【推荐】三角形的面积教学设计15篇
作为一名人民教师,就不得不需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。怎样写教学设计才更能起到其作用呢?下面是小编整理的三角形的面积教学设计,仅供参考,欢迎大家阅读。
三角形的面积教学设计1
教学内容:九年义务教育六年制小学数学教科书第九册69页至71页。
教学目标:
1.通过指导实际操作,帮助学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;
2.使学生明白事物之间是相互联系,可以转化和变换的。
3.通过交流,观察、比较,培养学生发现问题、提出问题、分析问题、解决问题的能力,发展学生的空间观念。
教学重点:探究三角形面积公式的推导过程,掌握和运用三角形面积计算公式进行计算。
教学难点:理解三角形面积计算公式。
设计特色:针对本课的知识特点,课前设计目的性明确、可操作性强的前置性作业,充分调动学生学习的热情,提高课前预习的效果,为成功的课堂教学做好铺垫;在课堂上,运用小组交流的学习方式,每个成员都有机会展示自己,小组交流后再进行全班的汇报,根据学生汇报的情况教师有目的地板书,然后引导学生观察、比较,进而推导出三角形的面积计算公式。
教学过程:
一、导入:
1、平行四边形面积计算公式是怎样推导的?
总结:把没学的图形转化成已经学过的图形从而推导出面积计算公式。
2、今天,我们也用同样的方法推导三角形面积计算公式,板书课题。
二、讨论
小组交流课前小研究。
三、推导
1、汇报课前研究的方法,老师根据学生的汇报有目的地板书。
2、推导三角形面积计算的公式。
四、应用
1、教学例1
2、强调格式
五、练习
1、下面平行四边形的面积是12平方厘米,斜线部分三角形的面积是多少?
(口答,并说出理由)
2、判断:
(1)三角形的面积是平行四边形面积的一半。()
(2)三角形的高是2分米,底是5分米,面积是10分米。()
3、说出求下面三角形的面积
板书设计:
课前小研究
研究者:班级:
前言:我们已经学过用转化的方法,把平行四边形转化成已经学过的图形,从而推导出它的面积计算公式,请你想一想:能否也把三角形转化成我们已经学过的'图形,从而研究三角形面积的计算方法?
(可以在学具盒或在附图中选材料)
1、我用的材料是:
我的做法(文字或画图表示):
我的结论:
2、我用的材料是:
我的做法(文字或画图表示):
我的结论:
3、我用的材料是:
我的做法(文字或画图表示):
我的结论:
4、我用的材料是:
我的做法(文字或画图表示):
我的结论:
附图2
材料一
材料二
三角形的面积教学设计2
教学目标:
1.知识与技能:
(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
(2)培养学生应用已有知识解决新问题的能力。
2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
教学关键:让学生经历操作、合作交流、归纳发现和抽象公式的过程。
教具准备:课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。
学具准备:每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个
教学过程:
一、创设情境,揭示课题
上节课我们去参观了王伯伯的养虾池,认识了平行四边形,学习了怎样计算平行四边形的面积,那平行四边形的面积公式是怎样的呢?(学生回答:平行四边形的面积=底×高)。谁能回顾一下,我们是怎样推导出平行四边形的面积公式的呢?(学生回答,教师总结)。今天我们再去参观一下张爷爷家的养蟹池吧。(课件出示情景图),根据这幅图,你能提出什么问题?(1号蟹池的面积是多少?……)一号蟹池的形状是一个什么图形?(三角形)那怎样求三角形的面积呢?下面我们就来研究一下。板书:三角形的面积
二、探索交流、归纳新知
1.寻找思路:(出示一个平行四边形)
观察:沿平行四边形对角线剪开成两个三角形。
师:两个三角形的形状,大小有什么关系?(完全一样)
三角形面积与原平行四边形的面积有什么关系?
[设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]
师:你想用什么办法探索三角形面积的计算方法?
(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、鼓励。)
师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大
家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?
接着出示思考题:
(1)将三角形转化成学过的什么图形?
(2)每个三角形与转化后的图形有什么关系?
[设计意图:学生由于有平行四边形面积公式的推导经验,必然会产生:能不能把三角形也转化成已学过的图形来求它的面积呢?从而让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫。]
2.分组实验,合作学习。(音乐)
(1)提出操作和探究要求。
让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼、摆一摆或剪拼。
屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形?
②拼出的图形与原来三角形有什么联系?
(2)学生以小组为单位进行操作和讨论。
[设计意图:这里,根据学生“学”的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会。]
(3)展示学生的剪拼过程,交流。(音乐停)
①各小组汇报实验情况。
(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)
可能出现以下情况:(用两个完全一样的三角形摆拼)
(两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)
②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形。
师:通过实验,你们发现了什么?
