《圆的面积》教学设计(15篇)
作为一无名无私奉献的教育工作者,就不得不需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编精心整理的《圆的面积》教学设计,希望对大家有所帮助。
《圆的面积》教学设计1
教学内容分析:
圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。
学生情况分析:
小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。
教学目标:
1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。
2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。
3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。
教学重难点:
重点:圆的面积计算公式的推导和应用。
难点:圆的面积推导过程中,极限思想(化曲为直)的'理解。
教学准备:
教具:多媒体课件、面积转化教具。
学具:书、计算器、16等份教具、作业纸。
教学过程:
一、创设情境、揭示课题
1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?
(复习圆的相关特征)
师:那马最多能吃多大面积的草呢?
师:圆所围成的平面的大小就叫做圆的面积。
师:今天我们继续来研究圆的面积。(揭示课题)
2、师:你想研究它的哪些问题呢?(引导学生提出疑问)
【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】
二、猜想验证、初步感知
1、实验验证
(1)师:猜一猜,圆的面积可能会和它的什么有关系?
师:你觉得圆的面积大约是正方形的几倍?
(2)师:对我们的估计需要进行?
生:验证。
师:用什么方法验证呢?
师:下面请大家先数数圆的面积是多少。
师:数起来感觉怎么样?有没有更简洁一点的方法?
(引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)
(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)
圆的半径
(cm)
圆的面积
(cm2)
圆的面积
(cm2)
正方形的面积
(cm2)
圆的面积大约是正方形面积的几倍
(精确到十分位)
(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)
(学生完成后交流汇报。)
师:仔细观察表中的数据,你有什么发现?
生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。
3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?
生:圆的面积是它半径平方的3倍多一些。
小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。
【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】
三、实验操作、推导公式
1、感受转化,渗透方法
(课件再次出示马吃草图)
师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?
(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)
2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?
(学生回忆后汇报,教师演示,激活转化思路)
3、第一轮探究——明确思路,体会转化
师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?
生:剪圆。
师:怎么剪呢?沿着什么剪?
生:沿着直径或半径剪开。
(分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)
4、第二轮探究——明确方法,体验极限
师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?
生:想把圆形转化成平行四边形。
师:那还能更像吗?
生:可以将圆片平均分成16份。
(引导学生把16、32等份的圆拼成近似的长方形,上台展示)
师:从哪儿可以看出这两幅图更接平行四边形了?
生:边更直了。
师:是什么方法使得边越来越直了?
生:平均分的份数越来越多。
(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)
师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。
【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】
(2)师:我们把圆转化成了长方形,什么变了,什么没变?
生:形状变了,面积大小没有变。
师:这样就把圆的面积转化成了?
生:长方形的面积。
师:要求圆的面积,只要求出?
生:长方形的面积。
5、第3轮探究——深化思维,推导公式
师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。
(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)
师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)
(通过长方形面积计算方法,引出圆的面积计算方法)
师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?
生:π倍。
师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。
生:半径。
5、做“练一练”
完成作业纸第3题,交流反馈。
6、(课件再次出示牛吃草图)
师:这匹马最多能吃多大面积的草,现在会求了吗?
【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】
四、解决问题、拓展应用
1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(课件出示例9)
分析题意后学生独立完成书本第105页例9。
(组织交流,评价反馈)
2、完成作业纸第4题
师:接着看,默读题目,完成作业纸第3题。
(学生独立完成,交流反馈)
五、全课小结、回顾反思
师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?
师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!
【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】
板书设计:
圆的面积
转化
新的图形学过的图形
演示图
长方形的面积=长×宽
圆的面积=圆周长的一半 × 半径
S=πr×r
=πr2
(1)3.14×22(2)8÷2=4(cm)
=3.14×43.14×42
=12.56(cm2)=3.14×16
=50.24(cm2)
《圆的面积》教学设计2
教学目标:
知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
能力目标:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,感受极限思想。
教学重点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的问题。
教学难点:能运用圆的面积公式计算圆的面积,并能运用圆面积知识解决简单实际的`问题。
教学过程:
一、创设情境,提出问题。
1.(出示P16中草坪喷水插图)请同学们观察这幅插图,说说从图中你能发现数学知识吗?
2. 这个圆形的面积指的是哪部分呢?
3. 今天这节课我们就来学习圆的面积。(板书:圆的面积)
二、探究思考,解决问题。
1.请大家估计半径为5米的圆面积大约是多大?
2.用数方格的方法求圆面积大小
①出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
3.在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。
三、探索规律
1.大家还记得我们以前学习的平行四边形、三角形、梯形面积公式是怎么推导来的吗?
