分数乘法教学设计

时间:2024-10-25 13:00:17 教学设计 我要投稿

分数乘法教学设计

  作为一位无私奉献的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么你有了解过教学设计吗?下面是小编为大家整理的分数乘法教学设计,希望能够帮助到大家。

分数乘法教学设计

分数乘法教学设计1

  教学内容:人教版小学数学教材六年级上册第13~14页例8及相关练习。

  教学目标:

  1、使学生理解和掌握连续求一个数的几分之几是多少的问题的数量关系,掌握分数连乘法的计算方法,并能正确计算。

  2、让学生在“用数学”活动中,学会收集、选择和加工信息,在共同探讨中培养学生的合作意识以及分析问题、解决问题的能力。

  教学重点:理解掌握连续求一个数的几分之几是多少的问题的数量关系,掌握解题的基本方法。

  教学难点:在用分数连乘的方法解决实际问题的过程中,理解单位“1”“分率”与所对应的量的相对性。进而帮助学生深刻理解单位“1”“分率”与具体数量之间的一一对应关系。

  教学准备:课件、学具。

  教学过程:

  一、复习引入,唤醒旧知

  1、找一找,谁是表示单位“1”的量:

  (1)足球的个数是篮球的;

  (2)女生人数与男生人数的相等。

  2、你能解决这两个问题吗?

  (1)篮球有35个,足球的个数是篮球的,足球有多少个?

  (2)六(1)班有男生25人,女生人数与男生人数的相等,六(1)班有女生多少人?

  3、揭题:这节课我们就继续利用单位“1”的量,来解决更多的问题。

  【设计意图】复习环节中两个练习题的设计,有层次、有梯度地复习了有关单位“1”的知识内容,目的是让学生熟悉单位“1”、分率与具体量之间的一一对应关系,为学习新知做好铺垫。

  二、自主探究,思辨交流

  (一)阅读与理解

  出示例8情境图:这个大棚共480 m2,其中一半种各种萝卜,红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?

  你获取了哪些数学信息呢?

  整个大棚的面积是(XX)。

  萝卜地的面积占整个大棚面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

  红萝卜地的面积占萝卜地面积的(XX)。意思是说以(XX)为单位“1”,(XX)是(XX)的(XX)。

  要求的是(XX)的面积。

  【设计意图】审题是解决问题的第一步,引导学生了解题目中有哪些数学信息,有助于提高学生收集、处理、分析有效的数学信息的能力,继而提高学生提出问题、分析问题的能力。真正将课标提出的“四基能力”落实在课堂之中。

  (二)分析与解答

  1、分析:如果我们用一张长方形的纸来表示整个大棚,你能折出或画出红萝卜地的面积吗?

  学生动手操作。

  2、解答:看着这张图,你能解决这个问题吗?(学生尝试解决。)

  3、交流:谁来说说你是怎么解决的?

  (1)先求萝卜地的面积,算式是480×=240(m2);

  再求红萝卜地的面积,算式是240×=60(m2)。

  思辨:求萝卜地的面积时,谁是表示单位“1”的量?(整个大棚面积)

  求红萝卜地的面积时,谁是表示单位“1”的量?(萝卜地面积)

  利用上述图例,引导学生整理、思考上述思辨问题,并得出:连续两步求一个数的几分之几是多少,这两步中表示单位“1”的量是不同的。

  (2)先求红萝卜地占大棚面积的几分之几。(老师问:你能在图上指出红萝卜地占大棚面积的几分之几吗?)算式是×=。

  再求红萝卜地的面积,算式是480×=60(m2)。

  思辨:这两种方法有什么相同点和不同点,你能发现什么?

  学生充分发表意见。

  师小结:今后解题时一定要认真分析题意,想好先算什么,再算什么,既可以用分步算式计算,也可以列综合算式计算,这就是我们这节课要学习的连续求一个数的几分之几是多少的问题。

  【设计意图】在本环节的教学中,主要采取自主探究的形式,让学生根据信息进行积极思考、尝试解决、思辨交流,调动全体学生参与学习活动的积极性。

  (三)回顾与反思

  我们求出的红萝卜地的面积是60 m2,这个答案是否正确呢?你能用自己喜欢的`方法检验一下吗?

  生:红萝卜地的面积是60 m2,60÷240=,确实是占萝卜地面积的。

  萝卜地的面积是240 m2,240÷480=,正好是整个大棚面积的一半。

  生:从折纸中,我们可以很清晰地看出,红萝卜地、萝卜地和整个大棚的面积之间的数量关系符合题意。

  【设计意图】让学生对自己的探索过程进行回顾与反思,是对自己的学习活动进行的有效自我调节,是智慧成熟的标志。可以培养学生反思的意识,使学生养成反思的习惯,提高学生反思的能力,进而使学生调整学习过程,改善学习策略,促进自主学习能力的提高。

  三、巩固练习,强化认知

  1、教材第14页做一做:咱们班36人,的同学长大后想成为老师,想成为科学家的人数是想当老师人数的,多少名同学想成为科学家?

  你能用几种方法计算呢?

  说说你的分析思路,第一步是先求什么?

  2、解答教材第16页练习三的第1~3题。

  (1)人体血液在动脉中的流动速度是50厘米/秒,在静脉中的流动速度是动脉中的,在毛细血管中的流动速度只有静脉中的。血液在毛细血管中每秒流动多少厘米?

  第一种方法先求什么?再求什么?

  先求血液在静脉中的流动速度,再求血液在毛细血管中的流动速度。

  算式是50××=(厘米)。

  第二种方法先求什么?再求什么?

  先求血液在毛细血管中的流动速度是在动脉中的流动速度的几分之几,再求在毛细血管中的流动速度。

  算式是50×=(厘米)。

  (2)海象的寿命大约是40年,海狮的寿命是海象的,海豹的寿命是海狮的。海豹的寿命大约是多少年?

  第一种方法先求什么?再求什么?

  先求海狮的寿命,再求海豹的寿命大约是多少年。

  算式是40××=20(年)。

  第二种方法先求什么?再求什么?

  先求海豹的寿命是海象的几分之几,再求海豹的寿命大约是多少年。

  算式是40×=20(年)。

  (3)芍药的花期是32天,玫瑰的花期是芍药的,水仙的花期是玫瑰的。水仙的花期是多少天?

  第一种方法先求什么?再求什么?

  先求玫瑰的花期,再求水仙的花期是多少天。

  算式是32××=15(天)。

  第二种方法先求什么?再求什么?

  先求水仙的花期是芍药的花期的几分之几,再求水仙的花期是多少天。

  算式是32×=15(天)。

  【设计意图】提高学生运用所学知识解决实际问题的能力,从而加深对连续求一个数的几分之几是多少的问题的认识。练习的设计以趣味性和层次性为原则,分别安排了“基础性练习”“拓展性练习”等练习形式,检验学习效果,培养学生运用所学知识解决实际问题的能力,把教学目标真正落实到位。

  四、全课总结,提升认识

  (一)师生共同小结:本节课我们学习了哪些内容?

  (二)师小结:

  1、连续求一个数的几分之几是多少,相当于把两个“求一个数是多少”的问题整合在一起。要先想清楚第一步求什么,特别要注意第一步计算和第二步计算中表示单位“1”的量是不同的。

  2、我们可以借助折纸或画图的方法理解数量关系。

  【设计意图】通过小结,让学生自主回顾本课所学知识并进行简单的梳理,同时通过教师的归纳与提炼,让学生理解连续求一个数的几分之几是多少的问题,渗透“数形结合”的数学思想。

  五、布置作业,课外延伸

  在实际生活中,我们遇到过需要“连续求一个数的几分之几是多少”的问题吗?请你课后去收集一下吧。

  【设计意图】用数学的眼光看生活,用学过的数学知识去解决实际生活中的问题,可以体现知识的价值,提升学生学习数学的积极性,获得学习数学的成功感。

分数乘法教学设计2

  教学内容:九年义务教育六年制小学教科书数学第十一册第9~10页的例4、例5,练习三的第1~6题。

  教学目的:

  1.使学生掌握带分数的乘法的计算方法,能够正确地进行带分数乘法的计算。

  2.使学生掌握分数连乘的计算方法,能够用比较简便的方法进行分数连乘的计算。

  教学过程:

  一、复习

  1.把下面各带分数化成假分数。

  让学生先说一说带分数化假分数的方法,然后再把带分数化成假分数。

  2.计算下面各题。

  12

  把全班学生分成三组,每组计算一道题,鼓励学生能口算的尽量口算。集体订正时,指名说一说计算的方法,复习分数乘以分数的计算法则。

  二、新课

  1.教学例4(带分数乘法)。

  出示例4。

  学生读题,明确题意。

  (1)教学带分数乘以整数的方法。

  教师:第一问要求什么?(黑板的长是多少米。)

  根据题目给出的条件应该怎样列式?