引导学生得出:只要是两个完全一样的'三角形都能拼成一个平行四边形)
师:谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系?
生:拼成的平行四边形是三角形面积的二倍。
生:每个三角形的面积是拼成的平行四边形的面积的一半。(评价、肯定)
[设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体、清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系。同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率。]
3.归纳公式
(1)讨论:(屏幕显示提纲)
A、三角形的底和高与平行四边形的底和高有什么关系?
B、怎样求三角形的面积?
C、你能根据实验结果,写出三角形的面积计算公式吗?
[由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解。]
(2)归纳交流推导过程,说出字母公式。
根据学生讨论、汇报,教师进行如下板书:
因为:三角形面积=拼成的平行四边形面积÷2
所以:三角形面积=底×高÷2
师:为什么要除以2?
生:……
师:如果用S表示三角形面积,用α和h分别表示三角形的底和高,那么你能用
字母写出三角形的面积公式吗?
结合学生回答,教师板书S=ah÷2
[设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:“三角形面积的计算公式是怎样的?”从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力。]
三、应用新知,解决问题
师:有了公式,下面我们可以帮学校解决问题了。(回应引入问题)
1、(屏幕显示)求方格纸中三角形的面积。
学生独立完成(一生板演),集体订正。
师:你认为计算三角形的面积,什么地方容易出错?(强调“÷2”这一关键环节)
完成后交流、讲评。
四、课堂练习。
1、你能想办法计算出每个三角形的面积吗?。(告诉每个三角形的底和高)
2.想一想,下面说法对不对?为什么?
(1)三角形面积是平行四边形面积的一半。()
(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。()
(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。()
(4)等底等高的两个三角形,面积一定相等。()
(5)两个三角形一定可以拼成一个平行四边形。 ()
3、要在公路中间的一块三角形空地上种草坪。1㎡草坪的价格是12元。种这片草坪需要多少元
[设计意图:练习分三个层次设计,第一层基本练习,旨在巩固、熟练公式;第二层设计判断练习,学生在思考中,从正、反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识。]
五、回顾总结,深化提高。
师:这节课探究了什么?是怎样探究的呢?(渗透数学方法)
今天我们分小组通过动手操作,相互讨论、交流,用摆拼(还可以用折叠、割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种“转化”的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
三角形的面积教学设计3
教学内容:
《现代小学数学》第九册第31~35页,三角形面积的计算。
教学目标:
一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
二、能运用三角形面积计算公式进行有关的计算。
三、渗透对立统一的辩证思想。
教学过程:
一、复习引入。
1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?
出示:
2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?
3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)
【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】
二、新课展开。
(一)实践活动。
1.让学生拿出已准备好的如下一套图形。(同桌合作)
(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。
(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。
(3)分组讨论:
①各三角形的面积是多少?请填入表格内。
②三角形的面积怎样计算?
(4)汇报、交流,初步得出三角形面积计算方法。
【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】
2.验证。
(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。
数学课堂教学参谋
(2)汇报、交流:学生有几种剪拼法,就交流几种。如:
①
6×4÷2 6×(4÷2)
=12(平方厘米) =12(平方厘米)
②
6×4÷2 6÷2×4
=12(平方厘米) =12(平方厘米)
【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】
(二)归纳、小结。
1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)
2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)
(三)应用。
例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?
学生试做后,反馈、评讲。
【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】
三、巩固练习。
(一)基本练习。
1.口算出每个三角形的面积。
①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米
2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)
这些三角形的高都是____厘米,底都是____厘米。
这些三角形的面积都是:□×□÷2=□(平方厘米)。
3.先量一量,标出图形的'长度后,再计算各三角形的面积。
【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】
(二)分层练习。
a组学生:做选择题。
①求右图面积的算式是( )。
a.9×4÷2 b.15×4÷2
c.15×9÷2 d.15×4
②求右图面积的算式是( )。
a.5.2×3.5÷2
b.5.2×4.1÷2
c.4.1×3.5 d.4.1×3.5÷2
③求下图面积的算式是( )。
a.25×20 b.18×25
c.18×20 d.18×20÷2
b组学生:做课本第15页第
②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)
c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?
【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】
四、课堂小结。
这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?
【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】
五、布置作业。(略)
(此文获“第二届全国小学课堂教学征文大赛”一等奖)
三角形的面积教学设计4
教学目标
及重点难点
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学准备(含资料辑录或图表绘制)
板书设计
教后记
教和学的过程
内容教师活动学生活动
一、练习
二、总结一、第5题
可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题
要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题
测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题
要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题
每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
通过今天的'练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。
三角形的面积教学设计5
学习内容:
第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。
学习目标:
1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。
2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
学习重点:
理解并掌握三角形面积的计算公式
学习难点:
理解三角形面积公式的推导过程
学习过程:
一、先学探究
■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)
1、出示一个底是4分米,高是3分米的平行四边形。
这是一个什么图形?它的面积如何计算?