2.那么圆形的面积可由什么图形面积得来呢?
3.拿出剪好的图形拼一拼,能成为一个什么图形?拼成的图形与原来的圆形有什么关系?
4.同学们操作,教师巡视.
5..大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形?
6.你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。
①因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
②因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
7用字母怎么表示圆面积公式呢?
四、应用圆面积公式
1.现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。
2.第18页第1题
学生独立解答,集体订正的时候要求学生说出每一步计算过程和依据。
3. 第18页第2题
让学生理解题意后,鼓励学生在头脑中想象,猜一猜结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。
板书设计:
圆的面积
平行四边形面积=底×高,
圆形面积公式=圆周长的1/2×半径
圆形面积公式=圆周率圆×半径2
《圆的面积》教学设计3
设计说明
本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:
1.注重联系生活实际,开展探究性的数学活动。
学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。
2.在教学中渗透数学思想,完成新知构建。
在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。
课前准备
教师准备 PPT课件 圆的面积演示教具 大小不同的两张圆形纸片
学生准备 剪刀 小正方形透明塑料片 圆形学具
教学过程
⊙复习铺垫,导入新课
1.回忆圆的周长的计算方法。
(1)已知直径怎样求圆的周长?
(2)已知半径怎样求半圆的周长?
2.建立圆的面积的概念。
(1)感知圆的面积的大小。
师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?
师明确:圆的面积有大有小。
师:谁能说一说什么叫做圆的面积呢?
师指出:圆所占平面的大小叫做圆的面积。
(2)区别圆的面积和周长。
指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?
学生操作后,师生共同明确:圆的周长是指围成圆一周的封闭曲线的长;圆的面积是指圆所占平面的大小。
设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。
⊙动手操作,探究新知
1.通过度量,猜想圆的面积的大小。
用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。
师:由此看出,要求圆的精确面积是无法通过度量得出的。
2.回忆多边形面积公式的推导过程。
想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?
(课件演示平行四边形的面积推导过程)
过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?
3.动手操作。
(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。
课件演示剪拼的过程:
(2)讨论:
①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)
②圆和近似的.长方形有什么关系?(形状变了,但面积相等)
③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)
④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?
(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)
(3)观察、汇报拼成的长方形与圆的关系。
①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)
圆的半径=长方形的宽
圆的周长的一半=长方形的长
②拼成的长方形的面积与圆的面积有什么关系?
(引导学生理解:形状不同,面积相等)
(4)推导圆的面积计算公式。(引导学生结合图形理解)
因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r。
因为C=2πr,所以S圆=πr×r,S圆=πr2。
《圆的面积》教学设计4
一、教学目标
1、知识与技能
(1)知道圆的面积公式推导过程;
(2)会用圆的面积公式计算圆的面积;
2、过程与方法
经历动手操作讨论等探索圆的面积公式的过程;
3、情感态度与价值观
积极参加数学活动,体验圆的面积公式推导的探索性和挑战性,感受公式的确定性和转化的数
学思想。
二、教学重点:
圆的面积的计算
三、教学难点:
推导圆的公式的过程;
教具准备:多媒体课件、圆片、胶水、剪刀
四、教学过程:
(一)、创设情境,导入新知
1、同学们喜欢看动画片吗?今天老师给你们带来一段动画片。(出示课件)
2、师:我们要求小朋友的活动场地有多大,就是求圆的什么? (圆的面积)
3、拿出事先准备好的圆形学具,摸一摸,指一指,感受圆的'周长和面积。
4、设疑:那么圆的面积怎样求呢?
5、教师让学生说出以前学过的平行四边行图形的面积公式是怎么的来的?然后复习演示平行四边行的公式推导过程。
6、要求圆的面积,怎样把圆形转化成以前学过的图形呢?
(1)、设疑导入,激起学生学习的兴趣.
(2 )、复习渗透转化的思想,为推导圆的面积埋下伏笔.
(二 )合作探究
把圆形转化成以前学过的图形探究圆的面积公式
师:同学们开动脑筋,小组合作看能把圆转化成什么图形?
(1) 学生动手操作;
(2) 交流演示各组拼出的图形。
(3)教师用课件演示。
教师用课件演示长方形的长与宽和圆的周长与半径的关系.得出圆的面积公式S=
问: 那么要求圆的面积必须知道什么条件?
(三)解决问题
(一)、已知圆的半径,求圆的面积
例1、一个圆形花坛的半径是3m,它的面积是多少平方米?
(二)、已知圆的直径,求圆的面积
例2、圆形花坛的直径的20 m,它的面积是多少平方米?
