《圆柱的体积》教学设计

时间:2025-09-07 07:38:38 教学设计 我要投稿

《圆柱的体积》教学设计【大全15篇】

  作为一位不辞辛劳的人民教师,时常需要用到教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。教学设计应该怎么写呢?以下是小编精心整理的《圆柱的体积》教学设计,希望对大家有所帮助。

《圆柱的体积》教学设计【大全15篇】

《圆柱的体积》教学设计1

  教材版本

  《义务教育课程标准实验教科书》 (人教版) 六年级数学下册。

  课程标准摘录

  1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。

  2、探索某些实物体积的测量方法。

  学情与教材分析

  “圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。

  学习目标

  1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。

  2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。

  3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。

  4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。

  5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。

  学习重点

  圆柱的体积计算方法

  学习难点

  圆柱体积计算公式的推导。

  教具、学具准备:

  1、师:圆柱体积计算公式推导教具,课件。

  2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。

  教学设想

  本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。

  教法、学法

  演示法、启发引导;实验、合作探究、尝试练习。

  评价方案

  1、通过小组合作实验完成活动检测目标1、4、5的达成。

  2、通过提问检测目标3、4、5的达成。

  3、通过评价样题检测目标1、2、4的达成。

  评价样题

  1、

  2、

  教学过程

  一、激活旧知,引出新知

  1、计算下面物体的体积

  (1)长方体的长20厘米,宽10厘米,高8厘米。

  (2)正方体棱6分米

  2、回忆一下圆面积的计算公式是如何推导出来的?

  [学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。]

  教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。

  [设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。]

  3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?

  [设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。]

  板书:长方体的体积=底面积×高.

  [设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。]

  圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。

  板书:圆柱体所占空间的大小叫做圆柱的体积。

  师:这节课,我们就来学习圆柱的体积.(板书课题:圆柱的体积)

  二、自主合作,探索新知

  1.求圆柱体容器中水的体积

  出示长方体容器:问,这是什么?

  [学情预设:学生可能说出长方体容器。]

  问:怎么求长方体容器中水的'体积呢?

  [学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。] 问:如果换成圆柱体容器又如何求其中水的体积呢?

  [学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。](演示:把圆柱体容器中的水倒入长方体容器)

  2.橡皮泥圆柱体的体积

  (出示橡皮泥做成的圆柱体)

  问:这是一个什么样的立体图形?

  问:它是用橡皮泥做成的。你能想办法求出它的体积吗?

  [学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。]

  3.常用圆柱的体积.

  课件出示圆柱体压路机的滚筒的图片。

  问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?

  [设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。]

  小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。

  4.探究规律

  问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:

  课件出示操作讨论提纲:

  (1)圆柱体可以转化为什么样的立体图形?

  (2)转化后的立体图形体积与圆柱的体积大小是否有变化?

  (3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。

  学生讨论,教师参与小组讨论、点拨、操作。

  问:下面哪个小组来先进行汇报。

  各组派代表边汇报边演示。

  [学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。]

  问:谁还有补充?(学生补充讲解)

  教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。

  师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。

  结合课件演示讲解。

  师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积×高,所以,圆柱体的体积=底面积×高。

  师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)

  〔设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、3、4、5.〕

  5、实际应用

  (1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?

  例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。

  (2)、完成评价样题

  〔设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 〕

  三、巩固练习,拓展提高

  1、应用公式进行口算:

  2、

  3、

  [设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. ]

  四、全课总结,共谈收获

  通过今天的学习,你有什么收获?

  [设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。]

  五、课外创新,拓展延伸

  长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积×高,圆柱的体积还有没

《圆柱的体积》教学设计2

  教学目标:

  1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

  2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。

  3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

  教学重点和难点:

  圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

  教具:

  圆柱的体积公式演示教具,圆柱的体积公式演示课件

  教学过程:

  一、教学回顾

  1、交代任务:这节课我们来学习《圆柱的体积》。

  2、回忆导入

  (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

  (2)、我们都学过那些立体图形的体积公式。

  二、积极参与探究感受

  1、猜测圆柱的体积和那些条件有关。(电脑演示)

  2、.探究推导圆柱的体积计算公式。

  小组合作讨论:

  (1)将圆柱体切割拼成我们学过的什么立体图形?

  (2)切拼前后的两个物体什么变了?什么没变?

  (3)切拼前后的两个物体有什么联系?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)

  2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

  3、要用这个公式计算圆柱的体积必须知道什么条件?

  三、练习

  1、填空

  (1)、圆柱体通过切拼转化成近似的( )体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于

  (),所以,圆柱体的体积等于()用字母表示

  () 。

  (2)、底面积是10平方米,高是2米,体积是

  ()。

  (3)、底面半径是2分米,高是5分米,体积是

  ( )。

  2讨论:

  (1)已知圆柱底面的半径和高,怎样求圆柱的体积

  V=兀r2 × h

  (2)已知圆柱底面的直径和高,怎样求圆柱的体积

  V=兀(d÷2)2×h

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  V=兀(C÷兀÷2) ×h

  3、练习:已知半径和高求体积,已知直径和高求体积。

  四、小结或质疑

  五、作业

  课后做一做第1、2、3题。

  板书设计:

  圆柱的体积

  长方体的体积=底面积x高

  圆柱的体积=底面积x高

  V=Sh

  本节课的设计思考:

  一、让学生在现实情境中体验和理解数学

  《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的'过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

  二、鼓励学生独立思考,引导学生自主探索、合作交流

  数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。不足之处:

  在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。

  三、教师的语言非常贫乏

  在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。

  苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术

  是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。

《圆柱的体积》教学设计3

  教学目标:

  1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  教学难点:让学生经历观察、实验、猜想、证明等数学活动过程掌握圆柱体积的计算方法。

  教学方法:操作法、推理法、讲授法

  教学过程

  一、复习引新。

  我们以前学过哪些立体图形?