■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。
二.交流共享
■后教预设:出示二个板块的`挂图,通过讨论交流,解决问题。
【板块一】学习例4:
仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?
先自己想,随后在小组中交流。
你是怎样求出每个涂色的三角形的面积?
三角形与平行四边形究竟有怎样的关系?
三角形的面积应当如何计算?
【板块二】学习例5:
(1)出示例5:
用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个三角形有什么特点?
(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。
小组交流:如何计算一个三角形的面积?
从表中可以看出三角形与拼成的平行四边形还有怎样的关系?
得出以下结论:
这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=
(4)用字母表示三角形面积公式:
三、反馈完善
1、完成试一试:
2、完成练一练:
(1)先回忆拼得过程,再回答。(2)你是如何想的。
3.判断。
(1)两个形状一样的三角形,可以拼成一个平行四边形.……
(2)平行四边形面积一定比三角形面积大.……
(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………
(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….
4.完成课本第17页第6题。
5、拓展练习
量出你的三角板(两个任选一个)的底和高,然后算出它的面积。
6、课外延伸:阅读第16页“你知道吗”
四、总结回顾:
通过今天的学习,你有什么收获?想要提醒大家注意什么?
三角形的面积教学设计6
教学内容:
苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题
教学目标:
1、 理解和掌握三角形的面积计算公式。
2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教学重、难点:
理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。
教具学具准备:
1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。
2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。
一、导入课题:
1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?
[可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]
2、解决方案:
师:要想知道三角形的`面积怎样求,你想用什么方法来研究?你是怎么想到的?
(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)
师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。
[评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]
二、新授
(一) 实验一:剪
1、师:下面让我们做几个实验,好不好?
(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)
2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)
(2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?
(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)
师:重合了,在数学上叫“完全一样”(板书:两个完全一样)
师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)
学生演示重合过程,课件演示剪、重合的过程。
师:谁能说一说根据刚才的实验,你想到了什么?
小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。
(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)
师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。
说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)
[评析:学生自主探索,动手实践。通过剪一剪、比一比、议一议,使学生多种感官积极参加学习活动,理解“一个平行四边形可以剪成两个完全一样的三角形,其中一个三角形的面积等于这个平行四边形面积的一半。”为学习三角形的面积指明了思维的方向。]
三角形的面积教学设计7
【教学目标】
1、认知目标:经历三角形面积计算公式的探索过程,推导出三角形的面积计算公式,掌握求三角形面积的计算方法。
2、能力目标:通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。
3、 情感目标:在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。
【教学重点】推导、掌握三角形面积的计算公式。
【教学方法】探究发现法和讨论法.
【教学准备】教具:多媒体课件、红领巾实物。
学具:剪刀、各种不同类型的三角形等。
【课时安排】一课时
【教学过程】
一、创设情境
1、师:细心的同学可能已经发现今天老师有什么不同?对老师今天也配戴了红领巾!这是与我们朝夕相处的红领巾,它是红旗的一角,记得20多年前每当老师佩上戴红领巾时心中和你们一样充满了无比的骄傲和自豪,可你们想不想知道一条红领巾的面积呢?(把红领巾展开贴在黑板上)
2、揭题:(想)那就得知道怎样求三角形的面积,今天这节课就我们一起来探究这个问题好吗?(教师板书课题:三角形的面积)
二、自主探索,合作交流
1、回忆平行四边形的推导过程,启发学生运用所学的方法,探究三角形面积计算公式。
师:前面我们学习了长方形、正方形、平行四边形的面积,那么我们回忆一下,在学习平行四边形面积时是用什么方法求出平行四边形面积的?
生:将平行四边形转化成长方形,通过长方形面积公式推导出平行四边形面积公式。
师:平行四边形的面积公式是什么?
生:平行四边形的面积=底×高
(教师板书)
师:那么我们能不能也用转化的方法来探究如何计算三角形面积呢?想一想,你会怎样做一下,怎样用转化的方法来探究三角形的面积。
生:可以拼、剪,
师:你是怎样具体操作的?小组里的同学可以互相合作实验怎样用转化的方法来探究三角形的面积。师出示要求和发放实验报告。
2、学生拿出老师为其准备的实验材料,自行拼图,教师参与到小组中,去引导。
3、小组派代表上黑板前展示拼的过程,展示时重点引导学生观察、发现三角形与拼成的长方形或平行四边形的关系。选择有代表性的三组,请学生说出拼的过程。填写实验报告。
(为了使学生能看清每个小组拼的过程,教师课件演示。)
4、归纳概括,推导公式。(让学生试着概括)
生:我们拿两个完全一样的三角形,会拼成一个平行四边形。因为每个三角形的面积等于拼成的这个平行四边形面积的一半。平行四边形的面积=底×高,所以这个三角形的`面积=底×高÷2。
(教师总结,课件出示)
师:大家看到了,前面这几组同学都是将两个完全一样的三角形拼成了一个平行四边形,探究出平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形面积的一半。
因为三角形的面积等于拼成的平行四边形面积的一半,所以,三角形的面积=底×高÷2为什么除以2?