  教师根据学生的回答板书算式:1

  教师提问:1 能不能直接计算?(不能。如果有学生说出用乘法分配律来计算,应该肯定是正确的,但要说明,在一般情况下,用乘法分配律计算比较麻烦。所以我们要学习普遍适用的简便算法。)

  接着提问:我们已经学过分数乘以分数的计算法则,能不能把带分数的乘法转化成我们学过的方法进行计算呢?怎样才能把它转化成已学过的分数乘法?(把带分数化成假分数。)如果学生一时想不出来,教师可以进一步启发引导:

  在分数乘以分数的计算法则中,只提到分子相乘的积作分子,分母相乘的积作分母,而带分数除了有分子和分母,还有整数部分。如果把带分数化成只有分子和分母的分数,我们就可以用分数乘以分数的计算法则计算了。那么,我们应该怎样把带分数转化成只有分子和分母的分数呢?(把带分数化成假分数。也就是要把1 变成假分数 ,然后再和2相乘。)

  根据学生的回答,教师板书计算过程: 2= 2= = (米)

  (1)教学带分数乘以带分数的方法。

  教师:第二问是求什么?(黑板的面积是多少平方米。)

  应该怎样列式?根据学生的回答,教师板书算式:

  这道题应该怎样计算呢?不必让学生回答,只要求思考。然后,让学生独立计算。教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导。

  学生做完后,指名说一说是怎样想的。

  教师:根据上面这道题第一问和第二问的计算,大家能不能说一说带分数乘法计算的一般方法?多让几名学生说一说。最后,进行简单归纳:分数乘法中有带分数的,通常先把带分数化成假分数,然后再乘。

  2.做教科书第9页的做一做。

  学生独立计算,教师巡视,对学习有困难的学生进行个别辅导。集体订正。

  3.教学例5(分数连乘)。

  教师可以根据本班的具体情况采取不同的教法。

  (1)如果学生对前面学习的知识掌握得比较好,可以适当放手。例如,让全班学生先在练习本上试算,然后让一些学生说一说他们是怎样计算的。教师把不同的计算方法都写在黑板上,让学生进行讨论,哪些方法的对的,哪些方法比较简便。通过讨论引导学生总结出三个分数相乘的'简便算法:三个分数相乘,可以把带分数先化成假分数,再把所有分数的分子和分母约分,然后把约简的分子、分母分别相乘。

  (2)如果学生对前面学习的知识还存在一些问题,教师就要注意引导学生先按照一般的方法计算,然后再教学简便的算法。例如,在教学完一般的方法(例题中小新的算法)后,教师可以提问:还有没有更简便的计算方法?

  如果学生回答有困难,教师可进一步引导:

  我们能不能先把题目中的带分数都化成假分数?(可以。)

  然后,把题目中的两个带分数都化成假分数。

  接着看小强的约分方法。

  教师说明:这样做就可以把两步约分合并成一步,使计算更简便。

  最后,教师进一步说明,分数连乘在约分的过程,不必考虑计算的顺序,只要是分子和分母有哪两个数能约分就约分。使学生加深对简便算法的认识。

  4.做教科书第10页的做一做。

  (1)第1题。学生独立计算,教师巡视,注意了解学生中是否把所有能约分的分子、分母,都进行了约分。针对学生出现的错误及时给予指导和订正。

  (2)第2题。如果学生独立列式有困难,或学生列出的算式中有除法而无法计算,教师可以适当加以引导。先让学生想一想正方体的体积应该怎样计算。当学生说出正方体体积计算的公式后,再让学生计算。

  三、巩固练习

  1.做练习三的第1题的第一行(3道题)。

  学生独立计算,教师巡视,个别辅导,集体订正。

  2.做练习三的第2题的第一行(3道题)。

  学生独立计算,教师巡视,个别辅导,要提醒学生把所有能约分的分子、分母都进行约分。集体订正。

  3.做练习三的第5题。

  学生独立解答。教师巡视,个别辅导。集体订正时,指名说一说是怎样想的。

  对学有余力的学生,让他们思考练习三的第7*题。

  四、小结(略)

  五、作业

  练习三的第1、2题中没有做的题目,第3、4、6题。

  对学有余力的学生,可让他们思考教科书第11页下面的思考题。

分数乘法教学设计3

  1.教学内容

  小学数学分数乘法教学,这部分内容的学习是在已学的整数乘法的意义和分数加法计算的基础上进行的。让学生继续巩固理解分数乘法的意义,理解分数乘以分数和意义,掌握其计算法则,能够比较熟练地进行计算,利用整体展示,使学生找出知识的规律,进一步培养学生的合作交流意识。

  2.整合思路

  引导学生用数一数、加法计算、乘法计算三种方式来解决问题。在交流的过程中,让学生体会分数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。

  3.教材简析

  为了促进学生更好地探索和理解分数运算的意义,教材安排了大量的折一折、涂一涂等活动,把图形语言作为理解的基础。实际上,教材非常重视文字语言、图形语言和符号语言的结合,三者相辅相成,从多种角度为学生理解问题、解决问题提供了可能。

  4.教学重点

  学生能够熟练地计算整数乘以分数,会用分数乘整数的计算法则正确地进行计算。

  5.教学难点

  分析和解决分数乘整数的实际问题。

  二、教学目标

  1.知识目标

  结合具体情境,进一步探索并理解分数乘整数的`意义,并能正确计算。

  2.能力目标

  能解决简单的分数乘整数的实际问题。

  3.情感目标

  体会数学与生活的密切联系。

  三、教学流程

  1.创设情境,导入新课

  师:(多媒体课件出示一条围巾)亲爱的同学们,天气变凉了,我想织一条围巾。但我每小时只能织5厘米。根据这个已知条件,你能提出怎样的数学问题呢?

  (学生马上回想到可能提出的是整数或分数的问题等等)

  师:同学们已经提了这么多的问题。那么老师两小时能织多少厘米呢?

  生:(不约而同的)×2

  这个算式表示的是什么意义?你是怎样思考的?为什么会用乘法计算?

  此时引导学生说出整数乘法的意义以及与数量的关系:(板书)工作效率×工作时间=工作总量

  2.提出问题,推进新课

  (1)引出课题

  师:2小时织多少米?谁能列出算式来解决这个实际问题呢?

  师:我们从前面分析过的数量关系的角度来理解,今天学习的就是这样的乘法算式。(板书:“一个数乘分数”)

  (2)研究分数乘法的意义

  ①初步感知

  (对于学生回答总比较贴切的教师应该给予充分的肯定与表扬)

  师:看来大家对这个算式都有自己的理解。那这个算式到底表示什么意义呢?

  (小组讨论合作时教师巡视,并适当予以恰当的指导。)

  请折法不同的学生来进行展示与交流,加深学生对这个过程的印象,帮助学生进一步理解。

  教师根据学生的方法以课件演示,进一步让学生加深印象,虽然折纸的方法有很多,但每一种方法都是正确的。

  ②进一步对其理解

  ③拓展延伸

  ④归纳总结

  引导学生总结,分数乘分数的意义:一个数和分数相乘,我们可以把它看作是求这个数的几分之几是多少。

  (3)探究计算的方法

  几分之一乘几分之一的算法

  大家一起猜测结果。

  师:我们猜测的结果到底对不对呢?能想个办法来验证一下吗?

  (学生进行操作来验证。然后全班集体交流。)学生可能出现的方法有:

  方法一:用分数的意义来解释

  把单位1平均分成2份,取其中的1份,并把这1份又平均分成4份,也就是把“1”平均分成了2×4=8份,取其中的1份,所以正确。

  重点请同学谈一谈8是如何得到的。

  方法二:化小数验证

  方法三:画图或折纸

  小结:从大家的思考交流中我们可以看出:是把单位“1”平均分成2份,取其中的1份,再把这1份又平均分成4份,也就是把“1”平均分成了2×4=8份,取了1份,所以是■(边说边板书)。

  现在来观察这个等式左右两边的分子、分母是什么关系?你能发现什么问题?