  生答:长方体和正方体。

  它们的体积是怎么求的?

  长方体:长×宽×高,正方体:棱长×棱长×棱长。

  二、教学例4。

  1、出示长方体和正方体。

  它们的底面积相等,高也相等。长方体和正方体的体积相等吗?为什么?

  生答:体积=底面积×高,所以长方体和正方体的体积相等。

  2、出示圆柱。

  猜一猜,圆柱的体积与长方体和正方体的体积相等吗?

  生猜测:相等。

  究竟如何,今天我们就一起来研究圆柱的体积。

  板书课题:圆柱的体积。

  问:刚才只是你们的猜测,你准备怎么验证?依据是什么?(4人小组讨论)

  生:准备把圆柱转化成我们以前学过的立体图形,来求它的体积。

  依据是圆可以转化成长方形计算面积。

  3、出示课件。

  回顾圆的面积计算公式是怎样推导的。

  4、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  5、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的.底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  6、教师演示课件。

  把圆柱拼成了一个近似的长方体。

  7、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  8、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  1、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  2、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  3、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积=底面积×高

  圆柱体积=底面积×高

  9、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  10、用字母如何表示。

  11、出示例4。

  现在你知道圆柱的体积与长方体、正方体的体积相等了吗?

  为什么?

  生答:体积相等,都是用底面积×高。

  V=sh

  三、巩固练习。

  1、出示练习七第一题。

  学生直接把答案填写在表中。

  提问:你是根据什么填写的?

  2、练一练。

  这两题,你打算怎么计算?

  生答:不知道底面积,要先算出底面积,再乘高。

  3.14×2×5 = 62.8(平方厘米)

  3.14×(6÷2)×8 = 226.08(平方厘米)

  3、一个圆柱形状的粮囤,从里面量得底面周长是12.56米,高是2米。它的容积是多少立方米?

  问:这道题和前面做的有什么不同?怎么计算?

  生答:这是求容积的。所以数据是从里面量的。

  4、练习七第2题。

  观察下面的3个杯子,你能看出哪个杯子的饮料多?

  请学生猜一猜。

  请学生列出三道算式。

  (1)3.14×(8÷2)×4

  (2)3.14×(6÷2)×7

  (3)3.14×(5÷2)×10

  问:你能不求出结果直接比较出大小吗?

  生答:第一个杯子的饮料多。

  5、练习七第三题。

  学生独立解答。

  指名说说是怎样算的?

  3.14×3×5×1= 141.3(千克)

  141.3千克<150千克

  答:这个保温茶桶不能盛150千克水。

  四、总结。

  今天这节课你学到了什么?

《圆柱的体积》教学设计4

  教学目标:

  1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。

  2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。

  3、培养学生分析问题,解决问题及实践应用能力。

  教学重点:

  掌握有关圆柱的表面积和体积的计算,会综合运用

  教学难点:

  运用所学的知识解决生活中的实际问题。

  学习过程:

  一、复习回顾

  1、下列图形的面积公式是什么?

  长方形的面积=

  正方形的面积=

  平行四边形的面积=

  梯形的面积=

  圆的.面积=

  2、长方体的表面积=

  圆柱的表面积=

  二、探究圆柱的体积公式:

  圆柱的体积= 。

  如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。

  如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。

  三、例题学习:

  把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?

  例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?

  四、课堂练习

  1、求下面圆柱的体积

  1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米

  3)底面直径5分米,高6分米

  2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

《圆柱的体积》教学设计5

  教学内容:

  人教版《九年义务教育六年制小学数学》(第十二册)圆柱体积

  教学目标:

  1、结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式。

  教学难点:

  圆柱体积计算公式的推导过程

  教学过程

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究、

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积.

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的'底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (设计意图:通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,推导公式。

  (1)、思考你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第17页例4上面的一段话:用字母表示公式。

《圆柱的体积》教学设计6

  教学目标

  1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。拓展教材内容,初步了解直柱体的相关知识。

  2、过程与方法:利用教材空间,为学生搭建思维平台。让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。

  3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。

  教学重点:

  理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。

  教学难点:

  正确理解圆柱体积计算公式的推导过程。

  教学过程

  一、情境导入:

  老师手拿一个圆柱形橡皮泥(大小适宜)。

  1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?

  生1:(已学知识)。

  生2:圆柱是一种立体图形,那么它的体积怎么计算?

  【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。】

  2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?

  生1:圆柱体的体积计算没有学过,无法计算。

  生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。

  生3:圆柱体在水中必须完全浸没,而且水还不能溢出。

  【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。

  师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!

  【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。】

  4、师:如果要求压路机前轮的体积或是求楼房中柱子的体积,还能不能用这种方法计算吗?(不能)那么求圆柱的体积时是否也有一个简单、易算的体积计算公式呢?今天我们就一起来研究圆柱体积的计算方法。

  【设计意图:学生的学习应该是出于自身需要的,是主动的、有效的,已有的知识已经不能解决新生问题时,学生产生强烈的求知欲望,为主动参与知识的形成过程,探究圆柱的体积计算公式奠定积极的情感基础。】

  二、新旧过度:

  教师引导学生观察圆柱形实物。

  1、

  师:发挥你的想象,哪些平面图形可以演变为圆柱体?生1:以长方形的一条长为轴,把长方形旋转一周,就形成一个圆柱体。

  (教师演示:大小不同的长方形旋转形成圆柱体。)

  生2:把一个圆形上下平移,移动过的轨迹就是圆柱体。(课件演示:大小不同的圆形上下垂直平移不同高度形成圆柱体。)

  师:通过刚才的演示过程你觉得圆柱的体积大小与什么有关?(圆柱的底面积和高)

  【设计意图:其一,让学生初步感知几何图形点———线———面———体的演变过程;其二,训练学生的空间思维能力,进而提升学生的数学思维含量;其三,为进一步探究圆柱的体积计算公式明确探究方向。】

  2、师:圆柱的底面大小就是圆柱底面圆形的面积,叫做圆柱的底面积。谁还记得圆面积计算公式的推导过程?