生:因为平行四边形的面积=底×高,三角形的面积等于拼成的平行四边形面积的一半,所以除以2。
5、完成例2
师:现在你会求红领巾的面积了吗?需要知道什么条件?出示条件生独立完成。指一名板演
三、实践运用,拓展创新
1、小试身手:计算三种三角形的面积:(课件出示)
(1)底3cm,高4cm (2)底4cm,高1.5cm(3)底2cm,高3cm
2、小小判官:
(1)两个形状一样的三角形,可以拼成一个平行四边形.…………()
(2)平行四边形面积一定比三角形面积大.……( )
(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.……………( )
3、生活中的数学:你认识下面的这些道路交通警示标志吗?
我们学校的上下两个路口在放学时经常交通混乱,为了改变这种状况,交警队准备用铁皮制作四块这样警示牌,你能算出需要多少铁皮吗?(底9dm,高7.8dm)
4、已知一个三角形的面积和底,求高。
5、下图中哪个三角形的面积与画阴影三角形的面积相等,为什么?你能在图中在画一个与画阴影的三角形面积相等的三角形吗?试试看。
四、小结
师:通过这节课的探索学习,你有什么收获?
生:我们知道了三角形的面积计算方法,还会用它来进行计算。
生:这节课我们通过自己动手动脑推导出来了三角形的面积公式,我真是太高兴了!……
师出示学习材料,学生阅读后谈感想。体会祖国的古代科学家得了不起,
师:20xx多年前就推导出了这个公式。今天同学们通过自己的研究也推导出了三角形的面积计算公式,说明同学们也很聪明,相信将来你们还会有更多更大的发现,到那时你们的名字也将载如史册,大家有信心吗?
三角形的面积教学设计8
一、教学目标:
1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。
2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。
3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
二、教材分析:
三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。
三、学校及学生状况分析:
我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。
四、教学设计:
(一)由谈话导入新课。
1、我们已经学过长方形、正方形、平行四边形面积的计算公式。
还记得它们的面积公式吗?(一人回答)
还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?
小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。
2。 谁知道三角形面积的计算公式?
老师调查一下:
①知道三角形面积计算公式的举手。(可能多)
②不知道三角形面积计算公式的举手。(可能不多)
③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)
今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程
[板书课题:三角形面积]
(二)探究活动。
根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]
下面我们将按小组来探究三角形面积的计算公式。
1、介绍学具袋中的学具。
2、出示探究目标和建议
小组合作探究活动,三角形面积的计算公式是怎样推导出来的?
建议:边动手、边想、边说。
(1) 你把三角形转化成了你以前学过的什么图形?
(2)原来的三角形和转化后的图形有什么关系?
(3) 三角形面积的计算公式是什么? 为什么?
3、同学们自选学具,想一想就可以开始了……
(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)
了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)
4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)
① 直接用两个完全一样的三角形拼成平行四边形推导……
② 用一个三角形折成长方形推导……
③ 将一个三角形用割补法推导……
(若学生用任意三角形,注意指导沿“中位线”剪开)
……
5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2
6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)
总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。
(三)巩固练习(机动)
我们来试着运用这个公式:
1 基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。
2 基本题
3 基本题
(由2、3题解决“等底等高三角形面积相等”)
4 提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?
(四)总结
说说你这节课的感受?
(重点总结心得体会或经验教训。)
五、教学反思:
新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。
如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。
这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。
整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的.兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。
这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。
六、案例点评
本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。
教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。
通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。
三角形的面积教学设计9
教学内容:
九年制义务教育课本数学五年级第一学期p84—85。
教学目标:
1、理解三角形面积计算公式的推导过程。
2、 掌握三角形面积的计算方法。
3、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力。
4、培养学生在生活实际中发现问题、独立思考、创新思维,用旧知识转化为新知识来解决新问题的能力。
教学重点:
理解三角形面积计算公式的推导过程。
教学难点:
理解三角形面积是同底(长)等高(宽)长方形面积的一半。
教学准备:
教学软件、三角形学具。
教学过程:
一、复习铺垫。
1、数一数下图中有几个直角三角形。
2、我们学过计算哪些图形的面积?(长方形和正方形)
怎么计算他们的面积?
根据学生回答板书:
正方形的面积=边长×边长
长方形的面积=长×宽
3、出示:你会计算它的面积吗?