  (学生在观察等式从左边到右边的变化时,发现右边积的分母正好是左边两个因数分母的乘积,而积的分子正好是两个因数中分子的积。学生通过猜想:发现这可能是计算分数除法的方法。)

  教师总结:我们从这个例子中推想出来的结论,是否适用于其他这种情况呢?这时可称之为猜想。想证明猜想是否正确,还需要我们进行进一步验证。

  四、教学反思

  本课在教学了分数乘法的基础上进行教学,学生已经掌握了分数乘整数的计算方法,本课重点就是根据分数乘法的意义,理解求一个数的几分之几是多少的应用题的数量关系。课堂中也重点训练了学生概括等量关系式的能力,为以后的分数乘除法应用题打下了基础。学生学习分数乘法,个别学生对分数乘法计算还不是很熟练,在今后的学习中,我们仍应继续提高计算能力。

分数乘法教学设计4

  (一)教学设计与反思

  一、教材分析

  《分数乘整数》是北师大版五年级下册第三单元的第一课。学生在二年级已经学习了整数乘整数计算,了解求几个相同加数的和可以用乘法计算,在上册学生刚刚学习了分数的加法。本课分数乘整数的计算是这两方面知识的发展,分数乘整数的意义和整数的乘法的意义是相同的,只是这里的相同的加数变成了分数。

  二、学情分析

  本课的授课对象是五年级的学生,学生通过之前的学习,对于乘法、分数直观感知和认识上已有了一定的基础,掌握了整数乘法和分数加法的计算方法。作为五年级的学生应进一步提高知识的综合运用能力,在学习中去探索、掌握、交流解决问题的思考策略。

  三、教学目标

  1.知识与技能

  (1)在原有知识基础上,引导学生观察、讨论、猜想、验证、探索并理解分数乘整数的意义。

  (2)探索并掌握分数乘整数的计算方法,能正确计算。

  (3)能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  2.过程与方法

  让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法。

  3.情感态度与价值观

  (1)结合具体的题例,感受计算分数乘整数的愉快感,产生积极的数学学习情感。

  (2)体会数形结合的思想,渗透简便运算的算理。

  四、教学重、难点

  教学重点:理解并掌握分数乘整数的计算方法。2.教学难点:探索并理解分数乘整数的意义。

  五、教具准备

  课件、作业纸

  六、教学流程

  一、复习旧知识,引入新课 1.说出下面算式表示的意义。9 X 3 4 X 6 12 X 10 2.问整数乘法表示的意义。

  2/9+2/9+2/9+2/9=?提问计算结果并板书。问:这道题每个加数有什么特点?你是怎样计算的?

  师:像上面的求几个相同的分数相加的和有没有简便的方法呢?这就是我们今天要学习的新课+——分数乘法。

  二、合作探究、发现新知 1.投影示意图,学生读题

  1个松树图案占整张纸条的1/5,3个松树图案占整张纸条的几分之几? 师:用以前学过的任意一种方法来解决上面的问题。

  (要求:

  1、每人用一种方法解决问题,可以在作业纸上画、涂、算)

  2.以小组为单位进行讨论,交流各自有效的方法

  师:好了,大家坐好!刚才呀,老师看到到同学们讨论得非常热烈,能感觉到我们五(1)班的同学很乐于思考,善于交流。现在请同学说说你是怎么做怎么想的?

  生:我是通过画线段图的方法来求的。(高高的举起作业纸述说)师:这是画图法,这个方法很容易让我们看清楚了是 3/5,还有不同的方法吗?

  生:我是用分数的加法来做的: 1/5+1/5 +1/5 =1+1+1/5= 3/5 师:分数的加法,对。还有不一样的方法吗?再想想!生:把分数转化成小数来算: 1/5=0.2 0.2+0.2+0.2=0.6 师:不错,这种方法也想到了。还有吗? 生:用 1/5×3也是 3/5 师:真厉害!用乘法计算。

  三、回顾小结、形成认知 师:为什么可以用乘法计算?

  师:先看看分数的加法,加法中的加数有什么特征?1/5、1/5、1/5 生1:加数相同。

  生2:求几个相同加数的和可以用乘法计算。

  得出结论:分数乘整数的.意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。(只是这里的相同加数是分数)

  师:分数和整数相乘怎么计算呢? 生: 1/5×3= 3/5 师:具体一些,计算方法。

  生:1/5×3,3和1相乘得3,分母不变,所以是 3/5 师:说得很好,我们继续探究那么为什么3×

  1、分母不变呢?(根据大家的回答,结合分数的加法,出示等式:)1/5×3=1/5+1/5 +1/5 = 3×1/5=3/5 师:同时 1/5×3可以表示什么意思? 生:3个 1/5是多少?

  师:那它还可以怎样列式?(3X1/5)

  师:同桌讨论一下分数乘整数的计算方法,用数学语言怎么说? 师:谁来汇报一下?

  生:分数与整数相乘,分子和整数相乘,分母不变。师:表扬这位同学,这位同学真能干。

  师:同学们知道了计算方法,接着我们再来看看下面的题目: 1.涂一涂,算一算并想一想:你觉得自己能从图中想出什么数学问题? 2个3/7的和是多少?

  教师引导其他学生进行针对性的分析。

  问题解答:

  3/7X2=3/7+3/7=3X2/7=6/7 2.说一说,分数乘整数是怎样计算的? 计算5/16X3 2X5/9 学生独立完成

  师:以上计算,分数乘整数怎样计算呢?

  学生讨论得出法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

  师:我们归纳一下分数乘整数的计算方法: 1.求几个相同加数的和用乘法计算。

  2.分数与整数相乘,分子和整数相乘,分母不变。

  四、课堂小练

  1.教材第23页“练一练”第一题。学生先独立完成,再集体讲评。2.教材第23页“练一练”第二题。3教材第23页“练一练”第三题。开火车回答

  五、试一试 1.计算6X5/12 学生板演

  师:在计算6X5/12你是怎样做的?

  指出分数乘整数时,分子和整数相乘,如果分母和整数能约分的要约分在乘,这样比较简便。2.师:大家可以感受到分数乘整数带来的简便,在计算时要注意方法,看看小乌龟做的两道题,判断一下。

  师:谁来汇报一下,你来,说说你是怎么想的? 1/12×6=2 6/7×2=3/7 生:第一个应该是,而不是1/2.2是作为分母的,不能写成整数。生:第二个整数不能和分子约分,整数要和分母约分。应该是12/7。师:大家同意吗? 生:同意。

  师:分数乘整数,约分时是整数和分母约分,不能整数和分子约分,计算结果可以是假分数也可以是带分数,书写时候要注意,不能产生笔误。

  六、反思学习、引申思考

  师:这节课我们学习了什么?你有什么收获? 生1:分数乘整数。

  生2:求几个相同加数的和用乘法计算。

  生3:分数与整数相乘,分子和整数相乘,分母不变。生4:计算时,能约分的可以先约分,再算出结果。

分数乘法教学设计5

  教学内容:

  分数与整数相乘(第38~39页上的例1、例2)

  教学目标:

  1、使学生通过自主探索,理解分数乘整数的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解分数乘整数的计算方法。

  2、使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

  教学重点:

  分数乘整数的意义和计算方法。

  教学难点:

  在探索中自己发现计算方法。

  教学策略:

  从分数的意义中导入,从分数加法中理解分数乘整数意义与计算方法。

  教学预案:

  一、导入

  1、出示例1中的长方形直条,标出长是“1米”。

  2、提问:做一朵绸花用3/10米绸带,你能从直条图上表示出已知条件吗?你是怎样想的?(体会到3/10米就是1米的3/10)

  二、探索

  1、现在小芳要做3朵这样的绸花,一共要用多少米绸带?

  请学生上台操作:在直条图上涂色表示要用的部分。并说说你是怎么想的?

  2、如果用算式来表示3朵绸花所用的米数,该怎样列式?

  生报,师板书。(可能有连加法算式,也可能有乘法算式)

  3、你会计算结果吗?你是怎样想的?

  4、组织交流。

  引导学生从加法算式中体会到3/10与3相乘的意义与计算方法。

  5、揭示课题:分数与整数相乘

  6、如果做5朵这样的绸花呢?该怎样列式?结果是多少?请大家在自备本上独立完成。

  7、组织交流:你是怎样列式的?还可以怎样列式?结果是多少?为什么不列加法算式了?

