《体积单位》教学设计
作为一位无私奉献的人民教师,就不得不需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么大家知道规范的教学设计是怎么写的吗?下面是小编精心整理的《体积单位》教学设计,仅供参考,希望能够帮助到大家。
《体积单位》教学设计1
教学目标:
知识目标:
结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
能力目标:在观察、操作中,发展空间观念。
情感目标:
学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点、难点:
观察、操作中会进行体积、容积单位之间的换算。
教学策略:教师引导学生进行自主探究。
教学准备:图表课件
教学过程:
一、导入新课:同学们上节课我们学习了长方体的体积,哪个同学起来说一下体积单位有哪些?引出体积单位。
二、教学新知:
1、让学生利用手中的教具摆出正方体。
1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。即1分米3 = 1000厘米3, 1升 = 1000毫升。
2、用以上方式教学立方米与立方分米之间的进率,即体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的.体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000 dm3。
3、填一填表格,比一比了解长度、面积、体积单位之间的联系和区别。
单位
相邻两个单位之间的进率
长度
米、()、厘米
10
面积
米2、()、厘米2
体积
米3、()厘米3
4、课堂练习
(1)先让学生独立填一填,再选几道让学生说说思考的方法与过程。
(2)可以让学生通过计算来分析、比较从而解决问题。
通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。
(3)先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米)
(4)先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的体积。50×20×1.5=1500(立方米)
四、课堂小结:
学习了这节课,同学们有什么感受和体会?
板书设计:
1分米3 = 1000厘米3
1升 = 1000毫升
1米3 = 1000 分米3
1m3 = 1000 dm3
《体积单位》教学设计2
【教学内容】
体积单位间的进率(课本第34—35页内容)。
【教学目标】
1、通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的 改写。
2、使学生学会用名数的改写解决一些简单的实际问题。
3、培养学生根据具体情况灵活应用不同的单位进行计算的能力。
【重点难点】
掌握名数的改写方法。
【复习导入】
1、填一填。
1米=( )分米
1分米=( )厘米 1平方米=( )平方分米
1平方分米=( )平方厘米
2、说一说常用的体积单位有哪些?
【新课讲授】
1、学习体积单位间的进率。
(1)老师出示教材第34页例2:一个棱长为1dm的正方体,体积是1dm3。 想一想:它的体积是多少立方厘米?
(2)学生读题,理解题意。
(3)老师出示棱长为1dm的正方体模型。
提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)
(4)计算。
请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米? 学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说: ①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。 ②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积×高,也就是100×10=1000cm3,得出它的体积。
老师根据学生的回答,板书:V=a3 10×10×10=1000(cm3) 1dm3=1000cm3
(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少? 1立方分米=1000立方厘米(老师板书)
(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。
老师板书:1立方米=1000立方分米
(7)观察板书内容。
想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。
2、体积单位,面积单位,长度单位的比较。
(1)长度单位:米、分米、厘米,相邻两个单位之间的进率是十。
(2)面积单位:平方米、平方分米、平方厘米,相邻两个单位之间的进率是一百。
(3)体积
单位:立方米、立方分米、立方厘米,相邻两个单位之间的进率是一千。
3、学习体积单位名数的改写。
(1)回忆:怎样把高级单位的'名数变换成低级单位的名数?(要乘进率)怎样把低级单位的名数变换成高级单位的名数?(要除以进率)
(2)学习教材第35页的例3。
板书:(1)3、8m3是多少立方分米?
(2)2400cm3是多少立方分米? 请学生尝试独立解答,老师巡视。 指名让学生说一说是怎样做的。
板书:3、8m3=(3800)dm3
2400cm3=(2、4)dm3 想: 1m3 =( )dm3
想:( ) cm3=1dm3 (3)学习教材第35页的例4。 出示例4,让学生先读题,理解题意:明确箱子上的尺寸是这个长方体的长、宽、高。请学生说出这个箱子的长、宽、高各是多少? 学生独立思考,然后解答,指名板演。 V=abh=50×30×40=60000(cm3)=60(dm3)=0、06(m3)
【巩固练习】完成课本第35页的“做一做”第1、2题。学生完成后,要求他们口述解答的过程。第2题指名学生板演。
【课堂小结】
今天我们学习了哪些内容?你有什么收获?
【板书设计】
体积单位间的进率 长度单位:1米=(10)分米
1分米=(10)厘米 面积单位:1平方米=(100)平方分米
1平方分米=(100)平方厘米 体积单位:1立方米=(1000)立方分米
1立方分米=(1000)立方厘米
《体积单位》教学设计3
【教学目标】
知识技能:结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
数学思考:渗透类比思想,在观察、操作的过程中,进一步发展空间观念。
问题解决:会应用对比的方法,记忆并区分长度单位、面积单位和体积单位,掌握相邻两个单位间的进率。
情感态度:学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中相关的实际问题。
【教学重点】观察、操作中会进行体积、容积单位之间的换算。 【教学难点】推导体积单位间的进率和建立相应的空间观念。 【教学准备】课件、1dm3的正方体盒子、棱长为1厘米的正方体模型。
【教学过程】
一、复习导入
1、复习体积和容积的概念。
(1)说说常见的长度单位的名称,以及相邻两个单位的进率。
(2)说说面积单位的名称,以及相邻两个单位之间的进率。 2、1平方分米=100平方厘米想想是怎么推导出来的?
3、揭示课题:这课我们学习相邻体积单位间的进率。
二、自主探索,验证猜测
1、我们认识的体积单位有哪些?板书:立方米立方分米立方厘米
提问:1立方分米=?立方厘米,你认为可能是多少?(可能有认为是100,也有可能认为是1000。)
2、究竟哪种猜想是正确的呢?我们一起来验证一下。
棱长为1dm的正方体盒子中,可以放多少个体积为1cm3的小正方体呢?把你的想法在小组内交流一下,然后摆一摆,算一算。(小组讨论、拼摆,推导相邻体积单位之间的进率,教师巡视,加以指导)
3、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。
②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。
(电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。
④口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米
4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。
a.计算小正方体的个数;b.计算体积;c.1dm3=1000cm3,得到相邻的.单位分米3和米3之间的进率是1000,即1m3=1000dm3.(板书:1立方米=1000立方分米)②口头回答:
2立方米=?立方分米。 9000立方分米=?立方米
5、补全表格,继续填写:
单位名称
相邻两个单位间的进率长度面积体积
①总结体积单位以及它们之间的进率
②说说它们分别是计量物体的什么的?③怎么来记忆它们相邻单位之间的进率?
三、巩固深化
1、出示书第45页的“练一练”第3题。学生先独立完成。交流你是怎样想的。
小结:把高级单位化成低级单位,要用高级单位的数乘进率(小数点向右移动三位);把低级单位化成高级单位,要用低级单位的数除以
进率(把小数点向左移动三位)。
2、辨别
有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:63立方分米=0.063立方厘米他换算得对吗?(引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)
3、下面每一组数中都有一个数与其他数不同,请找出它!1.02m
1020dm
10200L
1020000cm
5046dm
5.046m
5046000cm
5046ml
4、课本P45第2题。
鼓励学生通过观察得出长方体的长、宽、高,再应用公式进行计算。
5、棱长为2m的正方体盒子中,可以放多少个棱长为2dm的小正方体?