10 3
4 4
103 10
想这样将上图通过剪拼成一个长方形来计算面积的方法,我们称为割补法。
二、创设情景,引入新课。
师:让天更蓝、水更清、地更绿,二十一世纪是以环保为主题的世界。我校正在开展创建“绿色学校”的活动,我们五(2)班的.同学也积极投入到这项活动中,认养了校园里的一块地,要在这块地铺上草坪。同学们来到实地考察地形。猜猜看,他们想了解这块地的那些情况?(电脑演示)
根据学生回答板书:三角形面积
师:你会计算它的面积吗?你会计算那些图形的面积?
师:能不能把三角形转化成学过的图形呢?
二、动手操作,推导公式。
1 请学生从老师提供的材料中,任意选取一个或两个三角形,以小组为单位,通过剪一剪、拼一拼、折一折,看能不能把三角形转化成我们已经学过的图形。
根据学生汇报媒体演示:
(1)两个直角三角形拼成一个长方形。
(2)两个锐角三角形剪拼成一个长方形。
(3)两个钝角三角形怎么拼呢?先把一个钝角三角形旋转一下,你发现什么?学生会发现两个钝角三角形能剪拼成一个长方形。
2 师提问:
(1)拼成的长方形面积与原来每个三角形的面积有什么关系?
(2)长方形的长和宽分别是原三角形的那部分?
媒体演示后板书:s长= 长× 宽
s三=底 × 高÷2
(3)三种情况的分析。
钝角三角形、锐角三角形都要通过剪拼的方法转化成长方形,那么直角三角形可不可以也用剪拼的方法转化成长方形?
学生讨论后交流,演示。(电脑演示)
对,所有的三角形都能通过剪拼的方法转化成长方形,而直角三角形比较特殊,它不剪拼也能转化为长方形。
3 师:除了用剪拼的方法将两个三角形转化成长方形外,还有没有其他方法呢?请大家先分组讨论、操作,再汇报。
师:你是怎么转化的?拼成的图形与原三角形的面积有什么关系?长方形的长与宽是原三角形的哪部分?
媒体演示:
(1)将一个直角三角形折成长方形。
(2)将一个锐角三角形剪拼成长方形。
都同样得出三角形的面积=底 × 高÷2。
师:如果用母s表示三角形的面积,用字母a表示三角形的底,用字母h表示三角形的高,那么三角形的面积公式可以写作s= a×h ÷2。
问:同学们,根据公式,要求三角形的面积需要知道哪些条件?
(三角形的底和高)
三、公式运用,巩固练习。
1 通过同学们自己动手操作,我们已经找出了三角形面积的计算公式,现在我们来算一算课的一开始认养的那块土地面积好吗?
媒体演示将土地标上底和高,请学生算出面积。
2 再请大家看这一题。
出示例1 一条红领巾的底边长100厘米,它的高33厘米,求红领巾的面积。
指导学生的书写格式。
学生尝试练习,再看书核对。
3 计算下面三角形的面积。(单位:厘米)
1212 20xx
7
14 8 10
4.拓展练习。
电脑演示:同学们,你们知道上海将在20xx年申办什么?世博会。我们的城市将以新的面貌迎接这次盛会,请你想办法把街道两旁的旧建筑换新颜。你有什么好办法?可以给旧建筑加顶。
问:加上去的彩钢板是什么形状?要几块?电脑显示各种形状的彩钢板。供学生选择。(电脑显示三角形的底和高)学生再计算面积。算对了,彩钢板就贴在旧建筑顶上。
四、总结。
今天同学们通过自己动手,学会了什么?
附板书:
三角形的面积
s正=a×a
s长= 长× 宽
s三= 底× 高÷2
s = a×h ÷2
三角形的面积教学设计10
教学内容:
《探索活动(二)三角形面积》
教学目标:
在实际问题情境中认识三角形面积必要性,在自主探究中体会有计划、有目的的选择适当的探究方法,锻炼学生动手操作的能力,进一步感知转化的数学思想和方法,学会用数学语言与他人交流,体验数学公式建立的过程,发展观察对比的能力、归纳概括能力及空间想象力。能正确地利用三角形面积公式计算,解决实际问题。
教学重点:
三角形面积公式的建立;利用分割与旋转进行图形转化
教学难点:
三家形面积公式的概括;利用分割与旋转进行图形转化
教法设计:
教学媒体的准备:
学具类:三个三角形(两个完全相同,一个不同)一个平行四边形;剪刀。
教具类:课件,与学具相应的教具。媒体:笔记本电脑、实物投影仪。
教学过程设计:
一、温故孕新,提出问题
⒈教师谈话:同学们,到现在我们已经学过哪些图形面积的计算了?你能说一说它们的面积计算公式吗?
学生口述,教师利用课件出示长方形、正方形、平行四边形图形及公式
教师提问:谁能说一说平行四边形面积计算公式的推导过程?