  学生说明理由。

  在学生计算时,教师可以作指导,分别介绍两种不同的计算方法:

  (1)先分子与整数相乘,再约分;

  (2)先约分,再相乘。

  三、归纳

  1、通过刚才两道分数与整数相乘的计算练习,你发现分数与整数相乘可以怎样计算?先独立思考一下,再把计算方法和同桌交流一下。

  2、组织交流。

  四、巩固

  1、练一练第一题:让学生先涂色,然后把算式列在旁边。

  2、练习八第一题:看图在书上分别写出加法算式和乘法算式。说明想法。

  追问:能不能写 1/7╳6?为什么?体会到要根据图意来列式。

  3、练一练第二题:学生先独立完成,指名板演,在组织评价,提醒学生要注意书写格式。

  4、练习八第3题:读题理解题意,独立解决在书上,再组织交流:你是怎样列式的?为什么怎样列式?引导学生体会到“求几个几分之几是多少”用乘法计算。再追问:结果是多少?你是怎样计算的?引导学生进一步巩固分数乘整数的计算方法。

  5、练习八第4、5题:(教学方法同第3题)

  6、机动补充:

  (1) 直接说出得数

  2/7╳4= 9/5╳5= 1/7╳7 =

  20╳7/20 = 7/60╳30= 1/2╳5=

  (2)小光写一个大字用3/4分钟。照这样的速度,写16个大字要用多少分钟?

  (3)一辆汽车每分行驶7/6千米,平均每小时可行驶多少千米?

  五、课堂作业:练习八第2题。

  课前思考:

  分数乘整数是分数乘法的第一教时,是学生理解分数乘法意义的起点。是在学生已学过整数乘法的意义和分数加法计算的基础上进行教学的。例1以做绸花为素材,引导学生初步理解求几分之几是多少可以用乘法计算,掌握分数与整数相乘的计算方法。

  这节课以计算为主线,在研究算法的过程中中时感悟运算的意义。

  课前思考:

  首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,教学中要充分利用学生已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探索的氛围,放手让学生创新分数乘整数的方法。高教导设计的教学预案中可以看出已经体现了这一点,在教学例1的第2小问时让学生独立尝试计算。我想在教学时也可以大胆尝试,但在学生尝试计算后要马上组织学生交流,可以先同桌之间交流,再请个别学生全班交流。交流时主要联系分数乘法的`意义来解释计算过程,并通过这一题的计算明确:计算结果不是最简分数的,要约分成最简分数。

  教学中要把握:通过例1的学习,比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式3×3/10和3/10×3都可以。通过让学生研究分数乘整数的算法,把“分子相加、分母不变”加工成“分子与整数相乘,分母不变”,从而获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□×□/10,要让学生经历“分子相加”转化成“分子与整数相乘”的过程,建构了新的计算方法。

  说明:练习八中的第5题暂时还不能练习,因为我们将第二单元的内容要放在第四单元后进行教学,所以本题要改为其他练习。

分数乘法教学设计6

  教学目的:

  1.使学生掌握分数乘以整数的意义、算理和法则。

  2.培养学生的知识迁移能力。

  教学重点:学生对计算法则的掌握,以及在计算中能约分的要约分。

  教学难点:学生对算理掌握。

  教学过程:

  一、引探准备:

  1、 4个7连加是多少?怎样计算?

  2、还可以怎样计算也得28呢?

  3、如何列式?为什么这样列式?

  4、学生小结整数乘法的意义。

  二、引探过程:

  1、今天我们一起研究分数乘法中分数乘以整数这部分知识。

  2、出示例1:一个修路队每天修路3/10千米。3天修多少千米?

  3、学生读题,分析。

  4、问:你想怎样计算?这两种方法都行吗?为什么?(板书)3/10+3/10+3/10 3/10×3

  5、学生小结:分数乘法的`意义(分×整)是什么?(相同加数和的简便运算)

  6、3/10×3如何计算?(学生讨论)3/10×3=3/10+3/10+3/10=3+3+3/10=3×3/10=9/10(千米)

  7、问:3×3/10是怎么来的?

  8、谁能说说分数乘以整数是怎么算的?

  9、小结法则:分数乘以整数,用分数的分子和整数相乘的积做分子,分母不变。

  10、练习:说出3/17×5和4/15×6的意义并计算。

  11、指书比较4/15×6还有更简便的方法吗?

  12、小结:分数乘以整数时怎么算简便?

  三、引探总结:

  3/18×6 2/5×15 3/7×6

  四、引探实践:

  你认为今天那些知识最让你感兴趣?

分数乘法教学设计7

  教学目标:

  1.理解整数的运算定律对于分数乘法同样适应。

  2.能灵活掌握分数简便计算的方法。

  3.能正确计算.

  单元知识结构图

  分数乘以整数(求几个几是多少)

  分数意义

  一个数乘以分数(求一个数的几分之几是多少)

  分数乘以整数计算法则(整数看作:)

  分数乘法:分数计算法则分数计算法则的统一

  一个数乘以分数计算法则

  分数乘加、乘减的混合运算(计算顺序与整数相同)

  分数混合运算

  分数乘法的简便计算(运用整数乘法运算定律简算)

  教学重点、难点剖析

  重点:

  1.掌握分数乘以整数、一个数乘分数的意义和计算法则,以及运用分数乘法的意义解答有关的文字题。

  2.灵活掌握计算方法,计算时,分子与分母能约分的要先约分,再相乘。

  3.掌握分数乘加与乘减混合运算的运算顺序。

  4.掌握分数简便计算的方法。

  难点:

  1.分数乘以整数和一个数乘分数的计算法则的推导。

  2.为什么可以把分数乘以整数和一个数乘分数的计算法则统一起来。

  3.正确判断混合运算的运算顺序。

  4.正确运用乘法分配率灵活地进行简便计算。

  子课题教学重点、难点:

  课题一:分数乘以整数

  教学重点:分数乘以整数的意义及计算方法。

  教学难点:分数乘以整数法则的推导,能正确计算分数乘整数的题目。

  课题二:一个数乘以分数

  教学重点:一个数乘以分数的意义,掌握计算法则。

  教学难点:一个数乘分数的计算法则的推导。

  课题三:分数混合运算

  教学重点:运算顺序。

  教学难点:正确判断混合运算的运算顺序。

  课题四:整数乘法运算定律推广到分数乘法

  教学重点:运用定律进行一些简便计算。

  教学难点:正确运用分配率运用定律。

  课题一:分数乘以整数

  教材分析:

  本课时关键在于如何推导出计算法则。至于意义的归纳总结不存在问题。但无论是意义的总结还是法则的推导,难度都不大,学生很容易接受。本节课存在的问题是:计算法则中提出:用分数的分子与整数相乘的积作分子。接着才强调:为了计算简便,能约分的要先约分,然后再乘。因为很多人都有先入为主的基因存在,因此,有不少的学生都是按照法则进行,用分子与整数乘得的积再与分母约分,从而降低了计算的速度与准确度。所以在总结完法则后,要重点强调能约分的一定要先约分。

  重点突破策略:

  1.做好铺垫:为学习分数乘整数的意义和法则的推导做准备。

  (1)复习2+2+2+2=()()与5个12是多少?的题型,小结出整数乘法的意义。

  (2)复习++=()++=()=(),然后小结同分母分数加法的计算方法,特别强调:结果不是最简分数的,一定要约分成最简分数。

  2.归纳意义:

  在学生列出加法算式:后,让学生观察3个加数的特点(3个加数相同),接着引导学生:求几个相同加数的和还可以列式为:3,与整数乘法的意义比较,3的意义就是求3个的和是多少,是的简便计算。由此归纳出分数乘整数的意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。3就是求3个是多少。

  3.推导法则:

  根据3===3=

  推出分数乘整数的计算法则:分数的分子和整数相乘的积作分子,分母不变。

  4.强调计算的方法:

  (1)分子可以与分母约分的一定要先约分,使计算简便.

  (2)用适当的练习强化能约分的一定要先约分的算理.

  课题二:一个数乘以分数

  教材分析:

  这部分内容是学生在学过分数乘整数的意义和计算方法的基础上进行教学的。它是后面学习分数除法的意义以及分数乘除法应用题的基础。所以这部分内容是教学的重点。

  一个数乘分数,包括整数乘分数和分数乘分数。但它们的意义都可以概

  括为求一个数的几分之几是多少。这是对整数乘法意义的扩展,因此是教学的一个重点。本节的难点在于:推导一个数乘以分数的计算法则,所以一定要将推导过程分析清楚,击破难点。

  由于整数可以看成分母是1的假分数,所以不管是分数乘整数还是整数乘分数都可以转化为分数乘分数,因此分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。这部分的内容表面看不难,但学生开始做分数乘整数()和整数乘分数()的题目时,往往会将整数与分子约分,建议在讲例题时要加以强调约分的方法。

  重、难点突破策略:

  1.意义的教学:

  (1)铺垫,建立模型:

  第4页图(1)教学建议:

  在学生求出3杯的重量后,再多列举几道类型题,

  求千克的3倍是多少?(3)

  如求5杯、2杯重几千克?实质就是:求千克的5倍是多少?(5)

  求千克的2倍是多少?(2)

  使学生的脑里形成:求一个数的几倍是多少,用乘法计算的模型。

  (2)导出意义:

  ①第4页图(2)教学建议:

  求杯水的重量,就是求1杯水重量的半倍是多少,即求千克

  半倍是多少?根据图(1)的模型类推可以列式:半倍,这里的半倍即杯,那么,半倍就相当于。

  因此求的是多少?用乘法列式就是:

  ②第4页图(3)的教学可仿照图(2)的教学。

  ③导出意义:一个数与分数相乘就是求这个数的几分之几是多少。

  ④意义的运用:求一个数的几分之几是多少用乘法。(一个数=多少)

  (3)意义的应用:做练习第4页的`文字题,巩固一个数成分数的意义.