让学生先想象一排可以摆几个,一层可以摆几排,共可以摆几层。
6、课本P45第4题。
7、课本P45第5题。
四、课堂总结。
通过这节课的学习,你有什么收获?【板书设计】
体积单位的换算
1分米3 = 1000厘米3
1升= 1000毫升
1米3 = 1000分米3
1m3 = 1000 dm3
《体积单位》教学设计4
教材分析:
本节课是在学生认识了体积和容积的意义后教学的。本节教材的主要内容是认识体积、容积单位。教材先呈现了长度单位1厘米,面积单位1平方厘米和体积单位1立方厘米,并指出常用的体积单位有立方米、立方分米、立方厘米。然后教材安排了做一做活动让学生通过实际操作活动,体会1立方厘米、1立方分米、1立方米的实际大小。再让学生通过说一说把体积单位与生活中熟悉的事物联系起来,感受1立方厘米、1立方分米、1立方米的实际意义。后面在认识体积单位的基础上认识容积单位。教材的的编写体现出三个方面的意图:一是把体积单位与学过的长度单位、面积单位联系起来,体会统一单位的重要性,同时对这三种单位有一个直观的区别;二是注重实际操作,获得大量的感性经验;三是紧密联系生活实际,感受体积单位的实际意义。我的教学设计也围绕着这三方面来进行,为了让学生有充分的活动时间,我把体积单位与容积单位分开教学,第一课时教学体积单位。
学生分析:
小学生思维是具象的,小学高年级学生的思维正处于具体运算阶段向形式运算阶段的过渡发展期。因此,小学阶段学习的几何是属于经验几何或实验几何,这些内容的学习都是建立在小学生的经验和活动基础上的。对于小学生的学习方法而言,他们对几何图形的认识是通过操作、实验而获得的,几何的相关概念与关系的获得也是以操作为基础的,学生从一年级就开始接触几何,到五年级他们对几何教学中的动手操作活动并不陌生,并有一定的动手操作能力和经验,但本班学生对操作活动中的自律性还不是很强,教学中应注意对操作活动时纪律的控制。
教学目标:
1、常用的体积单位:立方厘米、立方分米、立方米,初步建立1立方厘米、1立方分米和1立方米的实际大小的表象。
2、知道物体含有多少个1立方厘米,体积就是多少立方厘米。
3、引导学生经历观察、类比、举例、等学习活动,积累数学活动的经验。
4、通过数学,增强空间观念,发展空间想象力。
教学重点:
帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积。
教学难点:
能联系已有知识正确区分长度单位、面积单位、体积单位,清楚各自含义。
教具、学具准备:
教师准备棱长1厘米和1分米的正方体各一个,1立方米演示模型架。学生准备棱长1厘米、1分米的正方体各一个,米尺1根。
教学媒体:
ppt课件
教学过程
一、复习引入
1、填单位:
老师身高155( ) 教室的面积为48( )
游泳池水深2( )占地面积250( )
师:这是我们以前学过的.单位,它们是什么单位同学们还记得吗?
课件出示:长度单位 面积单位 1厘米的长度 1平方厘米的大小。
2、师:上节课我们认识了物体的体积,你们还记得什么是体积吗?那么体积的单位又是什么呢?
二、教学新课
师:常用的体积单位有立方厘米、立方分米、立方米。
1、认识1立方厘米
(1)出示1立方厘米模型:这就是1立方厘米,让学生拿出自己做的棱长是1厘米的正方体,看看和老师的1立方厘米是否一样大。
(2)分组观察﹑探究交流,然后汇报,你知道了什么?
操作要求:
看一看:1立方厘米的体积有多大?
量一量:1立方厘米正方体棱长是多少?
说一说:什么是1立方厘米?
想一想:体积是1立方厘米的物体有多大,把它印在头脑里。
举一举:生活中哪些物体体积约为1立方厘米(如蚕豆﹑玻珠、手指末节等)
拼一拼:2立方厘米、5立方厘米、10立方厘米
(3)汇报交流。
(4)教师小结:棱长是1厘米的正方体,体积是1立方厘米。板书记法。
2、认识1立方分米
(1)出示1立方分米模型,告诉学生这就是1立方分米。
(2)学生拿出学具分组观察、探究、汇报,你知道了什么?
看(大小) 量(长短) 说 (概念) 想(有多大)
举一举:(粉笔盒、菠萝等)
拼 (体积)
(3)汇报交流,教师小结并板书。
3、认识1立方米
(1)根据以上的体积单位推测,什么样的体积是1立方米(板书)
(2)我用三把米尺在墙角搭了一个体积是1立方米正方体框架,让学生估一估能容纳多少个学生,然后试一试。
(3)8个学生一组,用米尺搭一个1立方米的空间,看一看,把一立方米的大小印在头脑里。
(4)哪些物体体积约为1立方米?(太阳能水塔、讲台等)
5、比较长度单位、面积单位、体积单位的不同
(1)课件在长度单位和面积单位的旁边出示1立方厘米的图形。
(2)让学生观察有什么不同。
(3)小结:长度单位表示距离大小,面积单位表示表面大小,体积单位表示空间大小。
三、巩固练习,提升理解
您现在正在阅读的《体积单位》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《体积单位》教学设计1、完成练一练第1题。
2、选择适当的单位名称填在括号里。
(1)五(1)班教室占有空间约是150( )。
(2)一个成人鞋盒体积约是6( )。
(3)一块橡皮的体积约是8( )。
(4)一把椅子高90( )。
(5)一张单人床的面积约是2( )。
3、连线
一台洗衣机的体积约为 40立方厘米
书包的体积 0.3立方米
碳素墨水盒的体积 20立方分米
4、说说身边物体的体积
四、课堂小结:
说说本节课有哪些收获。
教后反思:
在本节课的教学中,我注重从小学生空间观念形成的心理特点方面手,做了以下尝试,取得了不错的效果。
1、注重新旧知识的联系与比较
教学初我让学生通过填单位回顾旧知,知道测量长度需要用长度单位,测量面积需要用面积单位。然后自然而然就引出测量体积就需要体积单位了。并在教学完体积单位后与长度单位、面积单位进行了比较,让学生从直观形象到内在含义真正理解体积单位。
2、充分利用直观教学,注重学生实践体验
学生空间观念的形成具有很强的直观性,比较感知的是图形的外显性属性特征。所以在教学中,我充分利用直观教具,调动学生的感官,通过触摸、类比等学习活动,帮助学生并建立1立方厘米、1立方分米、1立方米的实际大小的体积观念。学生真正是在亲身经历和体验积单位,从而在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中我还引导学生将三个体积单位结合起来,进行对比,并列举生活中的实例,激发学生的欲,让学生在活动中理解应用数学知识解决实际的。
3、注重学习方法的迁移
在三个常用的体积单位的新知教学中,我采用了分层推进的教学策略。老师先引导学生通过摸一摸、量一量、比一比、举个例子等学习活动,并学习1立方厘米。然后将主动权交给学生,让学生利用1立方厘米的方法在小组内自主活动,1立方分米,最后1立方米。这样不仅培养了学生小组合作学习的能力,同时也提高了学生参与尝试的兴趣。
4、注意学生身边的数学知识
在让学生感受每个体积单位有多大时,我让学生找一找身边哪些物体的体积大约是1立方厘米、1立方分米、1立方米,学生有的提到我的一个指头头大约是1立方厘米,我随机抓住这一教学资源,追问道:你们每个手指大约又是多少立方厘米呢?在例举1立方分米时,学生说粉笔盒的体积大约1立方分米,有一次我买的烤红薯大约1立方分米等等。在感受1立方米有多大时,我用三把米尺在墙角搭了一个体积是1立方米正方体框架,并让学生估一估能容纳多少名同学,然后亲自让同学们站到里边看一看,然后分组搭1立方米的框架。通过例举与体验,不但让学生体会到身边处处有数学,而且也有利于促进学生每个体积单位大小的建立。
《体积单位》教学设计5
教学内容:北师大版课程实验教材《数学》五年级(下册)43-45页练习1
教学目标:
1、认识常用的体积单位:立方厘米、立方分米、立方米。
2、了解立方厘米、立方分米、立方米之间的进率。
3、掌握体积单位之间的换算方法。
重难点:体积单位之间的换算。教学过程:
一、引入:
1、同学们,上节课我们学习了几个体积单位,谁知道是那几个吗?
2、很好,那我们以前还学过关于长度和面积的单位,谁来说下常用的长度单位有那些?常用的面积单位有那些?
3、那么长度单位、面积单位它们之间的进率是多少?
4、你们想不想知道体积单位他们之间的进率呢?
二、研究探讨
1、刚才我们知道了相邻两个长度单位之间的进率是10,也就是说1米=10分米,1分米=10厘米,而且我们知道1米=100厘米。那么谁来说下我们是怎么知道相邻两个面积单位之间的进率的呢?或者他们的推导方法是什么呢?
2、对我们可以根据长度单位之间的进率来推导1平方米=1米×1米=10分米×10分米=100平方分米用同样的方法可以推导出1平方分米=1分米×1分米=10厘米×10厘米=100平方厘米
3、我们知道1立方米=1米×1米×1米,那么大家想一想,用刚才的推导关系怎样得出平方米和平方分米的.关系或者进率?
4、好,大家想了一会了,谁来上黑板把你自己的想法用算式书写出来。
5、表扬学生,并且书写正确的推导算式:1平方米=1米×1米×1米=10分米×10分米×10分米=1000立方分米。现在请同学们根据我书写的关系式推导出立方分米和立方厘米的关系。得出1立方分米=1000立方厘米。
6、练习
20立方米=
立方分米
1.2立方米=
立方分米
200立方分米=
立方米
30000立方厘米=
立方分米
7、我们刚才知道了相邻的2个体积单位之间的进率,那么不相邻的立方米和立方厘米他们之间是什么关系呢?我们先想下1平方米等于多少平方厘米呢?对,等于10000平方厘米,同样用推导关系可以推导出来。那么现在大家自己动手推导出立方米和立方厘米之间的进率。(巡视,对有困难的学生进行帮助指导)
8、集体反馈结果。得到1立方米=1000000立方厘米。
9、练习
0.2立方米=
立方厘米
20000000立方厘米=
立方米
三、巩固练习
1、完成课后练习2、3题。
2、我们还学习了容积单位,下去同学们把他们之间的关系做出来,再根据体积和容积之间的关系,求出他们之间的进率。
四、总结
1、这节课我们学到了什么?