学生口述,教师利用课件再现平行四边形面积计算公式的推导过程。
(设计意图:通过再现平行四边形面积公式推导过程,重温将“未知”转化为“已知”的过程,为进一步探究三角形面积计算公式做好思维上的准备)
⒉教师利用课件出示教材p25主题图
教师引导审题:什么形状,给了什么条件,要求什么问题。学生观察后口述。
(设计意图:在实际问题中使学生认识三角形面积计算的必要性,激发学生学习的内驱力,为学生下面积极参与到探究过程中来做好心理上的准备)
⒊教师提问:你认为今天我们应该重点研究是什么?学生口述,教师板书:
三角形面积
教师谈话:今天这节课我们将通过“动手操作、观察对比”推导出三角形面积的计算公式。
(设计意图:学生在教师的指导下自我提出学习的内容,教师明确的只出击将采用的方法和学习的目标,使学生做到思维定向。)
二、观察对比,设想转化
⒈教师提问:你能用什么办法得到三角形面积呢?学生思考口述,
预计学生可能提出以下两种方案
⑴数方格的办法,(打开教材p25,数出三角形的面积) ⑵将三角形转化为已经学过的图形(平行四边形)
⒉教师利用电脑课件再出示一个平行四边形(如右图),
引导学生与三角形进行观察对比,
思考:“怎样将三角形转化为平行四边形”,学生独立思考,分组交流,口述自己的或小组的意见。
(设计意图:将三角形与平行四边形进行对比,思考、交流转化的预想其目的都是培养学生有目的、有计划的进行探究活动,减少探究活动的盲目性和随意性,养成良好的思维习惯,发展学生空间想象的能力。)
三、动手操作,体验转化
⒈教师谈话:下面同学们可以按照自己的想法利用自己手中的学具进行转化,并思考一下的问题:(教师利用课件出示思考题)
在转化过程中的三角形和平行四边形有什么关系?
教师引导学生分析思考的含义
⒉学生按照自己的想法动手实践,根据思考题思考,在小组内交流,教师巡视,并作适当点拨。
⒊学生汇报探究的成果
预计有以下几种情况:
⑴拼:
①用两个完全相同的三角形拼成一个平行四边形
教师提问:这两个三角形有什么关系?完全相同是什么意思?如果不完全相同的两个三角形呢?
完全相同——形状,面积都相等(板书)
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
②通过割补把一个三角形拼成平行四边形
教师提问:为什么选择两条边的中点连线进行分割?
(原因:平行四边形的对边相等)
总结:当三角形和平行四边形等底等积时,三角形的高是平行四边形高的2倍。
教师利用电脑演示揭示实质:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
⑵剪:将一个平行四边形剪成两个三角形
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(板书)
⒋教师提问:通过刚才一系列的活动,我们得到了一个怎样的结论?
学生思考,口述,
总结:当三角形和平行四边形等底等高时,三角形的面积是平行四边形面积的一半。(或:三角形面积是与它等底等高的平行四边形面积的一半。)
(设计意图:通过动手、交流、汇报、归纳等教学活动,使学生在活动中“做”数学,体验知识形成的'过程和自主获取新知的过程,积累数学实验的经验,发展分析、归纳等思维能力、空间想象能力、以及利用数学语言与他人交流的能力。)
四、建立公式,实践应用
⒈归纳公式
教师谈话:请同学们打开教材p25,学生阅读教材。
教师谈话:根据刚才得出的结论,请大家思考三角形面积应该怎样计算呢?在小组里说一说你的想法,然后把结论填在教材上
三角形面积=___________________________
如果用s表示三角形的面积,用a和h分别表示三角形的底和高,那么三角形的面积公式可以写成:
s=_______________
学生思考,交流,填写,口述,教师板书
三角形面积=底×高÷2;s=ah÷2
⒉剖析公式:教师提问:①计算三角形面积必须知道什么条件?②底乘以高等到的是什么?③为什么除以2?
⒊回归问题:
教师谈话:现在我们能求这个三角形的面积了吗?