  学生口述,同时课件演示圆形转化为近似长方形的过程。

  【设计意图:回忆圆转化为近似长方形的过程,使学生重温化曲为直、化圆为方的数学思想,而且沟通新旧知识间的联系,同时为下一步对圆柱的转化(等份切割)顺利进行提供思维方法的帮助。】

  3、教师小结:我们能把一个圆采用化曲为直,化圆为方的方法转化成近似的长方形,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形呢?

  三、自主探究

  1、学生手拿圆柱实物,仔细观察,独立思考。

  2、组织学生小组讨论,把个人的想法在小组中交流,形成统一意见。

  强调:在讨论过程中,教师参与其中,倾听学生想法,调整汇报次序,同时提醒学生观察手中圆柱实物。

  3、汇报交流,统一意见。

  生1:把一个圆剪拼成一个近似的长方形,然后把圆形和近似长方形同时向上平移相同的高度,这时他们的轨迹一个是圆柱体,一个是近似长方体,而且它们的体积相等。

  (师:一个圆柱和一个长方体只要底面积和高分别相等,它们的体积就相等吗?一会儿我们来解决这个问题。)

  生2:把圆柱的底面分成许多相等的扇形,再沿这些分割线把圆柱纵切开来,从而剪拼成一个近似的长方体。

  (师:为什么是近似的长方体?———渗透数学极限思想)

  【设计意图:这个转化的过程是本节课的难点,在前面知识铺垫的基础上,发挥学生集体智慧的结晶,为学生提供广阔的思维和交流平台,真正使学生的思维与学习相辅相成,从而达到提高学生空间思维能力之目的。】

  4、课件演示:

  师:仔细观察下面这组课件,和你想象的是否一样?

  演示两次,第一次把圆柱平均分成16份,再剪拼成一个近似的长方形;第二次把圆柱平均分成32份,再剪拼成一个近似的'长方形。

  师:如果再平均分成更多的份数,结果会怎样呢?(平均分成的份数越多,转化成的形体就越接近长方体——极限思想)【问题讨论:课件中把圆柱平均分割后,其中的一块又平均分成两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的意图并没有这样的过程,我认为教材的方法是很可取的,符合极限思想,并且可以给予学生充分的思考和想象空间,因为只要均分的份数无限多时,拼成的图形就是一个长方体。然而实际教学中只是把圆柱平均分成16份或32份,那么在实际教学中如何更准确的诠释实际与理论之间的这种矛盾,从而更好的服务于学生思维、服务于课堂教学呢?】

  5、直观演示,寻找联系师:为了强化刚才的转化过程,我们再借助实物教具演示一遍(教具一半为红色,一半为绿色)。仔细观察演示过程,你能发现什么?

  生:长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱的底面积,而且它们的高相等。

  因为:长方体的体积=底面积×高

  所以:圆柱的体积=底面积×高

  V = S h 【学情分析:在小组讨论、课件演示的基础上,再有双色教具(一个红色教具,一个绿色教具,偶然发现双色混合更容易辅助学生找出联系)的实物演示,使得寻找圆柱体与长方体之间的联系变得异常容易,并且自然而然得到圆柱体体积计算公式,同时使学生感受获取知识的成功之喜悦、艰辛之感慨。】

  四、实践应用:

  1、从公式中可以看出,只要知道哪些条件就能计算圆柱的体积?口算:一个圆柱的底面积是90平方分米,高20分米,它的体积时多少?

  强调单位:90×20=1800(立方分米)

  2、再次拿出圆柱体橡皮泥,问:如果要用圆柱体积计算公式计算它的体积,你需要测量哪些数据?(底面直径、高)

  找学生实际测量,保留整厘米数,进行计算。将计算结果与用排水法求出的体积做一对比,可能存在误差。师:为什么会产生误差呢?

  生1:可能测量有误差,并且还要保留。

  生2:测量水的长、宽时,容器的厚度忽略不计,也能产生误差。教师说明:每一个科学结论都必须经过反复的实验、计算,才能得到正确的结论,我们在学习上就要有这种不怕吃苦、勇于探索的精神。

  3、出示一个圆柱形玻璃杯,出示一袋液态奶(225ml),问:通过计算你能知道这个杯子能装下这袋奶吗?除水杯的厚度忽略不计外,你还需要知道哪些条件?

  (教师直接给出玻璃杯的底面直径和高)

  【设计意图:层次性练习设计,第一层:基本练习,使学生更好的掌握本课重点,夯实基础知识;第二层,变式练习,进一步加深学生对圆柱体积公式的理解和掌握,学会灵活运用公式,在提高学生动手操作能力的同时,培养学生的逻辑思维能力;第三层,密切联系生活,运用公式解决引入环节中的问题,使学生的思维处于积极的状态,达到培养学生思维的灵活性和创造性解决问题能力的目的。】

  五、看书质疑:看书P19—20,师:哪些知识是我们没有讲到的?(V=∏r2 h)结合本节课的探究过程,你有什么疑问吗?

  若学生有困难就教师提出问题:长方体和圆柱体有什么相同的地方,为什么他们的体积都能用V=Sh来计算?

  学生独立思考后,教师解释:我们现在所学的圆柱体是直圆柱,他与长方体都属于直柱体,只要是直柱体,体积都可以用V=Sh来计算。如三棱镜的体积=底面三角形的面积×高

  【设计意图:课本是最好的教学辅助工具,是学生学习最好的伙伴,让学生再次重温本节课的学习历程,养成一种良好的学习习惯和学习品质。】

  【问题讨论:我个人认为,在每一节课每个知识点的教学过程中,都尽量站在“数学”的高度来教学,于是对教材内容进行了拓展。长方体与圆柱体的体积公式V=Sh正好说明直柱体体积=底面积×高,但因为长方体(平面围成)与圆柱体(曲面围成)之间的联系较难找出,无疑增加了学生的思维负担,但从数学学习的角度来说,它却为今后“几何”学习奠定基础,这一环节处理是否有利于六年级学生思维发展?】

  六、全课小结:

  师:通过本节课的学习,你有什么收获?