2、单位换算的时候要注意什么?
《体积单位》教学设计6
教学目标:
1、通过实践操作,使学生理解体积的含义,建立体积的概念。
2、初步认识常用的体积单位:立方米、立方分米、立方厘米,掌握常用的体积单位和体积单位的量的特征,能正确选择和使用体积的单位。
3、通过学生的动手实践,加强学生的空间观念。
教学重点:形成体积的概念和掌握常用的体积单位。
教学过程:
一、依据预习提纲,自主学习。
1.什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.拼成了一个什么形体?(长方体)这个长方体的体积是多少?(4立方厘米)
3.常用的体积单位有哪些?你能想像或比划一下他们个个有多大吗?
4.长方体的体积公式是什么?
5.正方体的体积公式是什么?
6.光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?
7.讨论长方体和正方体的体积计算方法是否相同.
二、探索研究,交流展示。
1.故事引入:出示主题图:乌鸦喝水的故事。
自由汇报:乌鸦是怎样喝到水的?为什么?
2.学生实验:
取两个同样大小的玻璃杯,先往一个杯子里倒满水,取一块鹅卵石放入另一个杯子里,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?(第一杯的水不能倒入第二杯,因为鹅卵石占据了一部分空间。)
3.课件出示:比较观察:电视机、影碟机、手机,哪个所占的`空间大?
不同的物体所占空间的大小不同。
4.体积概念的引入:物体所占空间的大小叫做物体的体积。(板书课题:体积)
加深理解:
三、体积单位的认识:(学生先看书自学,再汇报交流。)
1.我们已经学过哪些长度单位和面积单位?
2.出示两个长方体:怎样比较这两个长方体体积的大小呢?
3.根据常用的长度单位和面积单位,想一想常用的体积单位有哪些?
介绍体积单位,常用的体积单位有:立方米(m)、立方厘米(cm)。
4.认识:1立方米、1立方分米、1 立方厘米的体积各有多大。
我们规定:棱长是1厘米的正方体的体积是1立方厘米。
1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。
②看看我们身边的什么的体积大约1立方厘米。(约一个手指尖的大小)
1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。(约一个粉笔盒的大小)
1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。
我们生活中,哪些物体的体积大约1立方米?
5.练习:
(1)完成P40“做一做”T1。
说一说分别是用来计量什么的单位,它们有什么不同?
长度单位、面积单位、体积单位的联系与区别。
(2)完成P40“做一做”T2。
让学生说一说解题的根据是什么?进而使学生深化对计量一个物体的体积,要看这个物体含有多少个体积单位的意思的理解。
三、反馈检测
1.
2.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?
3.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?
教学设计:
体积和体积单位
常用的体积单位有:立方米(m)、立方分米(dm)、立方厘米(cm)。
棱长是1厘米的正方体的体积是1立方厘米。
课后反思:整节课中,我给予学生一个又一个实验研究平台,引导学生在“猜想-实验验证-发现规律”中开展学习,在一次次猜想验证中,发现规律,掌握知识,培养了能力。
《体积单位》教学设计7
教材分析:
这部分内容是在学生已经掌握了长方体和正方体体积的计算方法和认识了体积单位的基础上举行教学的。教材通过复习长度单位米、分米和厘米相邻单位间的进率关系,面积单位平方米、平方分米和平方厘米相邻单位间的进率关系,建立相邻体积单位的进率之间的关系,并通过图示,引导学生推出体积单位之间的进率。
教学方法:
针对以上内容,我准备通过学生的计算、比较、分析、归纳来得出相邻体积单位之间的进率,突出学生的自主探索学习。
教学目标:
(1)知识与技能目标:通过计算、比较、分析、归纳,使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。
(2)过程与方法目标:在学习过程中,培养学生比较、分析、概括的能力,提高学生对旧知识的迁移和运用能力。
(3)情感与态度目标:使学生体验数学知识之间的紧密联系性,能够运用知识解决实际问题。
教学重点:
使学生理解和掌握相邻体积单位间的进率是1000,并能进行正确的运用。
教学难点:
通过计算、比较、分析、归纳,使学生能探究出相邻体积单位间的进率是1000。
教学过程:
一、复习导入:
1、复习一般长度、面积单位间的进率:
1米=分米1分米=厘米
1平方米=平方分米1平方分米=平方厘米
2、相邻长度单位、面积单位间的进率是多少?我们在学习面积单位间进率的时候是通过怎样的'方法来学习的?
学生相互说说。
3、我们已经认识了哪些体积单位?它们分别是怎样定义的?
学生回答问题。
二、探究新知:
1、出示一个体积1立方分米和一个体积1立方厘米的模型,提问:1立方分米里有多少个1立方厘米呢?
2、师生研究:1立方分米是一个棱长1分米的正方体的大小。同样一个正方体,把1分米改写成10厘米,那么它的体积是多少立方厘米呢?
学生计算:=1000(立方厘米)
比较:同样一个正方体,它的体积可以用1立方分米或者1000立方厘米来表示,说明这两者之间有怎样的关系呢?
(学生比较总结出:1立方分米=1000立方厘米)
3、用同样的方法总结出:1立方米=1000立方分米
4、你能用一句简洁的话来概括吗?
(师生交流总结:每相邻两个体积单位之间的进率是1000。)
5、比较相邻长度单位、面积单位、体积单位之间的进率关系:
名称图形类型进率
长度单位平面图形10
面积单位平面图形1010=100
体积单位立体图形=1000
通过比较,使学生进一步明确体积单位间的进率的探索方法,加强学生的理解。
三、解决问题:
1、我们已经学习了小数和复名数,从高级单位、低级单位之间的转化是怎样进行的?
(学生相互说说)
2、已知:1立方分米=1000立方厘米,1立方米=1000立方分米,那么:1立方分米=立方米,1立方厘米=立方分米。
3、教学例1、2。
组织学生进行自主学习研究,集体交流解决的方法。
(学生有了名数之间转换的方法,因此可以适当的突出学生学习的主体作用,让学生来交流解决问题,提高学生运用旧知识解决新问题的能力。)
4、教学例3:
组织学生先自主读题,并进行仔细审题,交流题目的意思。说出有哪些要注意的地方?
适当培养学生的分析能力,养成仔细审题的良好习惯。
学生独立解决可能有两种方法:
(1)先算出用立方米作单位的体积,再改写成立方分米作单位。
(2)先把米作单位的数改写成分米作单位的数,再计算出体积,就是立方分米作单位了。
(对于这两种方法,组织学生进行比较,可以进一步验证相邻体积单位间的进率是1000,并发展和提高学生解决问题的能力。)
四、巩固练习:
1、合理搭配:
5平方米500立方分米6780立方厘米立方米
5立方分米500平方分米8500立方分米
立方米立方米立方米立方分米
2、判断题:
(1)两个体积单位之间的进率是1000。
(2)棱长6厘米的正方体的表面积和体积相等。
(3)一个正方体的棱长扩大3倍,表面积和体积都扩大9倍。
(4)平方分米与50立方厘米一样大。
3、在括号里填上适当的单位名称:
一个粉笔盒的体积约是。
一台洗衣机的体积大约是340。
摩托车每小时行约30。
一张纸的面积约是6。
4、选择:
(1)、与立方分米相等的是。
A:7500立方厘米
B:立方米
C:立方米
(2)、正方体的棱长是a,表面积是,体积是。
A:a2 B:6a2 C:a3
(3)一块长方体钢材,长米,宽3分米,高2分米,体积是立方分米。
A:2400立方厘米
B:立方米
C:24立方分米
(4)一个长方体的盒子,长分米,底面积是16平方厘米,体积是立方厘米。
A:8立方厘米B:80立方厘米C:立方分米
《体积单位》教学设计8
教学目标
1.通过观察实际,使学生知道什么是体积.
2.认识常用的体积单位:立方米、立方分米、立方厘米.
3.能正确区分长度单位、面积单位和体积单位的不同.
教学重点
使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念.
教学难点
帮助学生建立体积是1立方米、1立方分米、1立方厘米的大小表象,能正确应用体积单位估算常见物体的体积.
教学步骤
一、铺垫孕伏.
1.1米、1分米、1厘米,这是什么计量单位?
2.1平方米、1平方分米、1平方厘米,这是什么计量单位?
二、探究新知.