学生重新审题,独立完成,口述,教师板书
4×3÷2=6(cm2);答:它的面积6cm2。
⒋巩固练习:完成教材p26试一试。
学生独立完成,板演,教师订正
(设计意图:以教材为引领,完成自主探究的学习过程,经历数学建模。)
作业设计:
⒈利用学具摆一摆、说一说三角形面积推倒的过程,复述重要的结论。
⒉完成教材p26练一练第1题。
板书设计:(略)
三角形的面积教学设计11
教学内容:
人教版小学数学五年级上册
作者及工作单位何小婷
西安市长安区灵沼乡冯村小学
教材分析
三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算的基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础。
学情分析
三角形面积的知识基础是:三角形底和高的认识以及长方形、正方形和平行四边形面积计算公式。知识的增长点是三角形面积公式。这一知识是后面学生学习梯形面积计算以及今后学习的重要基础。
其探究的过程与方法的基础是在《比较图形的.面积》和《地毯上的图形面积》两个专题中蕴含的割补法、增补法(分割、平移、旋转),以及平行四边形面积推导过程中蕴含的“根据一定的条件和方法将未知转化为已知”的数学思想和方法。能力的增长点在于利用旋转将两个完全相同的三角形拼成一个平行四边形,以及根据一定的条件(平分高或边)利用分割与旋转的方法将一个三角形转化成平行四边形,进一步体验“转化”的思想和方法。
本节课的设计着重在“以学生的发展为中心”的理念,将学生的已有知识结合来自生活常识的实例做为重要的课堂生成资源,运用有趣的教学手段,突破学生的思维定势,给学生充分发散思维的空间。
教学目标
1、探索并推导三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、培养学生应用已有知识解决新问题的能力。渗透数学转化思想方法。
3、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
4、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
教学重点和难点
教学重点:探索并推导三角形面积计算公式,能正确计算三角形的面积。
教学难点:三角形面积公式的探索过程。
三角形的面积教学设计12
教材分析
本节内容是在学生充分认识了三角形的特征以及掌握了长方形、平行四边形面积计算的基础上安排的。其推导方法与平行四边形面积公式的推导方法有相通之处。同时本课也是学习梯形、组合图形面积的基础,在实际生活中这部分的应用也非常广泛,所以本课内容的学习是很重要的。
学情分析
学生在掌握了正方形和长方形面积的基础之上才能学好本课,让学生动手操作去探索数学的奥秘。
教学目标
知识与技能目标:使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。
过程与方法目标:使学生通过操作和对图形的观察、比较、发展空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
情感态度与价值观:在探索学习过程中,培养学生的实践能力、探索意识、合作精神与创新精神;同时使他们获得积极、成功的情感体验。
教学重点和难点
1、掌握三角形面积的计算公式,会运用公式计算三角形的面积。
2、理解三角形面积计算公式的推导方法。
教学过程
一、 创设情境,导入新课
1、 同学们,上一节课我们学习了平行四边形面积的计算你还能记住求平行四边形面积的公式吗?(S=a×b)那么,这个公式是怎样推导出来的呢?
2、同学们,请大家自己看看胸前的红领巾,知道红领巾是什么形状的'吗?(三角形)如果叫你们裁一条红领巾,你知道要用多大的布吗?(求三角形面积)。要想知道这条红领巾的面积时多少,就要用到三角形的面积公式,今天这节课我们就来研究三角形面积的计算方法。
板书:三角形的面积
二、 讲授新课
1、上节课,我们在研究平行四边形的面积公式时,是把平行四边形转化成我们学过的方法形或正方形来研究的。今天,我们能不能将三角形也转化成我们已经学过的图形,从而推导出三角形的面积公式呢?
2、提问:请同学们回想一下,三角形按角分类可以分为几类?分别是?
(锐角三角形、直角三角形、钝角三角形)
3、我为大家准备了这些三角形,请你们自己试图去拼一拼,看你能发现什么?
4、拼图推导公式,按三角形类别的不同,可以有以下几种方法
⑴、两个完全一样的锐角三角形
提问:两个完全一样的锐角三角形能拼成了什么图形?你发现了什么?
两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形面积的2倍,因为平行四边形的面积等于底乘以高,所以三角形的面积等于底乘以高除以2。
老师把图形贴在黑板上,再请说推导过程,并板书:
平行四边形的面积= 底 × 高
三角形的面积= 底 × 高÷2
⑵、两个完全一样的钝角三角形
两个完全一样的钝角三角形拼成一个平行四边形
⑶、两个完全一样的直角三角形
两个完全一样的直角三角形拼成一个长方形。
5、小结:我们用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。如果用字母a表示三角形的底,h表示三角形的高,s表示三角形的面积,你能用字母表示出三角形的面积公式吗?
板书:s=ah÷2
三、巩固练习
5、练习:出示教材第85页的例2,请学生独立完成,指明板演。
6、学生独立完成教材第85页的“做一做”及第86页的练习十六的第1、2题。
四、课堂小结
提问:这节课我们探索了那些知识?学到了些什么?