(三)、已知圆的周长,求圆的面积
例3、一个圆形储水池的周长是25.12 m,它的占地面积是多少平方米?
四 巩固练习
1、判断对错:
(1)直径相等的两个圆,面积不一定相等。。 ( )
(2)两个圆的周长相等,面积也一定相等。 ( )
(3)圆的半径越大,圆所占的面积也越大。 ( )
2、根据下面所给的条件,求圆的面积。
(1)半径3分米
(2)直径20厘米
五、知识拓展
在一个边长为8厘米的正方形里画一个最大的圆,这个圆的面积是多少平方厘米?
六、总结:学生谈收获
反思:本节课较好地完成了教学目标,学生学习积极性高,课堂气氛活跃,学习效果好。学生亲身经历提出问题,动手实践,分析验证,通过把圆形转化成以前学过的图形的活动,激发学生学习数学探究新知的兴趣,让学生动手操作,动脑想象,动口说理等活动,用多种感官感知拼成图形与圆形的关系,运用推理得出圆的面积公式,让学生亲身经历知识形成和发展的过程,对知识进行再创造,体验了学习新知的喜悦。其次,通过利用面积公式解决数学中的实际问题,培养学生应用数学的意识和运用所学知识解决实际问题的能力。
《圆的面积》教学设计5
一、激趣导入
1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。
2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积
3、看到这个课题,你想知道些什么?
(帮助学生明确这节课的学习目标:
(1)了解什么是圆的面积;
(2)了解与哪些因素有关;
(3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。)
二、实践导学
(一)认识圆的面积
1、什么叫圆的`面积。
2、小组讨论
3、圆的大小主要与哪些因素有关?
((1)半径;(2)直径;(3)周长。)
(二)回忆平行四边形面积公式推导过程
1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)
2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?
3、小组讨论
(三)操作探究
1、转化圆形推导公式
(1)、让学生拿出卡纸
(1),观察卡纸
(1)上的圆被等分成多少分,圆被转化成什么图形?
(2)、让学生拿出卡纸
(2),观察卡纸
(2)上的圆被等分成多少分,圆又被转化成什么图形?
(3)、教师课件展示圆被平均分成16等份后转化的图形。
(4)、观察比较,你有什么发现?
2、引导学生观察比较,推导圆面积计算公式。
⑴、将圆通过剪拼,可以转化成已经学过的什么图形?
⑵、新的图形与原来的圆有什么联系?
⑶、试推导圆的面积公式。(课件展示)
长方形的面积=长×宽
圆的面积=c÷2×r=2πr÷2×r=πr2
s=πr2
三、练习巩固
1、运用公式学习例
学生试做,说根据,总结强调。
2、完成基本练习(做一做)
四、拓展提高
1、解决“小羊吃草”问题
《圆的面积》教学设计6
教学目标:
1、知识目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、能力目标:培养学生的分析、观察和概括能力,发展学生的空间观念。
3、德育目标:激发学生参与整个课堂教学活动的学习兴趣,渗透转化的数学思想和极限思想。
教学重难点:
圆面积公式的推导。
教学关键:
弄清圆与转化后的近似图形之间的关系。
教具:
多媒体计算机。
学具:
每小组(4人一组)8等份、16等份和32等份的(硬纸)圆形、剪刀、刻度尺、一张圆形纸片。
教学过程:
一、复习旧知、设疑导入
同学们,有一首歌中唱到:结识新朋友,不忘老朋友。新知识就好比我们的新朋友,旧知识就象我们的老朋友,在我们学习新知识之前,先去看看我们的老朋友吧!
微机显示一个圆,再把圆涂成红色。提问:这是什么图形?如果圆的半径用r表示,周长怎么表示?(2πr)周长的一半怎么表示?(πr)圆所占平面的大小叫什么?(圆的面积)出示课题。怎样计算圆的面积呢?引入课题。
二、动手操作、探索新知
1、通过度量,猜想圆面积的大小。
用边长等于半径的小正方形,直接度量圆面积(如图),观察后得出圆面积比4个小正方形面积(4r2)小,好象又比面积(3r2)大一些。
初步猜想:圆的面积相当于r2的3倍多一些。
3个小正方形由此看出,要求圆的精确面积通过度量是无法得出的。
2、启发学生回想平行四边形、三角形、梯形面积计算公式的推导过程,微机演示。问:你有什么启示吗?(先转化成学过的图形,如长方形、三角形、梯形,再推导)我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形,今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
3、学生小组合作。
(1)学生分别把8等份、16等份和32等份的圆形剪开,拼成两个近似的长方形。(微机显示)提问:
①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段。)
②圆和近似的长方形有什么关系?(形状变了,但面积相等)
③拼成的这三个图形有什么区别?(32等份拼成的图形更接近于长方形)如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(会更接近长方形)也就是说:圆等分的份数越多,拼成的图形越接近于长方形。
④近似长方形的长相当于圆的哪一部分?怎样用字母表示?(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)
⑤你能推导出圆面积计算公式吗?