我们学习了长度和长度单位,面积和面积单位.今天我们要学习一个新概念:体积和体积单位.(板书课题:体积和体积单位)
(一)实验观察,建立体积概念.
1.教师演示实验:
第一步:出示有 杯水的玻璃杯,在水面处做一个红色记号.
第二步:在水杯中放入一块石头,在水面处做一个黄色记号.
第三步:拿出石块后,再放入一大些的石块,在水面处做绿色记号.
观察思考:在水杯中两次放入大小不同的石块,有什么现象发生?为什么会出现这个现象,说明什么?
汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升.
石块大占据空间大,水面上升得高;
石块小占据空间小,水面上升得低.
2.学生分组实验.
实验方法:
第一步:拿出装满细沙的杯子,把细沙倒在一边.
第二步:把一木块放入杯子里,再把倒出的沙装回杯子里.
第三步:把杯中细沙倒出,把一大些的木块放入杯子里,再把倒出的沙装回杯子里.
观察思考:出现了什么结果?这说明了什么?
汇报归纳:放入大木块,外边剩的沙多;放人小木块外边剩的沙少.
这说明木块也占据了杯子的空间.木块大占据空间大,木块小占据空间小.
3.总结两次实验结果.
教师提问:以上的两个实验说明了什么?
学生归纳:物体都占据空间,物体大占据空间大,物体小占据空间小.
教师明确:把物体所占空间的大小叫做物体的体积.(板书)
4.比较物体体积的大小.
实物比较:字典和大词典 桌子和椅子 水桶和茶叶桶 课本和练习本
(教师出示一组体积接近的物体)提问:这两个物体谁的体积大?
(二)认识体积单位.
教师指出:在实际生活和生产中,有时只凭感觉是无法判断出谁大谁小的,这就要我们
精确地计量物体的体积.计量体积就要用体积单位,常用的体积单位有立
方厘米、立方分米、立方米(板书)
1.认识1立方厘米(出示一块1立方厘米的体积模型)
这就是体积为1立方厘米的正方体.
分组观察,然后汇报:你知道了什么?
看一看:1立方厘米的体积比较小,是正方体.
量一量:1立方厘米的正方体的棱长是1厘米.
说一说:棱长1厘米的正方体体积是1立方厘米(板书)
想一想:体积是1立方厘米的物体比较小.
议一议:哪些物体计量体积时使用立方厘米比较恰当?
2.认识1立方分米.(出示一块1立方分米的体积模型)
这就是体积为1立方分米的正方体.
分组观察,然后汇报:你知道了什么?
看一看:1立方分米的体积大一些,是一个正方体.
量一量:1立方分米的正方体的棱长是1分米.
说一说:棱长1分米的正方体,体积是1立方分米.(板书)
想一想:体积是1立方分米的物体比1立方厘米的物体大.
议一议:哪些物体计量体积时使用立方分米比较恰当?
3.认识1立方米.
思考:什么样的物体的体积是1立方米?
(板书:棱长1米的正方体,体积是1立方米)
议一议:哪些物体计量体积时使用立方米比较恰当?
4..比较:这三个体积单位的共同点是什么?不同点是什么?
长度单位、面积单位和体积单位又有什么不同点呢?
长度单位:线段
面积单位:正方形
体积单位:正方体
(三)计量物体的体积.
怎样用这些体积单位计量物体的体积呢?
计量物体的体积就是一个物体里含有多少个体积单位,它的体积就是多少
(四)反馈练习.
1.看图说出物体的体积.
2.用12个1立方厘米的正方体木块摆成不同形状的长方体.它们的体积各是多少?
(都是12立方厘米.不论物体是什么形状,含有几个体积单位,它的.体积就是多少)
三、全课小结.
这节课你学了哪些知识?
四、随堂练习.
1.填空.
一块橡皮的体积约是8( )
一台录音机的体积约是20( )
运货集装箱的体积约是40( )
2.连线:学校主席台的体积 24立方厘米
书包的体积 24立方米
碳素墨水盒的体积 24立方分米
3.说说身边的物体的体积大约是多少?
五、课后作业.
下面的图形都是用棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米?
六、板书设计.
体积和体积单位
物体所占空间的大小叫做物体的体积.
《体积单位》教学设计9
教学目标:
使学生通过对具体事物的观察,了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。
教学重点:
了解体积的意义及体积单位,感受1立方米、1立方分米、1立方厘米有多大。
教学难点:
感受1立方米、1立方分米、1立方厘米有多大。
教学方法:
一、教学体积。
1、师生互动。
感受教师占的空间大,学生占的空间小。
2、小实验。
感受大石头占的空间大,小石头占的空间小。
3、观察比较。
鞋盒占的空间大,火柴盒占的空间小。
4、举例生活中物体所占空间的大小。
5、总结体积的意义。
二、教学体积单位。
通过教师描绘两个物体组合的样子,猜一猜它们体积的大小,从而引出计量体积的大小要有一个统一的标准(体积单位)。
课件展示三种体积单位的规定方法:
棱长是1厘米的正方体的体积是1立方厘米。
棱长是1分米的正方体的体积是1立方分米。
棱长是1米的正方体的体积是1立方米。
通过观察学具、举例子、测量实物创造以一体积单位为单位的组合体。
分别教学1立方米、1立方分米、1立方厘米。
让学生感知1立方米、1立方分米、1立方厘米的大小。
教学过程
导入:同学们,点、线、面、体构成了我们千变万化的数学图形,我们知道线有长短、面有大小,线的长短叫长度,面的大小叫面积,那体有大小吗?体的大小叫什么?带着这个问题,让我们一起走进今天的课堂。
首先老师要和大家分享两个生活现象,考考你的眼力,同学们,有没有信心?
(1)师:请一位同学和老师配合来一个换座游戏,用数学眼光从我们身上你能发现什么数学信息?
师:老师坐在同学的座位上,你有什么感觉呢?
生:地方小、挤
师:为什么感觉挤呢?
生:老师占的空间大,同学占的空间小(板书空间)
(2)师:这是什么
生:石头
师:一大一小两块石头和液面相等大小一样的两个水杯,现在老师要把石头分别放入水杯中,猜想液面会怎样?注意观察。
师:怎样
生:液面都上升了
师:为什么会上升
生:因为石头都占有一定的空间
师:上升的高度一样吗
生:大石头占得空间大,液面上升的高度就大,小石头占得空间小,液面上升的高度就小
(3)师:认真观察比较火柴盒、文具盒、鞋盒哪个占得空间大
生:鞋盒
师:在我们身边,还有比鞋盒所占空间更大的物体吗?
生:书包、音响、凳子、课桌、讲台桌、教室、一排教室、教学楼、地球、宇宙…….
(4)通过比较,我们发现物体不仅占有一定的空间,而且它们所占的空间有大小之分,我们就把物体所占空间的大小叫做物体的体积。(板书)
师:物体所占的空间大,那它的体积就大,物体所占的空间小,那它的体积就小。
师:选择一个你喜欢的物体,用上“体积”这个词描述一下它的大小。(同桌pk)
生:鞋盒的体积大,文具盒的体积小
讲台桌的体积大,课桌的.体积小
教学楼的体积大,教室的体积小
师:说的真好
老师这也有两个物体组合,想让你们比比它们的体积大小,请同学闭上眼睛听老师描述两个物体的样子,听完后迅速作出判断。
师:第一个物体是由4个小正方体搭成的,第二个物体是由6个小正方体搭成的
生1:6个的大,因为用的个数多
生2:不确定,因为它们所用的小正方体的大小不确定。
师:到底哪个大呢?看大屏幕(课件展示)
师:6个的一定大吗?为什么用的个数多,体积却不大呢?
生1:因为它用的小正方体小,而它用的小正方体大
生2:因为它们所用的小正方体不一样大
师:如果用数个数的方法比较它们的体积,需要有什么前提条件?
生1:所用每个小正方体的体积一样大
生2:选同样大小的小正方体去搭
师:每个小正方体的体积一样大,也就是要建立一个统一的标准
计量长度的标准是长度单位
计量面积的标准是面积单位
计量体积的标准就是体积单位
看课件演示,像这样选同样大小的小正方体作为统一的体积单位,就可以更准确的计量出物体体积的大小
师:常见的体积单位有立方厘米、立方分米、立方米(板书)
每种体积单位是怎样规定的?我们先一起回顾面积单位的由来。
课件演示
师:面积单位是用什么图形来表示的?(正方形),体积单位会用什么来得到呢?(正方体)
一、师:拿出最小的那个小正方体,量一量它的棱长(1厘米)
A、我们规定,棱长是1厘米的小正方体的体积是1立方厘米(课件)
B、用手捏一捏,感觉它的大小,生活中见过这么小的物体吗?哪些物体的体积接近1立方厘米?