  2.推导出计算法则:

  (!)教学公顷的是多少的计算方法

  联系分数乘法的意义,着重说明就是求的是多少。第一步先出示1小时耕地公顷的图示。第二步分析求公顷的是多少的算理,就是把公顷平均分成5份,取其中的1份,也就是把1公顷平均分成(25)份,每份是1公顷的,取其中的1份,就是1。所以:

  =1(根据分数乘整数的法则计算)

  =

  =

  (2)教学公顷的是多少的计算方法

  求小时耕地多少公顷,就是求公顷的是多少?算式是:。第一步先出1小时耕地公顷的图示。第二步分析求公顷的是多少,就是把公顷平均分成5份,也就是把1公顷平均分成(25)份,每份就是,取其中的1份是1,取3份就是3所以:

  =3(根据分数乘整数的法则计算)

  =

  =

  (3)推导出计算法则:

  ==

  由

  ==

  推出一个数乘以分数的计算法则:分数乘分数,用分子相乘的积做分子,用分母相乘的积做分母。

  (4)强调:为了计算简便,能先约分的一定要先约分再乘。

  3.分数计算法则的统一:

  因为整数看作:,所以分数乘整数也可以转化为分数乘分数的形式.所以分数乘分数的计算法则对于分数乘整数和整数乘分数都适用。可以直接将整数看作分子与分母进行约分。但开始做分数乘整数或整数乘分数的题型时,有的学生经常会将整数与分子约分造成错误,所以教学时要加以强调,多做练习巩固。

  课题三:分数的乘加、乘减混合运算

  教材分析:

  分数乘加、乘减混合运算,是在分数乘法的基础上进行教学的,它本身属于分

  数四则混合运算的一部分内容。便于更好地区分分数乘法与分数加、减法的计算方法,提高计算的熟练程度。

  分数乘加、乘减的混合运算的运算顺序和整数乘加、乘减的混合运算的运算顺序相同,教学中可以通过复习整数乘加、乘减的混合运算的运算顺序,采取以旧带新的方法理解分数乘加、乘减的混合运算的运算顺序.此内容难度不大,完全可以放手让学生自习完成。

  教学策略:

  教学程序可设计为:自习--讨论--教师点拨

  关键是确定顺序:理解分数乘加、乘减混合运算的运算顺序与整数的运算顺序相同:含有两极运算,要先算第二级,再算第一级.

  课题四:整数乘法运算定律对分数同样适应

  教材分析:

  整数乘法运算定律对分数乘法同样适应,但要让学生明白:整数利用乘法运算定律计算时,目的是为了凑整数,使计算简便;而分数利用乘法运算定律计算时,目的是为了约分使它变成整数或变成比较简单的分数,使计算简便。本节的教学重点应放在让学生多观察题型的特征,分析是否可以运用定律进行简便计算,使学生在实际计算中领会应用运算定律进行简便计算的方法,达到提高学生计算的熟练度和准确度。

  教材第9页的3组题型只是起到说明左右两边的算式相等的作用,并不能起到说明使计算简便的作用。建议补充能够反映利用乘法结合律和分配律使计算简便的题型。

  教材第10页例5、例6只是一般的简便计算题型,而课后的练习和单元卷或其它的书籍,却经常出现象87和99+的类型题,诸如此类题目,对于部分学生来说,是存在一定难度的,建议教学时补充适当的例题,帮助学生击破难点。

  重、难点突破策略:

  1.通过课本3组算式和以下的几组算式,说明整数乘法运算定律对分数乘法同样适应。

  =

  (15)=(15)

  (+13)=+13

  2.复习乘法运算定律,同时说明整数运用定律目的是为了凑成整数使计算简便,而分数利用定律目的是为了约分使得到的积变成整数或变成较简单的分数,使计算简便。

  ab=ba

  (ab)c=a(bc)

  (a+b)c=ac+bc

  3.教学例5、6(可由学生合作完成)

  4.补充例题:

  (1)8785怎样简便计算?

  此类题目有些学生往往不知道拆哪一个数,教学时要把重点放在为什么要拆87为(86+1)、变85为(86-1)的算理上。

  (2)99+

  ①讲明白如何将原题变成两个积的和:99+1

  ②对照乘法分配律公式,讲明白如何提取相同因数(只提取一个)(因为有的学生会提出两个,造成错误),如何把剩下的两个因数相加的算理。

  错例分析:

  1.约分时找错对象,出现了内战--分子杀分子。

  13(1)

  例如:=6(21)3=

  对于这类症状的治疗方法难度不大,只要叫患者在做题时,花多一点时间,将整数几写成,再运用分数计算法则计算,训练一段时间后应该会有好转。

  2.利用乘法分配律进行分配时出现了分配不公平的弊端。

  例如:(+)12

  =12+

  =9+

  =9

  此类题是学生经常做错的题,做题时可以让学生添加弧线来强调分配的原则,一定要使到分配公平公正。

  如:(+)12

  特别是象(86+1)的题型,由于第二个加数是1,学生经常没有将1乘上外面的因数。如果使用了上面的弧线记号就会大大降低了错误律。

分数乘法教学设计8

  一、教学目标:

  1、经历分数乘法计算方法的探索过程,理解分数乘法的意义,体验直观模型与转化思想的运用。

  2、掌握分数乘法的计算方法,能正确进行分数的乘法运算。

  3、会解决有关的应用问题,体会分数乘法的在生活中的运用。

  二、教学重点:经历分数乘法计算方法的探索过程,理解分数乘法的意义,体验直观模型与转化思想的运用。

  教学难点:会解决有关的应用问题,体会分数乘法的在生活中的运用。

  三、教学过程

  (一)激趣导入,明确目标。

  复习旧知。今天让我们在学习整数乘法的基础上学习分数乘法,板书课题:分数乘法一

  我们知道数学和我们的生活息息相关,它隐藏在生活中的.各个角落,我们的老朋友淘气和笑笑在摆卡片时就遇到了一个数学问题,读题,你能帮他们解决这个问题吗?

  (二)自主探究,合作学习。1、1个卡片占整张纸条的五分之一,3个卡片占整张纸条的几分之几?把自己的方法写在练习本上。

  教师巡视,搜集三种方法。

  (三)小组汇报,交流评议。找三名同学在到前面展示自己的方法。

  第一种方法:画图

  教师提问这个算式说了几个五分之一,三个

  五分之一,三个五分之一就是五分之三。

  通过画图的方法让学生理解3个五分之一是多

  少?

  第二种方法:用加法计算,3个五分之一连续相加,同分母分数

  加法,结合以前学过的知识来解决问题。

  第三种方法:用乘法计算,五分之一乘以三,教师针对学生的讲解进行提问,怎么想到用五分之一乘以三的,五分之三乘以一表示什么?教师补充算式,提问学生之前有没有遇见过类似的写法,引导学生说出整数乘法的意义同样适用于分数乘法。2、2个七分之三的和是多少?下面的算法你看懂了吗?与同伴说一说。

  引导学生先看,看懂后再和同伴交流。指名到黑板前讲解书中的算法。

  3、算一算,16分之5乘以3

  2乘以9分之5

  通过计算总结分数与整数相乘如何计算。分子和整数相乘分母不变。

  四、多彩训练,拓展延伸。做23页练一练1——3题。

分数乘法教学设计9

  教学目标

  1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。

  2.探索并掌握分数乘整数的计算方法,能正确计算。

  3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  教学重点会用分数乘整数的计算法则真确进行计算。

  教学难点分析和解决分数乘整数的实际问题。

  教师指导与教学过程学生学习活动过程设计意图

  一,复习整数乘法的意义

  1.什么叫整数乘法?就是求几个相同加数的和的简便运算。

  2.出示题目,学生进行计算

  (1)6+6+6=6×3

  二、新授:

  1、出示题卡

  1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?