(2)把圆16等份分割后可拼插成近似的等腰三角形。三角形的底相当于圆周长的多少?(1/4),高相当于圆半径的多少(4r),所以S=1/2·2πr/4r=πr2(见图二)。
(3)把圆16等份分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的多少?(πr),高等于圆半径的多少?(2r),所以S=1/2·πr·2r=πr2(见图三)。
4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的`面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。
三、看书质疑、自学例3,注意书写格式和运算顺序
四、运用新知,解决问题
1、一个圆的半径是5厘米,它的面积是多少平方厘米?
2、看图计算圆的面积。
3、街心花坛中花坛的周长是18、84米,花坛的面积是多少平方米?
4、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
五、全课小结
这节课你自己运用了什么方法,学到了哪些知识?
六、布置作业
七、板书设计
圆的面积
长方形的面积=长×宽圆的面积=周长的一半×半径
S=πr×r;S=πr2
《圆的面积》教学设计7
一、内容简介及设计理念
本节课是在学生充分认识了圆的各部分的特征和掌握了园的周长的计算的基础上进行教学的。通过对圆面积的研究,使学生初步掌握研究曲线图形的基本方法,为以后学习圆柱的表面积打下基础。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。
本节课设计了三次探究活动,第一次探究活动,通过折一折和剪拼把圆转化成已经学过的三角形和平行四边形,得到了解决问题的思路。第二次探究活动,围绕着“怎样使折出的图形更像三角形”、“使剪拼后的图形更像平行四边形”这些问题开展操作、想象活动,充分体验了“极限思想”。
第三次探究活动,学生借助数字、字母、符号等,运用数学的思维方式进行思考,推导出圆的面积计算公式。
二、教学目标:
1.经历圆的面积计算公式的推导过程,掌握圆的面积计算公式。
2.能正确运用圆的面积计算公式计算圆的面积。
3.在探究圆的面积计算公式的过程中,体会转化的数学思想方法;初步感受极限的思想。
三、教学重点和难点:
圆的'面积计算公式的推导。
四、教学准备:
圆形纸片、剪刀、多媒体课件等。
五、教学过程:
教学过程教师活动学生活动
一、谈话引入,揭示课题
二、探究新知。
1、第一次探究,明确思路,体会“转化”的数学思想方法
2、第二次探究,明确方法,体验“极限思想”
3、第三次探究,深化思维,推导公式。
4、解决问题
5、小结
三、知识应用(出示一个圆)大家看,这是什么图形?
师:你已经掌握圆的哪些知识?
师:关于圆你还想探讨什么?
(板书课题:圆的面积。)
师:谁能摸一摸这个圆片的面积。
师:那这个圆的面积怎么求呢?(学生沉默),请你在大脑中搜索一下,以前我们研究一个图形的面积时,用到过哪些好的方法?
师:那圆能不能转化成我们学过的图形呢?请大家利用手中的圆纸片,先想一想,再动手试一试,然后在小组内交流一下。(教师巡视[【评析】“圆”作为一种由曲线围成的图形,与学生头脑中熟悉的由直线段围成的图形(如长方形、平行四边形等)差别比较大,因此当老师提出“怎么求圆的面积呢”,学生感到很茫然。此时,学生最渴望得到老师的指点。作为教师,如何施展自己的“点金”术,取决于教师的教学理念。
在这里,老师没有直截了当地讲“方法”,而是从培养学生的解题能力入手,引导学生从头脑里检索已有的知识和方法:“以前我们研究一个图形时,用到过哪些好的方法?”这样设计,既在学生迷茫时指明了思考的方向和方法,又让学生把“圆”这个看似特殊的图形(用曲线围成的图形)与以前学过的图形(用直线段围成的图形)有机地联系起来了,沟通了知识之间的联系,促成了迁移。
师:好,同学们停一停。刚才老师发现有的小组已经有想法了。我看你们小组的想法就很好,谁代表小组上来说一说?大家认真听,看看他们是怎么想的。
师:噢,你想把圆转化成我们学过的三角形来求它的面积。
师:谁还有不同的方法?
师:这像我们学过的什么图形?
师:你想把圆转化成平行四边形来求它的面积,是不是?