生:骰子、电视按钮、电脑键盘、花生米、一节小手指……
C、师:橡皮的体积大约是几立方厘米?估计一下,你是怎么估计的(找一学生到前面展示方法)
师:生活中还有哪些物体的体积可以用1立方厘米的小正方体去测量
生:粉笔、钢笔、火柴盒、文具盒……
D、用你手中的教具创作一个以立方厘米作单位的物体组合,并说出它的体积,小组内互相比一比,看谁的体积大
E、请同学用12个小正方体任摆一个物体,你知道它的体积是多大呢?(举起来)
师:为什么同学拼的形状不同,体积却一样大呢?
生:因为它们都用了体积是1立方厘米的小正方体12个
二、现在老师想用这个1立方厘米的小正方体测量鞋盒的体积,合适吗?
生:不合适,太小了
师:拿出那个较大的正方体,量一量它的棱长
A、我们规定棱长是1分米的正方体体积是1立方分米(课件)
B、用手捧住它,感受它的大小生活中哪些物体的体积大约是1立方分米
生:粉笔盒、小音箱、茶叶筒、双拳握在一起……
C、鞋盒的体积大约有几立方分米?
师:你是怎么测量的?生活中还有哪些物体的体积可以用立方分米作单位来测量?
生:电视机、微波炉、投影仪、电闸盒、我家的整理箱
D:小组合作,创作一个以立方分米作单位的物体组合
生:我用了几个小正方体,体积是多少
D、师:我想摆一个大正方体,至少用几个这样的小正方体,体积是多少?试试看
三、用刚才认识的两个体积单位去测量教室的体积,行吗?
师:比立方分米更大的体积单位是立方米,谁能仿照前面的规定说出1立方米有多大
生:棱长是1米的正方体的体积是1立方分米(课件)
师:双臂微微打开长约1米
A、4人合作,围一围,创作一个1立方米的空间
B、好,刚才同学们亲身体验了1立方米
师:老师这还有3根一米长的木条,在墙角搭一个1立方米的空间,看看1立方米的空间可以容纳多少人,谁想来试试
师:1立方米的空间可以容纳9个人
C、1立方米的空间可真大,生活中见过这么大体积的物体吗?教室中有没有?除了讲台桌,还有哪些物体的体积约是1立方米(生答完展示课件)
D、不要小看这1立方米
1立方米的水可以倒满500个暖水瓶
1立方米的木材可以做50张课桌的桌面或300个桌腿
师:生活中哪些物体的体积可以用立方米作单位来测量
总结:同学们,刚才我们认识了3种体积单位,为了方便,每种体积单位可以用字母这样表示(板书)
谁能用一句话概括对每种体积单位的理解呢?
生:边演示边叙述,立方厘米很小(只能用手指捏住)、立方分米较大(要用手捧住捧)、立方米最大(要用手臂抱住)
师:同学们,学到这,你能告诉老师对体的大小你是怎么认识的
生:体的大小就是物体所占空间的大小,也就是物体的体积
师:而且计量体积的大小要有统一的标准,即体积单位,这就是我们今天所学的课题(板书:体积和体积单位)
师:以后再去计量一个物体的体积时,首先根据这个物体所占空间的大小选择合适的体积单位,再看这个物体包含有多少个这样的体积单位,从而得到它体积的大小。
《体积单位》教学设计10
设计说明:
《体积单位》是在学生认识了体积的含义以及体积守恒性的基础上进行教学的,在教学设计中,我主要进行了以下思考:
首先,教材对体积单位的设计,是将常用的三个体积单位——立方厘米、立方分米和立方米分开进行教学的。我觉得这样设计不利于学生从整体上建立对三个常用体积单位的实际大小的表象认识,所以在设计教学时,我将教材内容进行了处理和整合。通过提供充分的直观素材,利用观察、触摸、举例等各种活动,将三个体积单位结合起来,对比教学。让学生积累感知,建立1立方厘米、1立方分米和1立方米的实际大小的空间概念,使学生在脑海里能够真正形成表象,也为后面的学习做好铺垫。然后再回到教材中,重点学习立方厘米,深化对体积单位的认识,进一步理解“物体含有多少个1立方厘米,体积就是多少立方厘米”。
其次,在新知教学中,我采用了分层推进的教学策略。首先出示大小不同的积木块,通过比较体积的大小,逐步形成矛盾冲突,得出计量物体的体积,必须要有一个统一的标准,从而引出了体积单位。然后分层对三个常用的体积单位进行教学。在学习立方厘米时,老师先出示1立方厘米的正方体学具,通过让学生摸一摸、量一量、比一比、举个例子等学习活动,认识1立方厘米,建立1立方厘米的表象。然后让学生利用认识1立方厘米的方法在小组内自主活动,来认识1立方分米,最后认识1立方米。老师最后再对这三个体积单位进行对比总结,让学生思考这三个体积单位分别是用来计量怎样的物体的体积的,从而从整体上加以区别。
再者,练习设计中,我设计了一道看图填合适的单位的题目,目的是让学生对学过的三个常用的体积单位进行巩固,加深理解。另外,在处理课本第30页练习第4题时,教师引导学生得出下面的数方块的方法:分层数,用第一行的块数乘行数,得出第一层的块数,再乘层数,从而得出整个图形的块数。这种方法实际上就是长乘宽乘高,为后面学习长方体体积的计算作一个铺垫。
教学目标:
1、认识常用的体积单位:立方厘米、立方分米、立方米,初步建立1立方厘米、1立方分米和1立方米的实际大小的表象。
2、知道物体含有多少个1立方厘米,体积就是多少立方厘米。
3、引导学生经历观察、类比、举例、操作等学习活动,积累数学活动的经验。
4、通过数学训练,增强空间观念,发展空间想象力。
教学重点:
初步建立1立方厘米、1立方分米、1立方米的体积观念。
教学难点:
帮助学生建立体积是1立方厘米、1立方分米、1立方米的大小的表象,能正确应用体积单位估算常见物体的体积。
教学准备:多媒体课件、体积为1立方厘米和1立方分米的正方体学具以及体积为1立方米的正方体教具。
教学过程:
一、复习引入
1、师:上节课我们一起认识了物体的体积,那么什么叫做物体的体积呢?
(物体所占空间的大小叫做物体的体积。)
2、师:我们还知道,物体不仅有体积,而且不同的物体,体积的大小可能是不一样的。今天我们继续来研究体积的有关知识。
二、分层学习
1、感悟统一体积单位的必要性。
(1)出示大小差别较明显的教具,让学生比较体积的大小。
(学生可直接用眼睛分辨出体积的大小)
(2)出示大小差别不明显的长方体和正方体学具,比较体积的大小。
师:我们还能用眼睛分辨出这两个物体的大小吗?该怎样比较呢?
(师引导学生得出:可以将两个物体分割成若干个大小相同的小正方体,再比较小正方体的个数,从而得出物体体积的大小。)
(3)出示两块积木,一块是由8个小正方体拼成的,另一块是由9个小正方体拼成的,两块积木所含小正方体的大小不同。
师:你觉得这两块积木哪一块的体积大一点?
(学生自由发表意见)
师:为什么现在不能确定两块积木的大小呢?
生:因为每块积木所含有的小正方体的块数不同,每块小正方体的大小也不同,不好比较。
师:也就是说需要有一个统一的标准!就像计量长度有长度单位,计量面积有面积单位,计量体积就需要有体积单位。(板书:体积单位)
2、认识常用的体积单位。
师:常用的长度单位和面积单位分别有哪些?
师:想知道常用的体积单位有哪几个吗?
分别是:立方厘米、立方分米、立方米。(板书)
师:我们知道长度单位用线段来表示,面积单位用正方形来表示,你们猜想一下,体积单位应该用什么图形来表示呢?
生:用正方体表示。
(1)认识1立方厘米
①出示棱长1厘米的正方体,告诉学生这个正方体的体积就是1立方厘米,然后让学生摸一摸,再测量验证:它的'棱长是多少?
②得出结论:棱长1厘米的正方体,体积是1立方厘米,介绍字母表示法。
③引导学生比划感受1立方厘米的大小。
④举例:找找看,我们身边哪些物体的体积接近1立方厘米?
反馈:骰子、一节手指头等的体积接近1立方厘米。
⑤回顾小结:刚才我们通过摸一摸、量一量、举个例子等方法认识了1立方厘米,
我们能不能用同样的方法来认识1立方分米?
小组活动:认识1立方分米。
(2)认识1立方分米
①出示棱长1分米的正方体,这个正方体的体积就是1立方分米,学生说说它的概念。
②引导学生比划感受1立方分米的大小。
③我们身边哪些物体的体积接近1立方分米?