  2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。

  学生回忆整数乘法,并回答什么叫整数乘法。

  1、学生仔细阅读题卡,理解题意否,列式计算。

  2、学生交流各自计算的方法。

  3、全班进行交流。

  15+15+15=1+1+15=35

  3×15=15+15+15=3×15=35

  通过复习整数乘法的意义,过渡到分数乘法的意义,学习易于理解。

  在交流各自的语言地理学的过程中,让学生体会分数乘整数的`意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。

  教师指导与教学过程学生学习活动过程设计意图

  三、涂一涂,算一算

  (1)2个3/7的和是多少?

  (2)3个5/16的和是多少?

  四、练习巩固

  1、5个3/8是多少?

  2、4个2/17是多少?

  3、6个3/25是多少?学生打开教科书,选涂一涂,再列式计算。

  学生审题后,涂一涂,再列式计算。

  37×2=3×2757

  全班交流

  5/16×3=5×3/16

  =15/16

  学生独立完成在作业本上

  帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。

  板书设计:

  分数乘法

  分数乘整数例题:

  意义:

  法则:

  教学反思:

分数乘法教学设计10

  1、分数乘法

  第一课时分数乘整数

  教学内容:教材第8页的例1,第9页的例2以及“做一做”,练习二中的第1、2题。

  教学目标:让学生掌握分数乘正整数的计算方法,并能准确地进行计算。

  重难点、关键

  分数乘整数的计算方法。

  教学准备:电脑课件

  教学过程:一、旧知铺垫

  1、计算下列各题

  2/11+2/11+2/11

  过程要求

  (1)写出计算过程。

  (2)说一说分数加法的计算方法。

  2、想一想,能不能把2/11+2/11+2/11改写成乘法算式呢?

  二、探索新知

  1、教学例1

  (1)出示例题

  根据题意,电脑课件呈现示意图。

  (2)根据题意列出解答算式:

  2/11+2/11+2/11=2+2+2/11=6/11

  2/11×3=6/11

  (3)探索分数乘整数的计算方法。

  师:2/11×3=,说一说你是怎么想的?

  ①学生在小组交流各自的想法

  ②小组讨论后反馈思维的过程和结果

  教师板书:

  ③总结分数乘整数的计算方法。

  A、学生口述分数乘整数的计算方法;

  B、教师整理并板书:

  分数乘整数,整数与分子相乘的乘积作分子,分母不变。

  2、教学例2

  计算:3/8×6

  (1)学生独立计算。

  (2)交流计算方法和步骤。

  (3)比较计算过程,看一看哪一种更为简单

  (3)归纳:能约分的要先约分,再计算。

  三、巩固练习

  1、完成课本“做一做”。

  (1)学生独立完成,然后计算过程和结果。

  (2)第3题,说一说你是怎样计算的?怎样想的?

  一般要求学生列综合算式计算。如:

  6/7×10×7==60(kg)

  2、课本练习二第1、2题

  四、课后作业设计

  一、计算

  7/8×73/4×81/9×31/2×4

  5/6×55/18×327×2/33/816×

  三、列式计算

  1、3个5/8是多少?2、2/3的6倍是多少?

  3、5/14扩大7倍以后是多少?4、5/6与24的积是多少?

  课后反思:

  第二课时分数乘分数

  教学内容:教材第10页例3,第11页例4以及“做一做”,练习二中的3、4题

  教学目标:

  1、理解一个数乘分数就是求一个数的几分之几是多少。

  2、掌握分数乘分数的计算方法,并能正确地进行计算。

  重难点、关键:

  1、重难点:分数乘分数的计算方法。

  2、关键:理解一个数乘分数就是求一个数的几分之几是多少。

  教学准备:实物投影或者电脑课件。

  教学过程:

  一、创设情境引入新课

  教师谈话,以学校粉刷教室或家庭装修新房等学生身边的实例引入。

  出示粉刷墙壁的'画面,给出条件:每小时粉刷这面墙的1/5。

  师:能提出什么问题?

  学生提问题,教师板书。

  以分数乘整数的问题作研究内容,如“4小时可以粉刷这面墙的几分之几?”

  师:怎样列式?(板书1/5×4)

  师:列式的依据是什么?为什么用乘法?(工作效率×工作时间=工作总量)

  让学生计算,并说说怎样计算。

  师:我们解决了4小时粉刷多少的问题,那么1/4小时可以粉刷这面墙的几分之几?(出示问题)怎样列式?依据是什么?

  学生讨论汇报。(根据“4小时可以粉刷这面墙的几分之几”的列式类推出,或根据工作效率×工作时间=工作总量,可以列出1/5×1/4)。板书算式。

  师:(结合板书讲解)我们已经知道求4小时粉刷这面墙的几分之几,就是求4个1/5是多少。求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。那么1/5×1/4如何计算呢?这就是我们今天学习的内容。

  板书课题:分数乘分数

  二、操作探究计算算理

  1师:下面我们来探讨分数乘分数怎样计算。我们每人准备了一张纸,把它看作这面墙,先在纸上涂出1小时粉刷的面积,应该涂出这张纸的几分之几?

  学生操作。

  学生交流是怎样涂的?(用折或量、分的方法把纸平均分成5份,涂出其中的1份,如下图)

  师:我们已经知道,求1/4小时粉刷这面墙的几分之几,就是求1/5的1/4是多少。再涂出1/5的1/4,小组讨论一下,应该怎样涂?

  小组汇报(把涂出的1/5部分再平均分成4份,涂出其中的1份)。

  学生自己涂色。

  师:从涂色的结果看,1/5的1/4占这张纸的几分之几?1/20

  师:我们可以得到1/5×1/4=1/20。根据涂色的过程,你能说说是怎样得到的吗?

  学生讨论交流汇报。

  教师归纳(用多媒体或投影片演示涂色过程):我们先把这张纸平均分成5份,1份是这张纸的1/5,又把这1/5平均分成4份,也就是把这张纸平均分成了5×4=20份,1份是这张纸的1/20。由此可以得到(板书)。

分数乘法教学设计11

  教学目标

  1.结合具体情境,进一步探索和理解分数乘整数的意义,并能够熟练准确的计算。

  2.能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  3.使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点;:理解整数乘以分数的意义,并能证确计算。

  教学难点:运用所学的知识解决分数乘法的实际问题

  教学过程

  一、复习导入:

  1.2/3×2表示的意思是( )

  2.计算分数乘整数时,用分数的( )和整数相乘的积作( ),分 母( ).

  3.请学生计算下列分数乘法运算题。

  1/8×3 .3/10×4 .7/24×12

  二、情境创设

  教师出示课件课本情境图:小红有6个苹果,淘气的苹果是小红的`1/2 ;笑笑的苹果是小红的1/3 ,淘气和笑笑各有几个苹果?

  1.教师让学生思考这个题,并对学生进行提问。

  2.引导学生分析,无论是淘气还是笑笑的苹果数,都是以谁为标准的?两者都以小红的苹果数6为标准,我们把“小红的苹果数6”看做一个整体。淘气的苹果是6个的1/2,即把6个苹果平均分成2份,其中的份就是淘气的苹果数。教师出示课件图。还有其它分的方法么?学生交流。教师板书6×1/2

  3.教师提问学生说一说自己是怎样计算的?

  4.学生自己动手填完课本例题上的方格。

  5.怎样表示笑笑的苹果数?

  6.教师板书( 笑笑:6×1/3=2)

  7.总结分数乘法的意义就是求一个数的几分之几是多少。

  8 怎么计算呢?6×1/2 =6×1/2 =3 6×1/3=6×1/3=2教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的计算方法。

  三、巩固练习:

  1.计算8×3 /10 4× 3/10 24×3/8

  2.做课本5页试一试1题,36的1/4 和1/6 分别是多少?

  注意让学生体验求一个整数的几分之几是多少的数学意义。

  3 . 试一试2,学生说说:“打折”的意思?八折、九折分别表示什么意思?学生计算

  四、课堂小结:同学们,这一节课你学到了哪些知识?(提问学生回答)

  【板书设计】

  分数乘法(二)

  6× 1/2 = =6×1/2 =3 6×1/3==6×1/3=2

  整数乘以分数的意义:就是求整数的几分之几是多少?