师:刚才同学们有了两种思路,可以把圆折一折,想转化成三角形,还可以通过剪拼把圆转化成平行四边形,不论哪种方法,都是把圆转化成学过的图形来求它的面积。(板书:转化[【评析】通过第一次探究,学生产生了两种很有价值的思路。即通过折一折,把圆转化成近似的三角形;通过剪拼把圆转化成近似的平行四边形。教师设计了“你们发现这两种方法的共同点了吗”这一关键问题,旨在引导学生通过回顾反思,达到渗透“转化”这一数学思想方法的目的。]。)
师:同学们刚才也发现了,不管是折出的图形,还是剪拼出的图形,都不是很像三角形,怎样让它更接近这些图形呢?是不是得进一步研究。请每个小组在两种思路中选择一种继续研究。
师:各个小组都研究出结果了,谁想先来展示一下?请你们小组先说。
师:为什么要折这么多份?
师:你们同意吗?这就是把圆折成16份时其中的一份(贴在黑板上),和刚才平均分成4份中的一份相比,确实像三角形了。如果想让折出的形状更接近三角形,怎么办?
师:你继续折给大家看看。(学生折起来很费劲)看来同学们再继续折纸有困难了,老师在电脑上给大家演示一下。这是同学们刚才把圆平均分成16份的形状(课件演示“正十六边形”),这一份看起来像是三角形了。现在我们再把它平均分成32份,有什么变化?(课件演示,并突出其中一份的形状。)
师:你发现了什么?
师:如果分的份数再多呢?请大家闭上眼睛想象一下,如果把圆平均分成64份、128份……分的份数越来越多,那其中的一份会是什么形状?
师:同学们,用这个方法,成功地把求圆的面积转化成求三角形的面积,你们的方法真好。有不一样的方法吗?(一个小组迫不及待地举手想发言)请你们小组派个代表展示你们的成果。
师:这个方法还真不错,这个小组把圆剪成8份(把这个小组的作品贴在黑板上),和刚才剪成4份拼成的图形相比,有什么变化呢?
师:能让拼成的图形更接近平行四边形吗?
师:哪个小组分的份数更多?
(教师让另一组展示自己平均分成16份后拼成的图形。)
师:和前两次拼成的图形比,又有什么变化?
师:如果要让拼成的图形比它还接近平行四边形,怎么办?
师:我们让电脑来帮忙。大家看,老师在电脑上把这圆平均分了32份,看拼成新的图形,你有什么发现呢?(课件演示。)
师:把这圆平均分了64份,看拼成新的图形呢?
《圆的面积》教学设计8
教学内容:
人教版六年级上册教材第67~68页《圆的面积》例1及练习十六的第1~3题。
教学目标:
1、使学生理解圆面积的计算公式与推导过程,并能运用其公式正确、灵活的计算。
2、在教学活动中,通过操作、合作交流,培养学生迁移、分析、合作和创新的能力,发展学生的空间观念。
3、使学生掌握转化的数学思想方法,并将所学知识运用于生活实际。教学重、难点:
重点:
正确计算圆的面积。
难点:
圆面积公式的推导。
教学准备:
配置的学具袋里的学具、彩笔、一把剪刀,圆形的纸片和若干材料纸。教学过程:
一、创设情境,生成问题。
1、出示牧羊图,让学生想一想它吃最大的范围应该有多大呢?是什么形状?
2、现在你想提什么数学问题?
揭示课题:圆的面积
二、探索交流,解决问题。
1、认识圆的面积
a、什么是圆的面积呢?
b、出示一个圆片:圆的面积在哪里?请同学们拿出圆片,用手摸一摸,感受一下圆的面积,你想说什么?
c、圆的大小主要与哪些因素有关?(半径、直径、周长)
出示结语:圆所占平面的大小叫做圆的面积
回忆一下:我们以前学平行四边形、三角形、梯形的面积计算公式时都是用什么方法推导出来的?(引导转化)
2、生生互动,推导公式
圆可转化为哪一个学过的图形呢?小组可以折一折、画一画、剪一剪、拼一拼,试试看!
1)、小组讨论:设计方案,并汇报。
a、让学生拿出卡纸(1),观察卡纸(1)上的圆被分成多少等分,圆被转化成什么图形呢?
b、让学生拿出卡纸(2),观察卡纸(2)上的圆被分成多少等分,圆又被转化成什么图形呢?
那么,有没有什么办法让它的边变得更直呢?再剪几份,你是说把它分得更多份些,是吗?(可以把它分得更多份些)
c、请拿出手中的圆片试着折一折,展开来,看看你折成了几等份?如果再折下去可以吗?现在就把你们折的这几种方案。(八等份、十六等份、三十二等份)
d、观察这三种分法,比较一下,同样大小的圆平均分的份数不同,拼出来的.图形有什么变化?