  【设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用体温师小结,使学生畅谈收获,发现不足,既能训练学生语言表达能力,又能培养学生的归纳概括能力,同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。】

  启发与思考

  启发

  一、充实教材,为提高学生思维能力搭建平台

  课堂教学中让学生在教师的启发指导下,独立思考、积极主动的去探究知识是怎样形成的,才能真正使学生成为学习的主体。在教材中已经提供了图形转化的过程,那么在没有学具让学生进行动手操作、亲自感悟的情况下,怎样让学生的思维真正参与到知识的形成过程呢?作为教师,必须充实教材。课堂中让学生动手测量计算所必需的数据,自己感悟学习圆柱体积计算公式的必要性,合作探究圆柱体的转化方法和过程。所有这些环节的设计,都在潜移默化中引导学生主动思考,主动参与,在思考与参与中提高了学生的思维能力。

  二、借助教材,为提高学生思维能力寻找支点

  数学知识具有一定的结构,知识间存在密切的联系,教学时要找出知识间的内在联系,帮助学生建立一个较完整的知识系统。教材中设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方形计算体积吗?”但我认为“面体过渡”在几何领域中本身就是一个难点,而“面面互化”迁移到“体体互化”,就难上加难,所以设计中用较长时间沟通新旧知识间的联系:排水法的应用,平面图形演变为立体图形的过程,圆面积的推导过程。在复习当中,学生的综合运用能力得到提高,更重要的是为下一步学生的思维活动确立支点,进而提高学生的思维能力。

  三、理解教材,为提高学生思维能力提供保证数学思想的教学才是数学课堂教学中最本质的教学。从教材的编排,还有各知识点的呈现中可以看出,有一条不变的主线贯穿始终,那就是转化思想中的化曲为直、化圆为方。那么,只要教师真正理解教材的这一编写意图,学生所收获到的就不仅是圆柱体积的计算方法,而是真正感悟到数学转化思想,学生必将运用这种思想影响今后的学习,为其思维能力得以持续发展提供保证。思考

  思考

  一、演示、观察能否代替操作?

  教材中提供了教具演示,但在本节教学前,始终没有找到学生使用的操作学具,而自己也尝试用土豆、橡皮泥等制作学具,都因为难度太大(粘接处)而告失败,在无奈之余,设计了“独立思考———小组探究———课件演示———教具操作”四个环节来突破本节难点。就学生理解、接受方面来说效果不错。但没有让学生亲自操作,总感觉影响学生思维发展。类似教学如:圆锥高的认识。

  二、研究中的失误会不会造成学生认知的“失误”?

  课堂中为求真实,进行了两次实际测量(第一次测长方体中水的长宽高;第二次测圆柱形橡皮泥的底面直径和高)。两次计算结果的对比,使学生思维与课堂结构都体现完整性。但由于种种误差,计算结果很可能不会相等,这就可能会让学生对结论产生怀疑(尽管教师已经说明),那么是否有必要让学生经历一个“失误”的过程呢?类似教学如:圆周率的计算。

《圆柱的体积》教学设计7

  学情分析:

  根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学目标:

  1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

  2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

  3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

  教学重点:

  圆柱体体积的计算

  教学难点:

  圆柱体体积公式的推导

  教学用具:

  圆柱体学具、

  教学过程:

  一、复习引新

  1.求下面各圆的面积(回答)。

  (1)r=1厘米; (2)d=4分米; (3)C=6.28米。

  要求说出解题思路。

  2.提问:什么叫体积?常用的体积单位有哪些?

  3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

  二、探索新知

  1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

  2、公式推导。(有条件的可分小组进行)

  (1)请同学指出圆柱体的底面积和高。

  (2)回顾圆面积公式的推导。(切拼转化)

  3、回顾了圆的面积公式推导,你有什么启发?

  生答:把圆柱转化成长方体计算体积。

  4、动手操作。

  请2位同学上台用教具来演示,边演示边讲解。

  把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

  多请几组同学上台讲解,完善语言。

  提问:为什么用“近似”这个词?

  5、教师演示。

  把圆柱拼成了一个近似的长方体。

  6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

  生答:拼成的`物体越来越接近长方体。

  追问:为什么?

  生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

  师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?

  出示讨论题。

  (1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

  (2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

  (3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

  板书:

  长方体体积 底面积 高

  圆柱体积 底面积 高

  8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

  生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

  9、用字母如何表示。

  V=sh

  10、小结。

  圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

  11、教学算一算

  审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

  12、教学“试一试”

  小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

  三、巩固练习

  课后“练一练”里的练习题。

  四、课堂小结

  这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱转化长方体)得出了圆柱体的体积计算公式V=Sh。

《圆柱的体积》教学设计8

  教学内容:

  义务教育教科书北京师范大学出版社小学数学六年级下册第8-9页。

  教材分析:

  本节课的内容是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体的体积计算方法的基础上学习的,长方体和正方体的体积计算方法“底面积×高”对探索圆柱的体积计算方法有正迁移作用。本节课的重点在于引导学生经历“猜想与验证”的探索过程,在探索中理解、掌握圆柱体积的计算方法,体会“类比”“把未知问题转化为已知”等思想方法,并积累研究图形的经验。

  学习目标:

  1、通过具体情境观察、实物感知等活动,感受物体体积的大小,发展空间观念。

  2、通过圆柱与长方体的“类比”,经历”猜想与验证“圆柱体积计算方法的过程,体会”类比“的数学思想方法。

  3、掌握圆柱体积的计算方法,能正确计算圆柱的体积,能运用圆柱体积计算方法解决简单的实际问题。

  教学重难点:

  重点:引导学生经历“猜想与验证”的探索过程,在探索中理解和掌握圆柱的体积计算方法。

  难点:体会圆柱的体积的探索过程,理解计算方法,积累研究经验。

  教学准备:多媒体课件、演示的教具。

  教学过程:

  一、创设情境,观察思考。

  师:在生活中有很多物体的形状是圆柱体的,比如建筑物的柱子,喝水的杯子。

  笑笑:这么粗的柱子需要多少木材呢?

