的基本性质,掌握约分和通分的方法。

  4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的认知结构。

  教学重点:

  熟练解决求一个数是另一个数几分之几的实际问题

  教学难点:

  帮助学生建立合理的认知结构。

  教学方法:

  讲练结合法

  教学过程:

  一、回顾与整理

  1、这一单元你学会了什么?

  学生交流。

  2、小组讨论书上的三个问题。

  指名汇报。约分和通分的根据是什么?

  约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?

  二、练习与应用

  1、做第1题。

  下面的.涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的?

  2、做第2、3题。

  学生独立完成。校对,说说自己的想法。

  3、做第4题。

  可以用直线上同一个点表示的数,有什么特点?

  你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。

  5、做第5题。

  学生独立完成。指名汇报方法。

  6、第6题

  学生先独立练习

  引导比较A三道题目计算方法有什么相同?

  B算式中选择的除数有什么不同?

  C从中还能想到些什么?

  沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  7、第7题

  练习后加强对比

  引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。

  三、课堂总结

  通过今天的复习你有什么收获?

比的意义教案3

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:

  认识反比例关系的意义。

  教学难点:

  掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例1。

  出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨) 10 20 30 40 50

  所需的天数 30 15 10 7.5

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答 讨论结果得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的.天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例2

  出示例2

  请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3) 判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。

比的意义教案4

  教学内容:p86,加法和减法之间的关系。

  教学目的:1、理解加法,减法的意义。

  2、使学生明确加,减法之间的关系,进而使学生知道减法是加法的逆运算。

  3、学习了加地各部分间的关系可以利用这一关系验算加法。

  4、培养学生概括能力。

  教学重点:理解加法,减法的意义。

  明确加、减法之间的关系。

  教学难点:理解减法是加法的逆运算。

  教学过程:

  准备训练。

  说出算式各部分名称。

  40 + 30 = 70

  ( ) ( ) ( )

  - 40 = 30

  ( ) ( ) ( )

  新授。

  出示课题加法和减法之间的关系

  出示例1

  先让学生说出每幅线段图的表示的'。意思,列出算式

  40+30=70

  引导学生说出这是和与加数=关系。

  在算式下面写出加数+加数=和。

  从而引出加法的意义;

  说清图意,列式。

  引导学生把(2),(3)与(1)比较。

  谁是已知的,谁是未知的,已知,未知有什么变化。明确第(2)题是求第二加数,第(3)题是求第一加数。

  从中引导减法的意义。

  引导学生看书,理解减法是加法的逆运算

  着重引导学生想,为什么减法是加法的逆运算。

  将加法算式及各部分名称与减法算式各部分名称加以比较。

  得出:一个加数=和一另一个加数

  师:学习了加法各部分间的关系可以利用这一关系验算加法。

  试做:验算 743+257=1000,对不对?

  出示例2

  求□中的未知数

  □+6=13 根据一个加数等于和减另一个加数由生填,讲清怎样想的?就可以求出□中的数。

  再完成

  478+522=1000

  1000-478=522

  生完成后,回答怎样想的。

  三、小结:

  什么叫加法?什么叫减法?

  加法之间有怎样的关系?

  运用这一关系可以验算加法。

  四、巩固练习

  根据加,减法的关系,在下面算式的□里填数。

  (1) 237+69=306 (2)5002-3875=1127

  306-□ =237 3875+□=1127

  □-237=69 □-1127=3875

  求□中的未知数

  □+378=1082 4657+□=7102

  □+265=930 1896+□=3024

  □+489=814 2743+□=5000

  坚式计算,并验算。

  3748+627 9134-514

  课后作业:

  1.根据560+430=990,写出两道减法算式。

  □-□=□

  □-□=□

  2.根据500-240=260,写出一道加法算式和一道减法算式。

  □+□=□

  □-□=□

  3.求□中的未知数

  589+□=1062 □+495=702

  298+□=594 □+324=500

比的意义教案5

  学习内容:

  教材104页例1、例2及做一做。

  学习目标:

  1、 我能理解同分母分数加、减法的算理,学会同分母分数加、减法的计算方法。

  2、 我能正确计算同分母分数加、减法。

  3、 我会用所学知识解决实际问题。

  学习重点:

  理解同分母分数加、减法的算理。

  学习难点:

  学会同分母分数加、减法的计算方法。

  学习准备:

  圆纸片

  学习过程:

  一、检查课前学习,导入新课

  二、自主学习,合作探究

  1、自学教材104页例1

  (1)我得到的数学信息

  (2)求爸爸妈妈一共吃了多少张饼?我写的算式

  (3)我是这样想的,得出结果

  (4)通过解答,我发现

  分数加法的含义与整数加法的`含义( )

  计算同分母分数加法时,分母( ),分子( )。

  2、小组合作学习例2

  仔细观察,根据问题,写出算式。

  我是这样想的,得出结果:

  从计算中,我发现分数减法含义与整数减法含义( ),计算同分母分数减法时,分母( ),分子( )。

  3.小组展示,汇报。

  4.观察例1和例2,我发现计算同分母分数加减法时,分母( ),分子( )。计算的结果不是最简分数时,应该( )。

  5.我能行

  完成105页做一做第一题。

比的意义教案6

  教学内容:

  教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

  教学目的:

  使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

  教学重点难点:

  乘法的意义和乘法交换律

  授课类型:

  新授课练习课

  教学方法:

  讨论法、讲授法

  授课时间:

  一课时

  教具准备:

  多媒体

  教学过程:

  一、复习

  教师出示复习题。

  1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

  2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

  3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

  上面这些题哪些可以用乘法计算?为什么?

  二、新课

  1、教学例1出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  解答这道题用乘法计算简便还是用加法计算简便?

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1

  一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0

  2、教学乘法交换律。

  让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

  比较一下这两个乘法算式,有哪些相同?有哪些不同?

  学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的`交换律。

  用字母表示:a×b=b×a

  三、巩固练习:

  1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

  2、做练习五的第3、4题。学生独立做完后,再集体核对。

  四、作业:练习五的第1、2、5题。

  小结:今天我们学了什么?什么叫乘法的交换律?

  附板书:乘法的意义和乘法交换律

  用加法计算:5+5+5+5+5+5=30(个)

  用乘法计算:5×6=30(个)

  求几个相同加数的和的简便运算,叫做乘法。

  在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

  注意:一个数和1相乘,仍得原数。例如:1×3=33×1=31×1=1

  一个数和0相乘,仍得0。例如:0×3=03×0=00×0=0

  两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

  用字母表示:a×b=b×a

【比的意义教案】相关文章:

《方程的意义》教案09-16

《小数的意义》教案01-23

《比例的意义》教案12-23

《分数的意义》教案01-20

《方程的意义》教案05-16

小数的意义教案07-29

分数的意义教案02-18

《分数的意义》教案 12-18

分数的意义的教案10-27

分数的意义教案06-18