发现:平均分的份数越多,拼成的图形越接近长方形。
e、转化成长方形,推导圆的面积公式。
动手实践:沿着半径把圆切开,巧妙地把圆拼成了近似的长方形,现在我们可以利用长方形的面积公式来推导圆的面积公式。
小组合作探究,动手摆一摆,边观察、边讨论、边推导,看哪组表现最好。展现以下问题:
①长方形的长相当于圆的()?
②长方形的宽相当于圆的()?
③长方形的面积相当于圆的()?
④因为长方形的面积=()
所以圆的面积=()。
2)、小组讨论后,并演示公式推导的全过程。
3)、揭示字母公式() 。
小结:可见要求圆的面积只要知道什么就行?(半径)
3、运用公式学习例1。
学生独立完成,全班交流展示。
三、巩固应用,内化提高。
1、课本第69页做一做第1题
学生独立完成,汇报方法。
2、完成基本练习(做一做)
四,回顾整理,反思提升。
1、这节课我们发现了什么、学会了什么?
2、希望同学们在今后的学习中更好地运用好转化的方法去学习更多的数学知识。
《圆的面积》教学设计9
教学目标:
1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。
3、通过小组会议交流,培养学生的合作精神和创新意识。
教学重点:
推导出圆的面积公式及其应用。
教学难点:
圆与转化后的图形的联系。
教具、学具:
剪刀、图片,圆片4等份……64等份的拼图对比挂图。
教学过程:
1、以前我们学过哪些平面图形的面积?
2、长方形的面积怎样计算?
3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)
4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的`图形来推导面积公式的。(板书:转化)
5、转化后的图形与原来的图形面积相等吗?(板书:等积)
6、(出示图形):这是什么图形?圆和我们以前学过的平面图形有什么不同?(板书:曲)
7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。
《圆的面积》教学设计10
教学目标
1、通过观察、操作、分析和讨论,推导出圆的面积计算公式。
2、能够利用公式进行简单的面积计算。
3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
教学重难点
教学重点:源面积计算公式的退到。
教学难点:通过观察、操作、分析和讨论,推导出圆的面积计算公式。
教学过程
一、情景导入
1、师:看一看图中这幅画,工人叔叔提出了一个什么问题?
所有的草坪铺满将是一个什么形状?
那么求这个圆形草坪的占地面积就是求什么了?
引导学生说出求这个圆形草坪的占地面积就是求圆的面积
这节课我们就来研究圆的面积。
板书:圆的面积
师:看着这个课题你想知道什么?你有什么想法?想从这节课中学到什么?
二、导入新课
1、师生总结板书?圆的面积与什么有关?
?圆的面积怎么求?
?圆的面积有没有计算公式?
2、师:看着老师手中两个不同大小的圆,是什么决定着他们的大小,那么可想而知,圆的面积大小与什么有关系?
引导学生猜想说出圆的面积与半径有关
板书:圆的面积与半径r有关
师:到底是不是这样的了,接下来我们就来进行深入的探究。探究之前,请同学们回忆一下平行四边形的面积公式是什么?我们是怎样推导出他的面积公式的?对于三角形和平行四边形也是运用同样的方法推导出他们的公式的
师:总的来说,先把他们剪切,再拼接,最后转化成熟悉的图形。
板书:拼切——转化——化未知为已知
师:那么你们可以把这种转化的思想运用于求圆的面积上吗?
生:可以(不可以)
师:那你想怎么切,怎么拼,把圆转化成什么图形,自己动手做一做。有想法的请举手告诉老师。
师:由于操作的局限性,我把大家拼接的效果用电脑展示出来。
首先,首先先把圆等分成8份,再拼接在一起,它大致像一个什么图形。
(平行四边形)
第二次把它等分成16份,在拼接在一起,它更想什么了?接着把她等分成32份,拼接起来,你发现了什么规律?
师:总结如果分的份数越多,每一小份就会越小,拼成的图形就会越接近长方形。
板书:近似
三、推导圆的公式
师:我们已经成功地花园为方,看看数学方式就是这么神奇,但是圆的面积公式还是不知道。请同学们看着你们手中拼接好的圆以同桌为组思考这几个问题:?圆的面积和这个近似长方形的面积有什么关系?
拼成的近似长方形的长和宽与圆的周长、半径有什么关系?