  淘气:这个杯子能装多少毫升水呢?

  师:思考笑笑和淘气分别提出的问题,你能帮助他们解决这两个问题吗?

  学生思考后发现:这两个问题实际上都需要求出圆柱的体积。

  二、回顾旧知,类比猜想。

  1、回顾:

  师:在解决新问题之前,先来回顾一下,我们都学习过哪些有关体积的知识呢?

  回忆长方体、正方体的体积计算方法:底面积x高。

  2、猜想:

  师:请你们来猜一猜?圆柱的体积和什么有关呢?它的计算方法可能是怎样的呢?

  引导学生说说自己的猜想和猜想的依据:

  生:圆柱和长方体正方体一样,也有底和高,它的体积可能与底面积和高有关;

  生:圆柱与长方体有相似性,都是直直的,上下一样粗,所以从”长方体的体积=底面积x高”猜想“圆柱的体积=底面积x高”。

  师:真的是这样吗?让我们一起来验证吧!

  三、动手操作,验证猜想。

  (一)直观感知

  用几枚一元硬币叠成圆柱形,底面积不变,高增加,体积随之增加;再用几枚一分硬币叠成圆柱形,对比发现,当高相等时,底面积变小,体积也随之变小。

  师:通过刚才的实验,我们发现圆柱的体积与它的底面积、高有关。

  但是圆柱的体积是不是就等于底面积乘高呢?那我们还需要进一步验证。

  (二)等积变形

  1、回忆圆的面积推导过程。

  把圆平均分成若干个小扇形,再拼成一个近似的`平行四边形,分的份数越多,拼成的图形越接近于长方形。这样我们就把计算圆的面积转化成计算长方形的面积。

  思考:既然圆能变成长方形,那圆柱能变成长方体吗?

  2、演示圆柱到长方体的变化过程。

  将蛋糕分别8等分、16等分,再重新拼起来,可以得到近似的长方体。

  课件演示:把实物圆柱的切拼过程重新用课件演示:将圆柱分别16等分、32等分、64等分。引导学生观察拼出的图形的变化,发现:平均分的份数越多,拼起来就越接近长方体。

  想象推测:如果我们一直分下去,把这个圆柱进行无穷等分,再拼起来,得到的就是一个长方体。

  这样我们就把圆柱转化成了长方体,把计算圆柱的体积转化成了计算长方体的体积。

  3、推导圆柱的体积计算方法。

  师:观察转化后的长方体和原来的圆柱,你有什么发现?

  把圆柱拼成长方体后,形状变了,体积没变,长方体的体积就等于圆柱的体积,拼成的长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

  因为长方体体积等于底面积x高,圆柱体积也等于底面积x高。

  用字母表示:V=Sh

  4、小结:通过验证,证明我们一开始的猜想是正确的,圆柱的体积就等于底面积乘高。

  四、尝试应用,解决问题。

  1、笑笑了解到一根柱子的底面半径为0.4m,高为5m,你能算出它的体积吗?

  分析:求体积需知道底面积和高,所以要先用3.14x0.42求出底面积。

  提醒学生注意体积单位名称是立方米。

  2、从水杯里面量,水杯的底面直径是6cm,高是16cm,这个水杯能装多少毫升水?

  分析:已知底面直径是6cm,需要先计算出半径,再求出底面积。提醒学生要换算成容积单位。

  小结:有时候题目并没有直接给出底面积的数据,这时候就需要根据不同的已知条件来列式计算。

  五、巩固练习:

  课本“练一练”第1—3题。

  六、回顾总结,交流分享。

  通过今天的学习,你学到了什么呢?和同学或家人分享你的收获。

  师:我们学会用转化的方法,将圆柱的体积转化成长方体体积,这样就可以用以前学过的知识来解决新问题了。我们还可以根据图形之间的联系先进行猜测,然后想办法验证自己的猜测。这些都是解决数学问题的好方法。

  七、课后实践

  寻找身边的圆柱形的物体,量一量,计算它的体积。

  板书设计:

  圆柱的体积

  《圆柱的体积》教学设计《圆柱的体积》教学设计《圆柱的体积》教学设计长方体的体积=底面积x高

  圆柱体积=底面积x高

  V=sh

《圆柱的体积》教学设计9

  教学准备

  1.教学目标

  1.加强实践操作,尽量让学生自己动手,亲历圆柱体积的转化过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

  2.加强习题设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。

  3.加强空间观念的培养,突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。

  2.教学重点/难点

  教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱体积。

  教学难点:理解圆柱体积公式的推导过程。

  3.教学用具

  4.标签

  《圆柱的体积》教学设计教学过程

  一、情境激趣,导入新课。

  同学们,让我们先来做一个实验:

  1、师拿一个长方体和一个正方体容器,说说怎样计算它们的体积,接着往正方体容器中倒入一定量的水,然后拿出一个圆柱体准备投入水中让学生观察:有什么现象发生?由这个现象你想到了什么?

  2、提问:你能用一句话说说什么是圆柱的体积吗?(板书课题)

  [设计意图:通过把圆柱投入水中,水面上升,使学生直观感知圆柱体积大小的概念。]二、自主探究,学习新知

  (一)设疑

  1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?

  2、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式就好了。

  [设计意图:通过追问大厅内圆柱体积等问题,使学生意识到前面方法的局限性,使其产生思维困惑,激发学生探究圆柱体积计算方法的欲望,从而进入最佳学习状态。]

  3、怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。

  请大家想一想:在学习圆的面积时,我们是怎样把圆转化成已学的图形,来推导圆面积的计算公式的.

