- 相关推荐
《用代入法解二元一次方程组》教案
作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,借助教案可以提高教学质量,收到预期的教学效果。那么应当如何写教案呢?以下是小编为大家收集的《用代入法解二元一次方程组》教案,欢迎阅读,希望大家能够喜欢。
《用代入法解二元一次方程组》教案1
教学目标:
1、会用代入法解二元一次方程组
2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。
此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。
引导性材料:
本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组2(X+Y)=60
Y=2X观察
2(X+2X)=60与2(X+Y)=60①
Y=2X ②
有没有内在联系?有什么内在联系?
(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)
知识产生和发展过程的教学设计
问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的问题(解一元一次方程)。
解方程组
2(X+Y)=60①
Y=2X ②
解:把②代入①得:
2(X+2X)=60,
6X=60,
X=10
把X=10代入②,得
Y=20
因此:X=10
Y=20
问题2:你认为解方程组
2(X+Y)=60①
Y=2X ②的关键是什么?那么解方程组
X=2Y+1
2X—3Y=4的关键是什么?求出这个方程组的解。
上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的.方法叫“代入消元法”,简称“代入法”。
问题3:对于方程组
2X+5Y=-21①
X+3Y=8②能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?
(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)
例题解析
例:用代入法将下列解二元一次方程组转化为解一元一次方程:
(1)X=1-Y①
3X+2Y=5②
将①代入②(消去X)得:
3(1-Y)+2Y=5
(2)5X+2Y-25.2=0①
3X-5=Y②
将②代入①(消去Y)得:
5X+2(3X-5)-25.2=0
(3)2X+Y=5①
3X+4Y=2②
由①得Y=5-2X,将Y=5-2X代入②消去Y得:
3X+4(5-2X)=2
(4)2S-T=3①
3S+2T=8②
由①得T=2S-3,将T=2S-3代入②消去T得:
3S+2(2S-3)=8
课内练习:
解下列方程组。
(1)2X+5Y=-21(2)3X-Y=2
X+3Y=83X=11-2Y
小结:
1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。
2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。
3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。
课后作业:
教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。
《用代入法解二元一次方程组》教案2
学习目标 :会运用代入消元法解二元一次方程组.
学习重难点:
1、会用代入法解二元一次方程组。
2、灵活运用代入法的技巧.
学习过程:
一、基本概念
1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。
2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的.式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。
3、代入消元法的步骤:
二、自学、合作、探究
1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的式子表示y,则y=______,当x=0时,y=________ 。
2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。
3、若 的解,则a=______,b=_______。
4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。
5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。
6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。
7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。
8、当k=______时,方程组 的解中x与y的值相等。
9、用代入法解下列方程组:
⑴ ⑵ ⑶
二、训练
1、方程组 的解是( )
A. B. C. D.
2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。
3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。
4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )
A. B.2,1 C.-2,1 D.-1,0
5、用代入法解下列方程组
⑴ ⑵
6、如果(5a-7b+3)2+ =0,求a与b的值。
7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m
8、若方程组 与 有公共的解,求a,b.
【《用代入法解二元一次方程组》教案】相关文章:
二元一次方程组教学反思11-23
二元一次方程教案07-27
二元一次方程与一次函数教案10-26
解一元一次方程教案11-03
《解一元一次方程》教案11-12
二元一次方程教学设计09-11
二元一次方程教学设计11-08
《庖丁解牛》教案07-22
庖丁解牛教案10-13
数学解简易方程教案08-29