  整数乘以分数的计算方法:用整数与分子相乘的积作分子,分母不变。能约分的要先约分。

  教学反思:本节课有以下优点:1.针对教材提供的情境,引导学生理解整数乘以分数的意义通过课堂活动使学生认识到分数乘法就在我们的生活中,学生对分数乘法的意义有了更深的理解。2.抓住了图形语言的直观性,借助图形理解整数乘以分数的意义,是自己的小课题研究落到了实处。

分数乘法教学设计12

  教学重点:

  1、掌握两步分数应用题的解题思路和方法。

  2、画线段图分析应用题的能力。

  教学难点:

  渗透对应思想。

  教学过程:

  一、复习、质疑、引新

  1.指出下面分率句中谁是单位1(课件一)

  ①乙是甲的;

  ②小红的身高是小明的

  ③参加合唱队的同学占全班同学的;

  ④乙的相当于甲。⑤1个篮球的价钱是一个排球价钱的倍。

  2.口头分析并列式解答

  ①小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小华储蓄了多少元?

  ②小华储蓄了15元,小新储蓄的是小华的,小新储蓄了多少元?

  3.引新:刚才复习的两个题,同学们完成的很好,现在将这两个小题,组成一道题,你还会解答吗?(这就是本节课要学习的新内容),出示课题--分数应用题。

  二、探索、悟理

  1.出示组编的例题

  例2小亮储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的,小新储蓄了多少元?

  学生审题后,教师可提出如下问题让学生思考讨论。

  ①小华储蓄的钱是小亮的,是什么意思?谁是单位1?

  ②小新储蓄的是小华的,又是什么意思?谁是单位1?

  思考后,可以让学生试着把图画出来。

  (演示课件)

  然后请同学说出思路,讲方法,教师同时将算法板书在黑板上。根据小华储蓄的钱是小亮的,把小亮的钱看作单位1,可以求出小华储蓄的钱:。根据小新储蓄的是小华的,把小华的钱看作单位1,再标出小新的储蓄钱:。

  由此基础上试列综合算式:

  2.做一做

  小华有36张邮票,小新的邮票是小华的,小明的邮票是小新的,小明有多少张邮票?

  1)可先让学生一起分析数量关系,然后独立画图并列式解答。

  请一名中等学生板演。

  (张)

  (张)

  答:小明有40张。

  ③你能列综合算式吗?

  三、归纳、明理

  1.在上述两个题研究探索的基础上,师生共同讨论用连乘解答的题有什么特点?解题思路是什么?在充分讨论的基础上,老师可把解题思路用语言归纳一下。

  ①认真读题弄清条件和问题

  ②确定单位1找准数量关系

  根据分数乘法的意义,找准量、率对应关系,即谁是谁的几分之几。

  ③列式解答

  板书为:抓住分率句,找准单位1,

  画图来分析,列式不用急。

  2.质疑问难

  四、训练、深化

  1.联想练习根据下面的每句话,你能想到什么?

  ①苹果的个数是梨的',(如,梨是单位1;苹果少,梨多;苹果比梨少等)

  ②修了全长的

  ③现在的售价比原来降低了

  2.先口头分析数量关系,再列式解答。

  ①鹅的孵化期是30天,鸭的孵化期是鹅的,鸡的孵化期是鸭的,鸡的孵化期是多少天?

  ②3个同学跳绳,小明跳了120下,小强跳的是小明的,小亮跳的是小强的倍,小亮跳了多少下?

  3.提高题。

  六、板书设计

  分数乘法应用题

  小亮的储蓄箱中有18元,小华的储蓄的钱是小亮的,小新储蓄的钱是小华的。小新储蓄了多少钱?

分数乘法教学设计13

  教学内容:人教版小学数学教材六年级上册第8~9页例6、例7及相关练习。

  教学目标:

  1.使学生通过观察、猜测、推理、验证等数学活动理解整数乘法运算定律对于分数乘法同样适用,并能应用运算定律进行一些简便计算。

  2.在计算过程中,培养学生细心观察、根据具体情况灵活应用所学知识解决问题的能力。

  3.培养学生探索数学问题的兴趣,使其在自主探究、合作交流中体验成功的喜悦。

  教学重点:培养学生应用运算定律进行一些简便计算的能力。

  教学难点:培养学生细心观察、根据具体情况灵活应用所学知识的能力。

  教学准备:课件

  教学过程:

  一、复习导入

  (一)激疑引入

  1.教师在黑板上出示两个算式:21×3 3×21。

  同学们,这两个算式相等吗?(学生显然能得出相等,教师用等号连接)21×3=3×21。

  2.看到这个等式,你想起了什么知识?(乘法交换律)

  3.用字母可以表示为:。这里的字母你觉得可以表示哪些数呢?

  4.和可以表示分数,这只是你们的猜测。下面请你独立思考,举例验证这个猜测。

  5.交流反馈:整数乘法交换律在分数乘法中同样适用,此时你还想到了哪些定律呢?

  (二)点明课题

  师:今天我们就来学习和研究整数乘法运算定律推广到分数。

  【设计意图】从学生原有的知识经验入手,利用知识的正迁移和同化与顺应的心理基础,使学生通过猜测、举例验证得出“整数乘法交换律在分数乘法中同样适用”,使其获得成功的喜悦。这样既培养了学生观察、猜测、验证的数学思维能力,又培养了学生口头表达的能力,使其能既有条理又较为清晰地表述自己的思考过程。同理,利用这样的数学思想,得出其他两个运算定律的应用。

  二、探究新知

  (一)合作学习,展开验证

  1.刚才同学们还想到了乘法结合律和乘法分配律,那么这里的字母也可以表示分数吗?下面请同桌合作,举例验证。

  2.同桌合作,举例验证。

  合作要求:

  (1)举例说明

  ①请同桌各写出一个算式并计算出结果,如或;

  ②同桌交换,计算出利用运算定律后的结果,如或。

  ③对照两者的结果是否相等。

  (2)能否举出一个不相等的例子?

  (3)得出结论。

  3.全班交流反馈,请几个小组来交流验证过程。

  4.小结:整数乘法交换律、结合律和分配律对于分数乘法同样适用。

  【设计意图】学生通过独立思考、同桌合作、全班交流反馈的形式,经历猜测、举例验证、尝试举反例、得出结论这样的数学活动过程,激发了学生探究数学知识的兴趣,渗透了科学的探究方法。这一过程,学生始终是知识建构的主人,充分体现了学生的主体地位。

  (二)实践新知,应用提高

  1.我们花了那么多时间和精力为了得出这一个结论,应该怎样应用呢?

  2.独立尝试。

  (1)出示:

  (2)思考:选择什么运算定律才能使计算简便?

  (3)计算

  3.小组交流。

  四人小组合作交流,讨论:

  (1)计算中运用了什么运算定律?

  (2)这样计算,为什么能使计算简便?

  4.全班反馈

  第一题:

  =×5×(应用了乘法交换律,可约分)

  =3×

  =

  第二题:

  =×12+×12(应用了乘法分配律,可约分)

  =10+3

  =13

  5.小结:应用乘法运算定律,能使一些分数混合运算变得简便。

  【设计意图】学生通过独立思考、小组交流、全班反馈,得到“应用乘法运算定律,能使一些分数混合运算变得简便”的结论,使学生体验到获得成功的喜悦,更能够激发其学习的兴趣。

  三、练习巩固

  1.请独立完成教材第9页的'“做一做”。

  (1)××3 87×

  选择合适的运算定律,使计算简便。第3小题,思考87与的分母之间有什么联系,怎样做可以进行约分呢?

  (2)奶牛场每头奶牛平均日产牛奶t,42头奶牛100天可产奶多少吨?

  每头奶牛每天产奶t,那么42头奶牛每天产奶t。求这些奶牛100天产奶的数量,可以列出的算式为:。

  2.出示:

  (1)请同学们仔细观察这两题,动笔前先思考怎样算比较简便?学生独立计算。

  (2)第一题用乘法分配律进行简便计算大家都没有异议;第二题到底如何?两种方法都试试看,比较得出结论,其实用乘法分配律并不简单。

  (3)第二题的数怎么改一下用乘法分配律就比较简单了呢?

  (4)做了这两题,你有什么体会?

  【设计意图】引导学生先观察后计算,有利于学生细心观察,养成良好的计算习惯。同时让学生通过计算自己感悟,并不是任何计算都是用乘法分配律简便。针对封闭的计算题采用了开放式教学,为计算练习注入了活力,学生兴趣高涨,思维活跃。

  3.开放练习:在□中填上适当的数,使计算简便。

  ×15×□ ×+×□ (+□)×□

  【设计意图】开放式习题的设计,把学生所学的知识和已掌握的解题能力巧妙地融合在一起,既使学生巩固乘法运算定律的运用,弄清了知识之间的联系和区别,又使学生的知识得到了整合,提高了学生的发散思维能力。

  四、课堂小结

  通过本节课的学习,你掌握了哪些知识?