  (学生回答后,把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,通过回顾圆的'面积的推导方法,巧妙地运用旧知识进行迁移。]

  (二)猜想

  怎样来计算圆柱的体积呢?

  讨论:能不能把圆柱转化成我们已学过的立体图形,来计算它的体积?

  引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  (三)验证

  1、为了证实刚才的猜想,我们可以通过实验来验证。

  2、学生利用学具分组讨论以下问题:

  圆柱体可以转化成哪种立体图形?

  它又是怎么转化成这种图形的?(小组讨论后汇报交流)

  把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

  3、指名两位学生上台用圆柱体积学具进行操作,把圆柱转化为近似的长方体。

  4、根据学生操作,教师再次课件演示圆柱转化成长方体的过程,并引导学生分析当分的份数越多时,拼成的图形越接近长方体。

  [设计意图:合理运用多媒体技术,形象生动地展示“分成的扇形越多,拼成的立体图形就越接近于长方体”,这里转化思想和极限思想得到应有的体现,同时也渗透了以直代曲的辩证唯物主义观点,发展了学生的空间观念。]

  5、通过上面的观察,小组讨论:

  圆柱与所拼成的近似长方体之间有什么联系?分四人小组展开讨论.

  (1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?

  (2)长方体各部分之间与圆柱体有怎样的关系?

  (3)你认为圆柱的体积可以怎样计算?

  生汇报交流,教师根据学生讲述适时板书。

  近似长方体的体积=圆柱的体积

  近似长方体的底面积=圆柱的底面积

  近似长方体的高=圆柱的高

  试着根据圆柱与近似长方体的关系,推导公式:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  用字母表示计算公式:

  V=Sh

  6、同桌相互说说圆柱体积的推导过程。

  思考:

  求圆柱的体积必须具备哪两个条件?

  7、完成做一做:一根圆柱形木料,底面积为75平方厘米,长是90厘米。它的体积是多少?(生练习,展示并评价)

  8、求圆柱体积要具备什么条件?

  [设计意图:动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。]三、实际应用

  1、反馈练习:

  底面积是10平方米,高是2米,体积是( )

  底面积是3平方分米,高是4分米,体积是( )

  2、运用新知,尝试解答实际问题.

  一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?

  (1)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?赶紧试一试?

  (2)在解题的过程中要注意单位统一。

  (学生自己完成并汇报解题思路)

  请同学们想一想

  已知圆柱的底面半径和高,求体积

  已知圆柱的底面直径和高,求体积

  已知圆柱的底面周长和高,求体积

  3.深入练习(小组合作)

  (1)一个圆柱形状的零件,底面半径是5厘米,高8厘米。这个零件的体积是多少立方厘米?

  (1)一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米.这个水桶的容积是多少立方分米?

  (2)一个圆柱的体积是62.8立方分米,高是5分米,底面积是多少?

  不会的可以向同学请教

  4、拓展提高:

  一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?

  [设计意图:让学生运用公式解决生活中的问题,使学生认识到数学的价值,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。]四、全课总结:

  通过这节课的学习,你有哪些收获?(生汇报收获)

  [设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用提问式小结,使学生畅谈收获、发现不足,既能训练学生的语言表达能力,又能培养学生的归纳概括能力;同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。]

  五、学生作业:

  1、练习七的第l题完成在书上。

  2、课本26页试一试。

  3、一个圆柱的石柱子底面的周长18.84分米,高是20分米,体积是多少?(选做)

  六、板书设计圆柱的体积

  长方体体积=底面积×高

  圆柱体体积=底面积×高

  V=Sh

《圆柱的体积》教学设计10

  一、教学内容:

  人教版六年级数学下册圆柱的体积

  二、教学目的:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  三、教学重难点:

  难点:掌握圆柱体积的计算公式。

  难点:圆柱体积的计算公式的推导。

  四、教具准备:

  多媒体课件

  教学过程:

  一、复习回顾

  1、物体所占( )叫做物体的体积

  1、长方体的体积=()×()×()=( )×()

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式S=πr2。

  (设计意图:激发学习兴趣,加强新旧知识的联系,理解数学转化的思想方法。)

  二、探究新知

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形,由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了)

  (2)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=sh)

  (设计意图:通过实验观察、培养学生的观察能力、分析能力、归纳能力,体会数学转化的.思想方法,运用转化的方法学习新知识,培养学生的学习技能。)

  (3)公式拓展 V=sh=πr2

  2、例题初探

  (1)初探例题:一根圆柱形钢材,底面积是40平方厘米,高是25厘米。它的体积是多少立方分米?

  (2)阅读与理解:

  ①这道题已知什么?求什么?

  ②怎样计算?

  ③结果单位怎么样?

  (3)学生解答、点评

  (设计意图:加强学生的审题训练,对基本公式的运用,加强基础知识的练习习题, 检查学生运用公式的能力以及单位的换算。)

  三、学以致用

  李家庄挖了一口圆柱形水井,地面以下的井深10m, 底面直径为1m.挖出的土有多少立方米?

  (设计意图:加强学生的审题训练,对公式的灵活运用,提升学生的解题能力,加强数学与生活的联系。)

  四、课堂小结

  同学们,我们学习了圆柱的体积计算,你有什么收获呢?让我们课后解决一些有关圆柱体积计算的实际问题。

  (设计意图:发挥学生的想象,提高学生的整理能力,激发学生课后的探究欲望,从而提高学生的数学水平。)

  板书设计:

  圆柱的体积

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=sh=πr2

《圆柱的体积》教学设计11

  教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题

  教学目标:

  1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。

  2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。

  教学重点:理解和掌握圆柱体积的计算公式。

  教学难点:圆柱体积计算公式的推导。

  教学准备:圆柱体模具。

  教学过程:

  预习作业检测

  学习计算圆的面积时,是怎样得出圆面积的计算公式的?