学生举例。
(3)认识1立方米
①提问:想一想,怎样的正方体体积是1立方米?
生:棱长为1米的正方体,体积就是1立方米。
师:想象一下,棱长是1米的正方体有多大呢?
②观察1立方米正方体的实物,派学生代表钻一钻,感受1立方米的大小。
总结:
师:刚才我们一起认识了三个不同的体积单位,同学们,这三个单位通常是用来计量怎样的物体的体积的?
三、基本练习
1、看图填合适的单位名称。
一块巧克力的体积约是8( )
一台电脑显示器的体积约是35( )
运货集装箱的体积约是70( )
一本新华字典的体积约是0.5( )
三峡工程第二次截流中抛投的一块大石料的体积约是3( )
2、师:刚才我们认识并学习了这三个不同的体积单位,那么怎样用这些体积单位来计量物体的体积呢?
出示2个1立方厘米的正方体,用它搭出一个立体图形。这个图形含有两个体积单位,它的体积就是2立方厘米,也可记作2cm3。
如果用3个1立方厘米的正方体搭立体图形,它的体积又是多少呢?
要是用4个、5个、……呢?体积又是多少,可以得出什么结论?
结论:物体含有多少个1立方厘米,体积就是多少立方厘米。(板书)
3、完成课本30页练习3和4
四、拓展练习(机动)
(可让学生用正方体模型摆一摆)
五、课堂总结(略)
附板书设计
体积单位
立方厘米(cm3):棱长1cm的正方体的体积是1cm3
立方分米(dm3):棱长1dm的正方体的体积是1dm3
立 方 米 (m3):棱长1m的正方体的体积是1m3
物体含有多少个1立方厘米,体积就是多少立方厘米。
教后反思:
在本节课的教学中,我注重从小学生空间观念形成的心理特点方面入手,做了以下尝试。
一、充分利用直观教学,帮助学生形成空间观念。
学生空间观念的形成具有很强的直观依赖性,比较容易感知的是图形的外显性属性特征。所以在教学中,我充分利用直观教具,调动学生的感官,通过触摸、测量、类比等学习活动,帮助学生认识并建立1立方厘米、1立方分米、1立方米的实际大小的体积观念。学生真正是在亲身经历和体验下认识体积单位,从而在头脑中形成表象,积累经验,有助于以后计算和估算物体的体积。另外,在教学中我还引导学生将三个体积单位结合起来,进行对比,并列举生活中的实例,激发学生的欲望,让学生在活动中理解应用数学知识解决实际的问题。
二、注重学习方法的迁移。
在认识三个常用的体积单位的新知教学中,我采用了分层推进的教学策略。老师先引导学生通过摸一摸、量一量、比一比、举个例子等学习活动,认识并学习1立方厘米。然后将主动权交给学生,让学生利用认识1立方厘米的方法在小组内自主活动,认识1立方分米,最后认识1立方米。这样不仅培养了学生小组合作学习的能力,同时也提高了其参与尝试的兴趣。
三、分层中及时匹配练习,使所学知识得到有效地巩固。
学生学完常用的三个体积单位以后,我设计了一道看图填合适的单位的练习,目的是让学生对所学的知识进行及时的巩固,加深理解。然后进入下一个环节,重点认识1立方厘米,深化对体积单位的认识。在学生理解了“物体含有多少个1立方厘米,体积就是多少立方厘米”以后,又及时跟进了一组练习,再一次对所学的知识进行有效的巩固。这样层层递进,每个层次都匹配相应的练习的做法,有利于学生及时加深对所学知识的理解,了解知识间的内在联系。另外,在处理课本练习第4题时,老师引导学生得出分层数方块的方法,为后面学习长方体的体积计算作了一个铺垫,注重了知识的前呼后应。
当然,本节课还存在很多方面的不足,如教师的语言,课堂节奏的调整,关注学生的情感等方面还做得不够。千里之行,始于足下,我会本着积极探索的精神,在教育教学这片热土上继续奉献自己的光和热。
《体积单位》教学设计11
教材分析:本节课是在学生已经掌握了长方体和正方体体积计算方法的基础上进行教学的,主要是让学生认识体积、容积单位的进率。教材以里放立方分米和立方厘米为例,引导学生通过实际操作,结合实际模型认识和理解立方分米和立方厘米之间的进率。通过图示引导学生通过计算正方体的体积推出1立方分米=1000立方厘米,再仿照这种方法自己推出1立方米=1000立方分米。通过教学体积单位名数的变换,和在解答实际问题的过程中的运用,发展学生的应用意识。
教学目标:
1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、在观察、操作中,发展空间观念。
3、引导学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点:观察、操作中会进行体积、容积单位之间的换算。
教学难点:体积、容积单位之间的换算
教法和学法:教法和学法是一个统一的整体,教师的“教”应适应学生的“学”,而学生的学又离不开教师的指导。教学方法应当渗透在教学过程之中,要符合知识的科学性,还要适合学生的认识规律,才能使学生理解并掌握知识。
本节课教学从注重培养学生的创新意识出发,在复习中感知,在观察中大胆猜想,在课件的演示和计算活动进行验证,让学生经历了从旧知到新知,从感知到理解的过程。使学生在掌握相邻两个体积单位间的进率的同时,较好的建立了立方厘米、立方分米、立方米的空间观念,为学生运用知识解决问题奠定了基础
1、要有充分的直观操作。
学生思维的'特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。
2、启发学生独立思考。
学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。
3、讲练结合。
4、充分运用知识的迁移规律,引导学生掌握新知识。教学准备:课件
教学过程:
一、复习导入
师:
1、常见的长度单位有哪些?相邻的两个长度单位间的进率是多少?
2、常见的长度面积单位有哪些?相邻的两个面积单位间的进率是多少?
3、我们学习的体积单位有哪些?
提问:你能猜出相邻体积单位间的进率是多少?引出课题。
二、自主探索验证猜测
1、你有办法证明你的猜想或推论吗?
(学生独立或小组讨论推导,自主探究相邻体积单位之间的进率,教师巡视,加以指导)
2、全班交流:谁再来说说,1立方分米=?立方厘米(估计三种说法)
①棱长1分米的正方体体积是1立方分米;棱长10厘米的正方体体积是1000立方厘米,而棱长1分米的正方体和棱长10厘米的正方体体积相等,所以1立方分米=1000立方厘米。
②在棱长1分米的正方体中摆棱长1厘米的正方体,一排能摆10个,能摆10排,摆10层,一共能摆10×10×10=1000个,所以1立方分米=1000立方厘米。
(电脑展示这种思考,然后请每个学生都把推导过程相互说一说。)
③1立方分米=1升,1立方厘米=1毫升,而1升=1000毫升,所以1立方分米=1000立方厘米。
③口头回答:3立方分米=?立方厘米,5000立方厘米=?立方分米
4、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
①学生独立思考,并组织语言准备交流,然后请1-2名学生说说推导过程。(板书:1立方米=1000立方分米)
②口头回答:
2立方米=?立方分米。
9000立方分米=?立方米
5、补全表格,继续填写:
单位名称
相邻两个单位间的进率
长度
面积
体积
①总结体积单位以及它们之间的进率
②说说它们分别是计量物体的什么的?
③怎么来记忆它们相邻单位之间的进率?
三、巩固深化
1、辨别
有一个小朋友计算出一只微波炉的体积是63立方分米,他想用立方厘米做单位,他是这样换算的:63立方分米=0.063立方厘米
他换算得对吗?
(引导学生认识:①单位换算的方法;②联系实际分析换算的合理性,促进数感的发展。)
2、出示书第30页的“练一练”和第31页的第3题。
学生先独立完成。交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
3、出示练习七的第2题。
学生先独立完成。交流:想提醒自己注意什么?
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第4题。
学生独立完成后集体交流,进一步明确1升=立方分米,1毫升=1立方厘米
四、课堂总结。
通过这节课的学习,你有什么收获?