这节课我们主要通过用两个完全一样的三角形,拼成了平行四边形或长方形,利用平行四边形或长方形的面积公式,推导出了三角形的面积公式。从而得到三角形的面积等于底乘以高除以2。 这种“转化”的数学方法是数学研究的重要手段,相信同学们今后能应用这一数学方法探究和解决更多的数学问题。
五、思维拓展
教材第87页第6题。
六、布置作业
教材第87页第3题。
三角形的面积教学设计13
教学内容:练习三第4-10题及思考题
教学目标:
使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积
教学过程:
一、第5题可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的比较上。
二、第6题要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。
三、第9题测量红领巾高时,可以启发学生把红领巾对折后再测量。
四、第10题要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。
五、思考题每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。
第5课时:梯形面积的计算
教学内容:第19页例6以及相应的试一试和练一练
教学目标:
1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。
2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。
教学重点:理解并掌握梯形面积的计算公式
教学难点:理解梯形面积公式的`推导过程
教学过程:
一、复习导入:
1、回顾三角形面积公式的推导过程
2、导入:今天我们继续运用这种方法来研究梯形面积的计算。
二、探究新知:
1、教学例6:
(1)出示例6:
师:用例6中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全)
(2)小组交流:
你认为拼成一个平行四边形所需要的两个梯形有什么特点?
要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。
(3)测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。
师:如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流)
得出以下结论:
这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。
这个平行四边形的底等于梯形的上底+下底
这个平行四边形的高等于梯形的高
因为每个梯形的面积等于拼成的平行四边形面积的一半
所以梯形的面积=(上底+下底)×高÷2
板书如下:
平行四边形的面积=底×高
2倍一半
梯形的面积=(上底+下底)×高÷2
(4)用字母表示三角形面积公式:S=(a+b)h÷2
三、巩固练习:
1、完成试一试:
2、完成练一练:
(1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2?
(2)结合直观的图形或教具演示,简单介绍横截面的含义,再让学生结合公式进行计算。
四、全课总结:
师:通过今天的学习有哪些收获?
板书设计:梯形面积的计算
转化
已学过的图形新图形
拼摆
因为平行四边形的面积=底×高
2倍一半
所以梯形的面积=(上底+下底)×高÷2
课后札记:
三角形的面积教学设计14
【教学内容】:
人教版五年级上册第六单元第91~92页内容
【教学目标】:
1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。
2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。
3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。
【教学重点】:
探索并掌握三角形的面积公式,能正确计算三角形的面积。
【教学难点】:
理解三角形面积公式的推导过程。
【教学准备】:
每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。
【教学过程】:
一、汇报演示
师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?
师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?
师:为什么买这一块呢?
师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?
师:谁能说说三角形面积怎么求:三角形面积=底×高÷2
师:为什么它的面积是底×高÷2呢?
生:到前面展示三角形拼平行四边形过程。
夯实对应关系:两个完全相同的三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的面积就是()。
师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?
师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?
师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的`问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?
师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。
(一)判断题。
1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。
2、两个完全一样的直角三角形一定可以拼成正方形。
3、面积相等的两个三角形一定等底等高。
(二)选择题。
1、下面平行线间的3个三角形大小关系正确的是()
A、ABC面积大B、BCD面积大C、BCE面积大D、同样大
2、求右图中三角形面积正确列式为()
A、4.8×5÷2B、4×5÷2C、4×4.8
师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!
(三)解决问题
1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。
一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?
还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?
一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?
拓展延伸:
思考一:三角形和平行四边形面积相同,底也相同,它们的高什么关系?
思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?
思考提示:若头脑中不能建立起两个图形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。
如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?
三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?
三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?
三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?
三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?
三角形的面积教学设计15
一、教学内容:
《义务教育课程标准实验教科书。数学》(西师版)五年级第九册。
二、教学目标分析
(1)使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积。
(2)通过指导实际操作,培养学生抽象、概括能力和思维的'创造性,发展空间观念。
(3)使学生明白事物之间是相互联系,可以转化和变换的。
三、教学要点分析
教学重点:理解、掌握三角形的面积计算公式
教学难点:理解三角形面积公式的推导过程
四、教学策略设计
(1)导入新课时激励学生求新知——诱导自主学习。
(2)探索新知时鼓励学生自学尝试,合作讨论——进行自主学习。
(3)内化新知创新设疑,讨论质疑——创新自主学习
(4)巩固新知时激励学生自主解答,讲解思路——巩固自主学习。
(5)教师课前准备:多媒体计算机课件,为学生每组准备两个完全一样的直角三角形、两个完全一样的等腰直角三角形,和两个完全一样的钝角三角形。
五、过程设计
本课教学总时间为40分钟。教学过程主要围绕三角形面积公式的推导、应用来展开的。教学环节可分为情境创设、操作交流、练习反馈和全课总结。
【三角形的面积教学设计】相关文章:
三角形面积的教学设计01-12
三角形的面积教学设计08-25
三角形的面积教学设计04-05
《三角形的面积》的教学设计优秀09-07
《三角形的面积》优秀教学设计10-13
数学《三角形的面积》教学设计07-02
“三角形面积的计算”教学设计12-21
三角形的面积教学设计 15篇04-29
三角形的面积教学设计15篇01-14
三角形的面积教学设计(15篇)01-15