  求下面各圆的面积

  R=1厘米求Sd=4分米求Sc=6.28米求S

  长方体与正方体的体积都可以用什么公式来表示?

  圆柱底面积/平方米高/米体积/立方米

  0.61.2

  0.253

  合作探究

  你们是怎么知道圆柱的体积=底面积×高的.呢?生答预习得知。

  课本上是怎么把圆柱体和长方体联系在一起的呢?

  生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。

  用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:

  ○1等份越多,拼成的物体越接近于长方体。

  ○2长方体与圆柱体等底等高。

  ○3长方体体积=圆柱体体积

  ○4圆柱的体积=底面积×高(V=sh)。

  根据刚才的结论完成下面的题目:

  ○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,

  它的体积是多少?生独立完成后,师有选择的找几位学生

  的作业进行投影展示,全班交流评价。

  ○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这

  个圆柱的体积是多少立方厘米?

  引导学生读题,思考。指名说出自己想的过程。生独立解

  答,展示、交流、评价。

  当堂达标检测

  1、“练一练”第1题。

  2、练习七第2题。

  3、“练一练”第2题。

  教学反思:

《圆柱的体积》教学设计12

  一、情景引入

  1、教学开始首先出示了一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察:会发生什么情况?由这个发现你想到了些什么?

  2、提问:“能用一句话说说什么是圆柱的体积吗?”

  (设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供研究方法。)

  二、自主探究

  1、比较大小、探究圆柱的体积与哪些要素有关。

  (1)、先出示了两个大小不等的圆柱体让学生判断哪个体积大?

  (2)、提问:“要比较两个圆柱体的体积你有什么好办法?”学生想到将圆柱体放进水中,比较哪个水面升得高。

  (3)、让学生运用这样的方法自己比较底等高不等和高等底不等的两组圆柱的体积,并将实验结果填入实验报告1中。(课件出示)

  (4)、学生通过动手操作汇报结论:当底等时,圆柱越高体积越大;当高等时,圆柱底面越大体积越大。即圆柱的体积的大小与它的底面积和高有关。

  (设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。)

  2、大胆猜想,感知体积公式,确定探究目标。

  (1)、再次设疑:如果要准确的知道哪个圆柱的体积大,大多少,你有什么好办法?学生想如何计算圆柱的体积。

  (2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

  (3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的假设?

  (4)、学生小组讨论交流并汇报:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体;圆柱的体积可能也是用底面积乘高来计算。

  (5)、让学生依据假设结论分组测量圆柱c和圆柱d的有关数据,用计算器计算体积,并填入实验报告2中。(课件出示)

  (设计意图 : 通过设疑使学生认识到学习圆柱体积公式的必要性,激发学生的探究兴趣。接着通过设计猜想的过程,充分运用学生已有的知识经验,让学生回忆了学习长方体体积时的实践方法和将圆形转化成长方形的'过程,学生在如此丰富的知识经验基础上就做到了心中有数,猜想的胆量就更大,假想的合理性就更强。)

  4、确定方法,探究实验,验证体积公式。

  (1)、首先要求学生利用实验工具,自主商讨确定研究方法。

  (2)、学生通过讨论交流确定了两种验证方案。

  方案一:将圆柱c放入水中,验证圆柱c的体积。

  方案二:将学具中已分成若干分扇形块的圆柱d拆拼成新的形体,计算新形体的体积,验证圆柱d的体积。

  (3)、学生按照自己所设想的方案动手实验,并记录有关数据,填入实验报告2中。(课件出示)

  (4)、实验后让学生对数据进行分析:用实验的方法得出的数据与实验前假想计算的数据进行比较,你发现了什么?

  (5)、学生汇报:实验的结果与猜想的结果基本相同。

  (6)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。(课件出示)

  (7)、小结:

  要想求出一个圆柱的体积,需要知道什么条件?

  (8)、学生自学第8页例4上面的一段话:用字母表示公式。

  学生反馈自学情况:

  v=sh ( 设计意图 这部分教学采用以小组合作探究的学习方式进行数学活动,充分调动学生各种感官,完成从操作→观察、比较→归纳推理的认知过程,让学生通过自己动手、动脑得到结论。通过让学生自己设计实验方案和自主实验探究的活动,培养了学生的创新精神和实践能力。)

《圆柱的体积》教学设计13

  各位领导、老师、同学们:大家好,今天我讲课的题目是《圆柱的体积》

  圆柱的体积是本单元的教学重点。在此之前,学生已经学过了圆面积公式的推导,对转化的思想方法和“等积变形”已有所了解;长方体、正方体的体积公式是本节课的旧知停靠点;而这节课的顺利学习将为以后圆锥体积的学习铺平道路。从能力培养方面来看,本节课的内容有利于发展学生的空间观念,培养学生的逻辑推理能力,在公式推导过程中,还可以培养学生猜想、类推、对应的数学思想和方法。另外,就情感的角度而言,通过学生体验探索数学奥秘的过程,可以培养学生对数学学习的兴趣和探索精神。

  由此,预设以下教学目标:

  1、使学生经历用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式的过程,使学生能总结和理解圆柱的体积公式,能够运用公式正确的计算圆柱的体积。

  2、培养学生观察、猜测、分析、比较、综合的学习思考方法。

  3、渗透转化、等积变形、极限的数学思想。

  4、通过学生体验圆柱体积公式的推导过程,让学生感受探索数学奥秘的乐趣,培养学生学习数学的积极情感;

  圆柱的体积公式推导过程可以培养学生多方面的能力,这个过程对学生是否真正理解圆柱体积公式起着至关重要的作用,因此我把圆柱的.体积公式推导过程做为本节课的教学重点;而学生的思维是以具体形象思维为主,逐步向抽象逻辑思维过渡,在圆柱体积公式的推导过程中,要用到等积变形、对应、以及逻辑推理的知识,学生理解起来可能会有点困难,所以我认为圆柱的体积公式推导过程也是本节课的教学难点。