【板书设计】
体积单位的换算1分米3 = 1000厘米3 1升= 1000毫升1米3 = 1000分米3 1m3 = 1000 dm3
【教学反思】
教学中紧扣本节课的教学内容,创设与本节的学习内容密切相关的教学情境。要把把情境的创设、旧知的复习和新知的引入有机地融合在一起,显得自然朴实,真实有效。
掌握体积单位间的进率是本节课的重点,理解进率和建立相应的空间观念是教学的难点。教学站在新的课程标准的高度,从注重培养学生的创新意识出发,在复习中感知,在观察中大胆猜想,在课件的演示和计算活动进行验证,让学生经历了从旧知到新知,从感知到理解的过程。同时,把课件的演示、学具的观察与摆一摆,数一数紧密的结合,学生在掌握相邻两个体积单位间的进率的同时,较好的建立了立方厘米、立方分米、立方米的空间观念,为学生运用知识解决奠定了基础。
本节课注重要从学生已有的数学知识为基础,在旧知识的复习中趣味引入,在知识和情感态度两个方面,为新的认知结构的建构奠定了基础;在新知识的学习中,学生在感知中猜想,在观察与计算中验证,在独立思考和小组合作的过程中完成构建,学生学得积极、主动。同时,对课件的使用简洁明了,体现了常态下的小学数学课堂教学。
《体积单位》教学设计12
教学目标:
1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、在观察、操作中,发展空间观念。
3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点、难点:
观察、操作中会进行体积、容积单位之间的换算。教学准备:
体积是1cm的小正方体,容积是1dm的小正方体,多媒体课件按照课前准备要求摆放好学习用品,然后坐端正,准备上课。请学生把正方体放在小组桌子中间、其它学习用品放在左上角教学过程:
一、复习回顾,导入新课
师:上课,同学们,马老师了解到咱们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。
师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)师:(读题提问)常用的体积单位有哪些?(生齐答)师:(继续提问)容器内的液体量一般使用哪些单位?
33(生齐答)师:还有补充吗?(生思考后①回答正确,师,表扬,思考真全面,重复说;②回答不出来,师提示:如果液体的量比较大,比如游泳池、蓄水池中的水?)
师:(读题,举例说明1m,1dm,1cm分别有多大)
生:举例说明,(每个举例两、三个)师:这个例子很恰当,你真聪明,直接拿了桌面上的物体
师:我们接着来看填一填的答案。师读题生:10cm、10dm。
师:也就是说,相邻长度单位间的进率是()生:10
师:接着来看,应该填多少生:100
师:相邻面积单位间的进率是()生:100
那么,在猜一猜中,你填的是多少?生:1000
师:确定吗?生:确定
师:没有猜不是1000的吗?生:没有
师:那它们间的进率是不是1000呢,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。到此大约6分钟
二、自主探究,获取新知师:同桌两人合作,一起观察、分析课前准备的正方体,怎样能够说明1立方分米=1000立方厘米,听明白要求了吗?开始吧(音乐播放,学生探索大约5分钟)
师:哪位同学来说说你们探索的结果?生举手师:进率是1000吗生:是
师:说说你的理由,生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,可以放入1000,所以1立方分米=1000立方厘米。
师:能不能说说可以怎样放?
生:一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,所以就有1000个,师:听明白了吗?
哪位同学再来说一说,还有同学不明白,谁再来说一遍,生复述
师:由于受时间和条件的限制,我们不能一个个摆,所以老师用课件演示一遍摆的过程,老师操作,大家一起来数一数。
师:进率是1000吗,生:是师:说说你的理由
生1:(师提示,拿着手中的正方体)棱长1分米的正方体,体积是1分米×1分米×1分米=1立方分米;棱长10厘米的正方体体积是10厘米×10厘米×10厘米=1000立方厘米。由于1分米等于10厘米,所以1立方分米和1000立方厘米只不过是单位不同,表示的正方体的大小是相同的。生2:1分米等于10厘米,所以这两个正方体是一样的,师,能不能说的完整一些,生3:……生4:……
师:你分析得真棒,听明白的举手,再请一位同学来复述一遍。(如果没有师逐步提示)这两个正方体的什么是一样的生:棱长是一样的,师:所以体积也是相等的,棱长1分米的正方体体积怎么计算生;1×1×1=1立方分米;
师:棱长10厘米的正方体,体积怎么计算生:10×10×10=1000立方厘米
而他们的体积又是相等的,所以1立方分米等于1000立方厘米。师:我们也可以通过计算分析的方法来研究它们之间的进率,明白了吗?师:还有别的方法来说明进率是1000吗?此过程5分钟
师:这是1立方厘米的正方体,这是容积是1立方分米的正方体,我们现在来摆一摆。
师生一起数:1、2、3……10
师:现在是1排共10个了,我们接着摆师生一起数:20、30、40……100
师:现在是一层一共100个了,我们接着摆师生一起数:200、300……1000
师:正好1000个,这样就验证了大家的猜想是正确的。师:马老师有一个问题,在前面的学习中我们学习了升和立方厘米的关系,毫升和立方厘米的关系,现在你知道升和毫升的关系吗?
生:1000,师:说说你的想法
生:1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升。
师:你的逻辑推理能力真厉害,大家同意吗?
师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000还有哪一个体积单位我们还没有研究呢?生:立方米
师:好的这一个问题就交给你自己来解决了,请你独立解决课堂学习卡中的第二项,独立探索
(学生独立探索)
老师看大部分同学都完成了,我们一起来回答吧,师读题,生填空
师:这样大家得出了立方米和立方分米之间的进率,太棒了下面我们来小结一下
也就是说相邻的体积单位间的进率都是1000,一定是相邻的体积单位,还有升和毫升的进率也是1000,下面请你根据所掌握的知识完成课堂学习卡的第三项,填表
生:汇报答案
师:这就是我们这节课要掌握的第一个知识,体积单位间的'进率,具备了这一知识,我们就可以进行体积单位间的换算,板书(的换算)。
三、巩固练习,应用新知请大家独立完成师读题,生汇报
生5000,师:怎样得到5000的生:5×1000生1350,师:怎样得到1350的,生:1.35×1000生1200或者1200000,师:到底是多少呢?生讨论得出1200000
生2.8,师:怎样得到2.8,生:2800÷1000生0.72,32.5师:怎样得到
师:能不能用自己的话总结一下单位换算到额规律生尝试总结,汇报
师:展示小结,建立认知结构
师:看来同学们掌握的真不错,还有没有不明白的?师:我们来解决一个生活中的实际问题先猜一猜,买哪种瓶装的比较划算?生:大瓶的,师:说说你猜测的依据
到底是不是呢?请你在练习本上来具体算一算,再进行比较生:列算式进行比较
师巡视,寻找不同方法的同学,到前面进行展示。师:哪位同学看明白了这种方法,点名来讲一讲生讲解、不能讲解的师逐步提示讲解。师:老师把以上几种方法中常用的两种总结如下,我们一起来看一看方法1:比较每毫升牛奶的价钱方法二比较每元钱可以买牛奶的量
四、课堂小结,回顾新知
通过今天的学习,你有哪些收获,谈一谈生:进率,体积单位的换算
师:有关今天的学习还有什么疑问吗?五,布置作业
老师这里有一个问题留给大家思考。
电视机包装箱的长是60米、60分米,还是60厘米?宽和高呢?箱子的体积是多少?
好今天这节课我们就学习到这里,下课!
《体积单位》教学设计13
教学目标:
1、结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。
2、在观察、操作中,发展空间观念。
3、学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。
教学重点、难点:
观察、操作中会进行体积、容积单位之间的换算。
教学准备:
体积是1立方厘米的小正方体,容积是1立方分米的小正方体,多媒体课件前置预习:
1、棱长为1分米的正方体容器里可以放()个体积为1立方厘米的小正方。
2、1m3=()dm3 1L=()立方分米,1ml=()立方厘米1L=()ml教学过程:
一、复习回顾,导入新课
师:我们班同学已经认识了体积单位(指着板书),研究了长方体、正方体体积的计算方法,今天马老师和大家一起接着探索与体积单位有关的知识。师:首先,我们一起复习一些学习过的知识。(幻灯片出示说一说)
师:(读题提问)常用的体积单位有哪些?(生齐答)
师:(继续提问)容器内的液体量一般使用哪些单位?师:(读题,举例说明1m,1dm,1cm分别有多大)
生:举例说明,(每个举例两、三个)
师:那它们间的进率是多少呢,猜一猜,你有哪些方法可以说明它们之间的进率是1000呢,首先请我们来探索立方分米与立方厘米之间的进率。
二、自主探究,获取新知
师:小组合作,一起观察、分析课前准备的正方体,棱长为1分米的正方体盒子中,可以放多少个体积为1立方厘米的.小正方体?想一想,说一说,填一填
生:这个小的正方体是1立方厘米的小正方体,这个大的是1立方分米的正方体,大的正方体一排摆10个,每层正好可以摆10排,也就是说一层可以摆100个,正好摆10层,刚好能装1000个,所以棱长为1分米的正方体盒子中,可以放1000个体积为1立方厘米的小正方体,所以1立方分米=1000立方厘米。
生:体积为1立方分米的正方体,棱长为1分米,也可以看成是棱长为10厘米的正方体,体积是10×10×10=1000立方厘米。所以1立方分米=1000立方厘米,它们只是单位不同,但是表示的正方体的大小是相同的。师:演示订正师:同学通过探索知道了立方分米和立方厘米的关系1立方分米=1000立方厘米,老师有一个问题,在前面的学习中我们学习了升和毫升,现在你知道升和毫升的关系吗?请大家说说1L=()立方分米,1ml=()立方厘米,1L=()ml?生:棱长为1分米的容器的容积为1升,这个容器所能容纳物体的体积就是1立方分米,所以1升=1立方分米。
生:棱长为1厘米的容器的容积为1毫升,这个容器所能容纳物体的体积就是1立方厘米,所以1毫升=1立方厘米。
生:因为1升=1立方分米,1毫升=1立方厘米,1立方分米=1000立方厘米,所以1生=1000毫升
师:你的逻辑推理能力真厉害,大家同意吗?