你能以计算长方形的面积推导出计算圆的面积公式吗,尝试用“因为……根据……所以……”类似这样的关联词,把你的想法在小组中发展出来。板书:因为圆形的面积=长方形的面积=长×宽=1/2周长×半径
所以圆的面积=R×RS=R
这就我们今天要学习的圆的面积公式,从公示中得出,圆的'面积大小和什么关系密切,验证了刚才的猜想是正确的,所以在学知识的时候,不仅要大胆的猜测,还要用实践去验证猜测。
练习题
1、求出下列圆的面积:
2、圆形草坪的直径是20米,它的面积是多少平方米?
3、练习十
六、3小刚量得一棵树干的周长是125.6cm。这棵树干的横截面的面积是多少?
四、总结
通过刚刚的练习题,我们知道了哪些条件就可以求出圆的面积了?通过这节课的学习,咱们都学会了哪些知识?
《圆的面积》教学设计11
教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
利用圆面积计算公式正确计算圆的面积。
教学难点:
圆面积计算公式的推导。
教具准备:
等分圆教具。
学具准备:
分成十六等分的圆形纸片。
教学过程:
一.谈话导入新课
同学们,现在展现在你们面前的是聚宝小学教学楼前面的一块空地,我们学校计划在这块空地上,铺一个圆形的草坪。它有多大呢?要求有多大?实际上就是求圆的面积,这节课就让我们一起来研究圆的面积。
二.游戏激趣,理解圆的面积的概念。
师:同学们,我们先来玩个小小的游戏好不好?选出一名男生和一名女生来进行游戏,游戏的规则是两名同学给圆涂上颜色,比一比,谁涂的快。师:你们有什么话想说吗?
生:男生涂的圆大,女生涂的圆小。师:你们所说的'大小就是圆的面积。板书:圆所占平面的大小就叫做圆的面积。
师:现在大家知道男生为什么涂得慢呢?
生:男同学涂的面积大。
三.探究合作,推导圆的面积公式
1.渗透转化的数学思想师:既然大家知道了什么是圆的面积。那圆的面积怎样计算呢?公式又是什么?你们想知道吗?你还记得平行四边形的面积。是怎样推导出来的吗?
生:沿着平行四边形的一条高,切割成两部分,把两部分拼成长方形,哦,请看是这样吗?课件演示生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握的非常扎实,表述的非常准确。刚才我们用割补法把一个图形先割后拼,就转化成别的图形。这样就把一个不懂的问题转化成我们可以解决的问题。这也是在学习数学的过程中一种很好的方法,猜一猜,今天我们学习的圆可以转化成我们学过的哪些图形?
2.演示揭疑.把一个圆沿着直径来切,变成两个半圆,在把每个半圆平均分成四份。就把整个圆平均分成八份,每份是一个近似的三角形。这些近似的三角形可以拼成一个近似的平行四边形。如果老师把一个圆平均分成16份,你又会拼成一个近似的什么图形?让我们一起看一看,仔细观察如果老师把一个圆平均分成32份。它就会更接近哪个图形?(长方形)大家想象一下,如果老师再继续分下去,分的份数越多每一份儿就会越小,拼成的图形就会越接近什么图形?长方形。那这个近似的长方形和圆之间会存在着什么样的关系?请看老师给出的三个问题。齐读问题明确要求。
3.合作探究,推导公式小组同学拿出课前准备的学具拼一拼,讨论完成学习卡上的内容。你们明白要求了吗?现在开始吧!学生进行汇报师:板书因为长方形的面积=长×宽所以圆的面积=圆周长的一半×半径。
四.巩固新知,实践运用
1.俗话说学关键是用好,做游戏时,你们说男生涂的圆大,女生涂的圆小,现在来算一算用数据证明你们的说法是对的。
2.现在你来帮助老师算一算我们学校要铺的草坪面积是多少?又需要多少钱?
五.总结
1、这节课你们有什么收获?
2、大家的收获真不少你们不但学会了求园的面积,而且用转化的方法推导出圆的面积计算公式,这是你们的一个了不起。另外,你们利用所学的知识解决生活中的问题,这是同学们的第二个了不起。
《圆的面积》教学设计12
【教学内容】
义务教育课程标准实验教科书第十一册P69~71例1、例2。
【教学目标】
1、认知目标
使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标
经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标
引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
【教学重点】:
掌握圆的面积的计算公式,能够正确地计算圆的面积。
【教学难点】:
理解圆的面积计算公式的推导。
【教学准备】:
相应课件;圆的面积演示教具
【教学过程】
一、情境导入
出示场景——《马儿的困惑》
师:同学们,你们知道马儿吃草的大小是一个什么图形呀?
生:是一个圆形。
师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?
生:圆的面积。
师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)
[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的`长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个近似的平行四边形。
师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。
师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)
[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]
3、学生合作探究,推导公式。
(1)讨论探究,出示提示语。
师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。
师:你们明白要求了吗?(明白)好,开始吧。
学生汇报结果,师随机板书。
同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。
(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?