  本节课要采用的教学方法有:演示法、提问法等,在学习过程中要用到的方法有:观察法、思考法等。

  教学用具:圆柱模型,装水的杯子等

  这节课主要有五大环节

  一、实验引入

  师:我们来观察一个现象,把小圆柱放入水里,看看有什么变化

  生:变了变了,水面上升了。

  师:水面为什么上升

  生:小圆柱浸没在水中,将水挤压上升,求小圆柱的体积也就是求上升水面的体积,即圆柱体积。

  师:你们想不想知道圆柱体积怎样计算

  生齐答:想。

  师:今天我们就一起来研究圆柱体积的计算方法。(板书:圆柱的体积)

  二、探究新知

  师:出示课件,根据课件演示逐步推导出圆柱体的体积计算方法

  长方体的体积=底面积×高

  | |

  圆柱体的体积=底面积×高

  v = s h

  三、,运用新知,解决问题

  出示例1:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少

  师:咱们大家理解自己推导的圆柱体的体积公式了吗下面我们

  50×210=10500(cm3)

  答:圆柱形钢材体积为10500cm3

  四、巩固运用

  1,填表:请同学看屏幕回答下面问题,谁想好了谁就站起来说。

  底面积(m2) 15 6.4 0.05

  高(m) 3 4 2

  圆柱体积(m3)

  五、总结评价

  师:今天我们学习了圆柱体积的推导方法及计算公式。

  板书设计:

  圆柱的体积

  v= s h

  例4:一根圆柱形钢材,底面积是50平方厘米,高是210厘米,它的体积是多少

  50×210=10500(cm)

  答:圆柱形钢材体积为10500立方厘米。

《圆柱的体积》教学设计14

  教学目标

  1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

  2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

  3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  掌握和运用圆柱体积计算公式进行正确计算。

  教学难点:

  理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

  教学过程:

  一、情景导入:

  1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

  学生:

  1.比平日多了两个蛋糕。

  2.两个蛋糕一个大一个小。

  3.蛋糕都是圆柱形的。

  2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

  学生:蛋糕大,意味着圆柱的体积大。

  3、教师:那你还知道什么是圆柱的体积吗?

  学生:圆柱的体积就是圆柱体占空间的大小。

  4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

  学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

  教师:板书:圆柱的体积

  二、课上探究

  1、教师:同学们回忆一下我们还学过那些立体图形?

  学生:还学过正方体和长方体。

  教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点?

  学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

  2、猜测圆柱的体积与什么有关

  师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

  生1.圆柱的体积与圆柱的高有关。

  生2.圆柱的体积与圆柱的底面积有关。

  生3.圆柱的体积与圆柱的底面周长有关。

  生4.圆柱的体积与圆柱的底面半径有关。

  3、推导圆柱体积公式

  ①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

  生:把圆转化成近似长方形来求面积的。

  ②师:我们一起来回忆把圆转化成近似长方形的过程,(课件)

  师:你发现了什么?

  生:我发现把圆平均分成的份数越多,拼成的'图形越接近长方形。

  ③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

  生:把圆柱转化成近似的长方体。

  ④师用圆柱体演示转换过程,让学生说怎样转换的。

  生:把圆柱平均分成16份拼成一个近似的长方体。

  ⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。

  课件再次演示把圆柱等分16等份,拼成近似的长方体。

  再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

  生:分成的份数越多,拼成的图形越接近长方体。

  ⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?

  学生分组讨论,汇报:

  生:长方体的高和圆柱的高相等。

  生:长方体的底面积和圆柱的底面积相等。

  ⑦师:你是怎么想的?

  生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

  ⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

  生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

  师:课件演示长方体的体积=底面积×高

  ⑨师:那么圆柱的体积等于什么呢?

  生:圆柱的体积=底面积×高

  ⑩下面我们再一起回忆一下转化的过程,(课件)

  让学生独立填答案,汇报:

  三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

  四、学生谈收获。

《圆柱的体积》教学设计15

  学习目标

  1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

  2.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

  学习重点理解和掌握圆柱的体积计算公式

  学习难点圆柱体积计算公式的推导。

  一、温故知新

  1、什么是体积?()2.长方体的体积=()字母公式:

  或长方体的体积=()字母公式:

  3、圆的面积=()字母公式:

  4.圆是把圆面积转化成近似的长方形面积进行计算的。圆的面积是怎样推倒得来的?

  圆分割成若干等分,拼成近似的长方形,它的长等于圆的(),长方形的等于圆的'(),长方形的面积等于(),所以圆的面积等于()。

  二、自主学习

  1.计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

  2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?()

  3、思考:1)通过实验你发现了什么?

  *拼成的近似长方体()没变,()变了。

  *拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似(),( )的大小没有改变。

  *近似长方形的高就是圆柱的( ).

  2)推导圆柱体积公式。怎样计算圆柱的体积?

  长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的(),高就是圆柱的(),所以圆柱的体积也可以用()乘()来计算。

  用字母表示:()

  4补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  ①已知()求()

  ②能不能根据公式直接计算?()因为()

  ③计算之前要注意什么?

  计算时既要分析题目中的(),还要注意先统一()。

  ④解出此题,代公式计算。

  3、完成第20页的“做一做”。

  4、思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?______________

  5、自学p20例6,6、比较一下补充例题与例6有哪些相同的地方和不同的地方?

  7、做书上21页1题。

【《圆柱的体积》教学设计】相关文章:

圆柱的体积教学设计09-17

《圆柱的体积》教学设计01-13

《圆柱的体积》教学设计09-06

圆柱的体积教学设计12-25

“圆柱的体积”教学设计08-12

《圆柱的体积》教学设计09-23

《圆柱的体积》教学设计07-31

《圆柱的体积》优秀教学设计06-26

小学数学圆柱的体积教学设计07-07

《圆柱的体积》教学设计15篇09-05