师:好的,那我们就得出了升和毫升这两个单位之间的进率也是1000,还有哪一个体积单位我们还没有研究呢?1立方米等于多少立方分米?你是怎样想的,生独立尝试方法同上
师:同学真棒,我们得出了1立方米=1000立方分米,请大家观察这个些体积单位,相邻的体积单位之间的进率是?、容积单位呢?师:请大家完成书本第44页的表格生汇报订正
师:同学都理解了吗?请大家思考一下1立方米=()立方厘米。与组员说说你的想法。生:因为1立方米=1000立方分米,1立方分米=1000立方厘米,所以1立方米=1000立方分米=(1000000)立方厘米
师:通过学习,我们知道了相邻的体积单位,容积单位之间的进率是1000,你们能用学习的知识完成下面的练习吗?
三、巩固练习,应用新知
书本第45页练一练第1、2、3、4、5题
四、全课总结
五、板书设计
体积单位的换算
1m3=1000dm3 1dm3=1000cm3
1m3=1000dm3=1000000cm3 1L=1dm3 1mL=1cm3
1L=1000mL
《体积单位》教学设计14
教学目标:
1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。
教学重点:
1、建立体积概念。
2、认识体积单位。
教学难点:
建立体积概念。
教学设计:
一、出示课题,学习目标
1、理解体积的意义,认识常用的.体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、知道计量一个物体的体积有多大,要看它包含多少个体积单位。
二、出示自学指导
认真看课本总结
1、体积的意义。
/2、体积单位:
三、学生看书,自学
四、效果检测
学生概括:物体所占空间的大小叫做物体的体积。(板书)
常用的体积单位有:立方米、立方分米、立方厘米。
练一练:选择恰当的单位:
(1)、橡皮的体积用(),火车的体积用(),书包的体积用()。(2)、练习:
①说一说:测量篮球场的大小用()单位。
测量学校旗杆的高度用()单位
测量一只木箱的体积要用()单位。
②、一个正方体的棱长是1(),表面积是(),体积是()。(你想怎样填?)
③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。()
五、总结:
这节课我们学习了体积的意义和体积单位。你有什么收获?
板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
《体积单位》教学设计15
《体积单位》是北师大版小学数学五年级下册第四单元第二课,在学习本课之前,学生已经学习了长方体和正方体的表面积与长方体和正方体的特点,学生在日常生活中对物体大小的感知能力,也为本课的学习打下了基础。同时,本课的学习也为以后学习体积的计算方法等知识做好了铺垫,也是学生发展空间观念的重要载体。
说教学目标。根据课程标准的要求和对教材内容的分析,制定如下教学目标:
1、认识体积、容积单位立方米、立方分米、立方厘米、升、毫升。
2、在操作交流中,感受立方米、立方分米、立方厘米、升、毫升的实际意义,发展空间观念。
说重难点。根据教学目标和学生的认知情况拟定的教学重点是:认识体积、容积单位。
本课的难点是:帮助学生建立体积是1立方厘米、1立方分米、1立方米的大小的表象, 能正确应用体积单位估算常见物体的体积。 说教法。根据新课标的要求,数学教学必须建立在学生认知水平和已有经验的基础上。由于学生空间想象力的水平有限,教学要更加注重丰富学生对知识的感知。本节课将采用演示与讲解相结合的教学方法,更加形象,深刻地指导学生对新知识的学习。
说教学准备,教具、学具。多媒体课件、体积为1立方厘米和1立方分米的正方体学具以及体积为1立方米的`正方体教具。
说教学过程。为了更好的达成教学目标,设计了如下的几个教学环节:
环节一、创设情境,导入新课
谈话导入:
1、我发现好多同学都长高了,有的都比老师高了,找个同学来和老师比比高低吧!测量身高时要用什么单位?常用的长度单位有哪些?
2、我们身高不一样,踩出的脚印大小也不一样吧?要测量脚印的大小需要用什么单位呢?常用的面积单位有哪些?
3、我们俩所占空间的大小也不一样吧,谁的体积更大些?
4、实物展示,这个长方体与正方体的体积,哪个更大些?你有什么办法比出大小来?
引出常用的体积单位,导入新课。板书课题:体积单位
环节二、合作学习,探究新知
此环节,我设计了如下几个活动,来达成教学目标。
(活动一)认识体积单位。(小组合作学习,全班反馈交流) 首先,认识立方厘米。
(1)猜一猜1立方厘米有多大?用手比划。
(2)拿出1立方厘米的正方体,看一看,闭上眼睛摸一摸,想象一下1立方厘米有多大?
(3)生活中那些物体的大小比较接近1立方厘米?
(4)出示一块橡皮,估一估这个橡皮有多少立方厘米?板书立方厘米。
再认识认识立方分米。
(1)猜一猜1立方分米有多大?用手比划。
(2)拿出1立方分米的正方体,看一看,闭上眼睛摸一摸,想象一下1立方分米有多大?
(3)生活中那些物体的大小比较接近1立方分米?
(4)出示一个苹果,估一估这个苹果有多少立方厘米?板书立方分米。
(5)想一想,多少个棱长是1厘米的小正方体可以拼成一个棱长是1分米的正方体?
第三认识立方米。
(1)猜一猜1立方米有多大?用手比划。
(2)师生在墙角搭出一个1立方米的空间,学生看看大小,让学生进去,看里面能站多少个小学生,让学生实际感知1立方米的大小。板书立方米。
(3)让学生交流这3个单位的字母表示法。板书3个单位的字
母表示法。
(活动二)认识容积单位。(直观演示,感知容积单位的大小。)
1、老师拿出一个1立方分米的正方体塑料盒,把它装满水,倒进一个大量杯里,看看量杯的刻度,认识容积单位升。板书容积单位。
2、老师拿出一个1立方厘米的正方体塑料盒,把它装满水,倒出来看看,这就是1毫升,太少了,用针管吸10毫升给大家看看。
3、学生拿出自带的饮料瓶,看看上面的标签,写的多少毫升。
4、请学生拿出500毫升的饮料瓶,装满水,倒入1升的正方体塑料盒中,看几次能倒满?初步感知毫升和升之间的进率。板书容积单位之间的数量关系。
以上教学过程,1、通过猜一猜、看一看、摸一摸、估一估等活动,让学生感受1立方厘米、1立方分米的大小,并建立起1立方厘米、1立方分米的空间观念。
2、通过自己的亲身体验,学生真切感受到1立方米所占空间的大小。
3、通过直观演示和动手操作,加深学生对容积单位定量大小的感知。
环节三:反馈练习,应用新知
在这个环节里,要求学生完成课本45页,练一练的第1、2、3题,个人独立完成, 组内订正结果. 小组长依据检测结果给予个人评分。在此期间,我将深入学生当中,了解完成情况,发现问题。对于个别同学存在的题,将个别辅导;对于普遍存在的问题,将调整教学方法,使教学效果最优化,让每一个学生得到更好的发展。
环节四:总结反思,整理新知
要求学生对本节课的内容,进行回忆和总结,能够用自己的语言来概括总结。若有不完整或有歧义的地方,再予以补充。通过这节课的学习,你有什么收获?
环节五:当堂练习,巩固新知
要求学生在课堂独立完成,课本45页的第4题,完成实践活动的调查报告。
这是我的板书设计。
板书设计
体积单位
体积单位:立方厘米、立方分米、立方米
容积单位:升、毫升
1升=1立方分米 1毫升=1立方厘米
以上就是我今天的说课内容,请各位评委老师指正。
【《体积单位》教学设计】相关文章:
《体积和体积单位》教学设计06-24
体积单位的换算教学设计12-28
体积单位换算教学设计05-12
体积单位换算教学设计优秀11-20
体积单位间的进率教学设计04-14
体积的教学设计12-18
体积教学设计03-17
《体积与体积单位》说课稿11-08
《圆锥的体积》教学设计06-10
《圆锥的体积》教学设计03-07