  你是怎样获得这些知识的?

  你还有哪些疑问?

  五、随堂作业

  独立完成教材第12页练习二的第12、13、14题。

分数乘法教学设计14

  教学目标:

  1、结合具体情境,探究并理解分数乘整数的意义;

  2、探究并掌握分数乘整数的计算方法,并能正确计算;

  3、能正确运用“先约分再计算”的方法进行计算。

  4、能运用所学知识解决生活中简单的实际问题。

  教学重点

  1、结合具体情境,探索并理解分数乘整数的意义;

  2、探索并掌握分数乘整数的计算方法,并能正确计算;

  教学难点:

  能正确运用“先约分再计算”的方法进行计算。

  教学准备:

  多媒体课件PPT,卡片,记号笔等

  教学过程:

  环节一:创设情景,初步探索

  1、谈话引入:一张纸,可以剪出很多同样的图案来,老师在剪纸的过程中发现这里居然也蕴含了数学知识,今天特意带来了,我们一起来研究研究它,有没有兴趣?

  2、出示情境图

  (1)一张彩纸,什么意思?(课件演示)

  (2)出示问题:1个占整张彩纸的1/5,3个占整张彩纸的.几分之几?能解决这个问题吗?先独立思考,完成学习单一的第一题,看谁的解决方法多?

  3、学生自行思考完成,巡视要求写出具体的过程,让不同做法的同学板演。

  4、学生汇报:(学生可能出现的情况)

  预设第一种方法:用加法算的:就是1/5+1/5+1/5=1+1+1/5=3/5,3个1/5相加,因为同分母分数相加,分母不变,分子相加。

  预设第二种方法:用乘法算的:1/5×3=1×3/5=3/5。求3个1/5,可以用1/5×3来计算,它表示3个1/5相加,根据同分母分数相加的方法,分母不变,分子相加,分子3个1相加可以写成1×3,得出3/5。

  5、还可以怎样列式?

  师:不仅能用旧知识解决问题,还探索出新方法。由此可见,求几个相同的分数的和,可以用乘法计算。这与整数乘法的意义是相同的。(把加法的板书和乘法的板书有机的结合起来。)

  环节二:合作学习,探究新知

  1、我们来探究:(小组活动)

  师:你们的独立思考能力杠杠的,我还想见识见识你们小组合作学习的能力。所以,我们来探究:2个3/7的和是多少?涂一涂,填一填,算一算,说一说。

  出示小组活动要求,明确要求:涂一涂,填一填,算一算,议一议,写一写,贴一贴。

  2、小组代表汇报。

  3、你认为这计算过程中,哪些部分可以省略?

  4、轻松练笔

  师:我们参与,我们交流,我们发现。用我们的发现练练笔吧。

  1、独立计算,在小黑板上展示,每人一题,组长检查指导。说明:全对的每组奖励2颗星。

  2、小组长交叉评分

  3、总结:谁来说说分数与整数相乘的计算方法?谁还想说?学生用自己的语言表达。(出示板书:分数与整数相乘,分母不变,分子和整数相乘)

  环节三:课堂检测,巩固内化

  1、完成课堂检测题

  学到知识了吗?老师要考考你们,敢不敢接受挑战?请在4分钟内完成课堂检测题。

  2、集体评讲。

  环节四:总结反思,升华新知。

  本节课有什么收获?还有什么不明白的地方吗?点评各组的表现。

  环节五、作业。

  课本23页练一练第3题,24页第7题。

  六、板书。

分数乘法教学设计15

  课题:分数乘法第1课时

  教学目标:

  1.让学生经历探索分数乘整数计算方法的过程,并能正确地进行计算。

  2.感受分数乘法与分数加法的内在联系,培养学生的迁移类推能力。

  3.增强学生运用已有知识经验探索并解决问题的意识,体验探索学习数学的乐趣。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:能正确熟练地计算分数乘整数。

  教学准备:课件

  教学过程:

  一、谈话导入

  1.观察情境图,激发学习兴趣。(多媒体出示生日会分蛋糕情境图)

  同学们,你们喜欢过生日吗?为什么?生日时一般都要吃蛋糕,如果每个人吃__个蛋糕,你知道这表示的意思吗?

  (表示把一个蛋糕平均分成7份,每人吃其中的2份。)

  2.导入新课。

  同学们对分数已经有了一些了解,并且学会了分数的加法和减法运算,这学期我们还要学习分数的乘法和除法运算。今天我们就先来学习分数乘法的'相关知识。

  (板书课题:分数乘法)

  二、探索新知

  1.投影出示例题1。____个,3人一共吃多少个?

  (1)引导学生读题,并说说____表示什么。____表示把一个蛋糕平均分成9份,每人吃其中的2份。

  (2)求“3人一共吃多少个?”实际上就是求什么?先让学生思考,再指名回答。(实际上就是求3个是多少。)

  2.学生独立列加法算式解答。____++==(个)

  3.根据乘法的意义将加法算式转换成乘法算式。

  (1)提问:这道加法算式有什么特点?(三个加数都相同。)

  (2)追问:求几个相同加数的和还可以用什么方法来计算呢?

  (启发学生得出:3个相加,用乘法表示是×3或3×。)

  4.探究分数乘整数的计算方法。

  (1)提问:3个相加的和,也可以列成算式×3,那么×3样计算呢?

  (2)学生思考计算方法。

  学生思考,教师巡视观察。如果学生有困难,可以进行必要的启发:是个,2个乘3就是6个,所以就是。

  (3)组织全班交流,教师结合学生的回报情况进行板书:×3=++====(个)教师强调:在计算过程中,虚线框起来的思考过程可以不写;分数线要用直尺画。

  4)学习计算过程中进行约分。

  引导学生观察计算过程中的分子和分母,分子用“2×3”得来,说明分子中含有因数3,而分母是“9”,也含有因数3,所以将“3”和“9”进行约分,即:____×3==____(个)

  观察上面的计算过程,你发现了什么?

  (预设:能约分的可以先约分,再计算,结果相同。)

  (5)提问:如果把算式“×3”的两个因数交换位置,变成“3×__”

  应该怎样计算呢?学生尝试计算后组织交流。

  (6)总结分数乘整数的计算方法。

  提问:分数与整数相乘,可以怎样计算?

  指名回答,多让学生参与交流。

  (分数乘整数,用分子乘整数的(分数乘整数,用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。)

  5.练一练。

  教材第2页“做一做”第1题。学生独立完成,投影交流。

  教师强调:分数与整数相乘时,一定是整数与分母约分。

  三、反馈完善

  1.教材第2页“做一做”第2题。

  这道题是分数与整数相乘的计算,第三小题是整数乘分数,通过这道计算题,巩固分数乘整数的计算方法。教师也可以借此来发现学生在计算过程中存在的问题。

  2.教材第6页“练习一”第1题。

  这道题是分数乘整数的意义的练习。通过练习进一步感受分数乘整数与分数加法之间的联系,从而体会到分数乘整数的意义和整数乘法的意义相同。

  3.教材第6页“练习一”第2题。

  这道题是分数乘整数知识在日常生活中的应用,5kg的衣物就需要5个洗衣粉。

  四、反思总结通过本课的学习,你有什么收获和体会?还有哪些疑问?

  课题:分数乘法第2课时

  教学目标:

  1.通过直观操作,初步掌握分数乘分数的计算方法。

  2.经历探索分数乘分数计算方法的过程,体验数学学习,感受成功的喜悦,激发学习数学的兴趣。

  教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。

  教学难点:理解分数乘分数计算的算理。

  教学准备:课件

  教学过程:

  一、谈话导入

  1.计算。×4=9××4=14×=学生独立完成,指名板演。全班交流时,指名说说14×

  2.导入。今天我们继续研究分数乘法的问题。(板书课题)

  二、探索新知

  (一)一个数乘分数的意义。1.投影出示例题2。

  (1)问题一:3桶水共多少升?指名列出算式:12×3。提问:你是怎么想的?想:求3个12L,就是求12L的()倍是多少。

【分数乘法教学设计】相关文章:

《分数乘法》教学设计07-31

《分数乘法》分数乘分数教学设计06-05

分数乘法教学反思02-20

《分数乘法》教学反思04-04

数学分数乘法教学反思04-08

分数教学设计02-12

分数教学设计08-27

分数的乘法说课稿02-08

分数乘法教案05-24

分数乘法说课稿06-10