(3)揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(4)齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。
预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
3.求下面各圆的面积。
[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。
[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂作业。
1、教材P69页“做一做”第2小题。
2、判断题
让学生先判断,并讲一讲错误的原因。
3、填空题
复习圆的半径、直径、周长、面积之间的相互关系。
4、教材P70页练习十六第2小题。
5、完成课件练习(知道圆的周长求面积)
老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。
五、课堂总结
师:同学们,通过这节课的学习,你有什么收获?
六、布置作业
《圆的面积》教学设计13
【教学目标】
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
3.探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
4.推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,谁能首先告诉老师,这个长方形的宽是多少?
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的.面积应该是多少?那圆的面积呢?
二、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
2.完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。
三、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
四、课堂作业。
《圆的面积》教学设计14
教学内容: 圆的面积 教学目标:
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。
2、理解圆的面积公式的推导过程,感受转化的数学思想。
3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
教学重难点:
重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:
一、谈话引入
明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)
导入课题:圆的面积
二、引导探究
1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?
(在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?
(2)猜测圆的面积与半径有什么关系?
正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……
2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。
A、长方形、正方形,直接用面积单位去量,找规律得到的;
B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。
(2)统一认识,寻求转化的方法
A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;
B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。
(3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形
同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。
长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)
长方形的面积 = 长 × 宽
圆的面积 = 圆周长一半( r)×半径(r)
S = π r2 B、拼成近似的三角形
三角形的面积=底×高÷2 圆的面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2
B、圆的面积与什么有关?回到课始的猜测。
三、总结
本节课你有什么收获?
四、实践
1、已知r=4cm,求S。
2、已知d=8cm,求S。
板书设计:
圆的面积
圆所占平面的大小叫圆的面积。
长方形的面积 = 长 × 宽
圆的面积 = πr × r = πr2
《 圆的面积》教学反思
济渎路 翟彩艳
圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。
通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。
一、感受圆的周长与面积的不同
本课开始,我先让学生比较圆的`周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、学具演示,激发探究
通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。
三、分层练习,体验运用价值
结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地
参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。
在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。
《圆的面积》教学设计15
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上时行教学的。教材将理解“化曲为直”的转化思想在活动之中。通过一系列的活动将新数学思想纳入到学生原有的认知结构之中,从而完成新知识、的建构过程。学好这节课的知识,对今后进行探究“圆柱圆锥”的体积起举足轻重的作用。
学情分析:学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的'逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用 学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感和感受数学的价值。 教学目标:
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学过程:
一、回顾旧知,引出新知
1、老师引导学生回顾以前学习推导几何图形的面积公式时所用的方法。
2、学生回答后老师让学生上前展示自己的方法
二、创设情境,提出问题
1、教师引导观察,说说从中得到那些数学信息?
2、老师引导,找出与圆的面积有关的数学问题。
3、学生回答,老师板书(圆的面积)
三、探究思考,解决问题
1、让学生估计圆的面积大小
(1)与同桌说一说你是怎么估的
(2)汇报,
(3)老师引导有没有更好的方法
2、探索圆面积公式
(1)学生操作
(2)指名汇报。
(3)操作反思(把圆等分的份数越多,拼成的圆越接近长方形。)
(4)转化思想:近似长方形的长相当于圆的那一部分?怎么用字母表示?
(5)观察汇报:由长方形的面积公式推导圆形的面积计算公
式,并说出你的理由。
(6)总结:1、计算圆的面积要那知道那些条件。
2、生活中处处有数学,我们要从小养成培养自己热爱数学,善于观察,爱动脑筋的良好习惯。
四:实践应用
《圆的面积》教学反思
教学反思:通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和学校领导的悉心帮助,总结出以下不足:
一、复习占用的时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
二、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助,造成了放手不够,造成了引导过度的现象,出现了探究一直是在我的控制下进行的。
三、没给问题爆发的机会
在教学中很关注半径的平方的计算,在教学时直接提醒学生这一运算顺序,本以为做得很好,但现在反思,我的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过的知识遗忘快的根本所在,没有充分理解,怎么能记得好呢?
【《圆的面积》教学设计】相关文章:
《圆的面积》教学设计03-05
《圆的面积》教学设计05-19
圆的面积教学设计02-05
《圆的面积》教学设计优秀05-08
(优选)圆的面积教学设计11-16
圆的面积教学设计教案08-02
《圆的面积》教学设计14篇05-08
《圆的面积》教学设计12篇06-06
《圆的面积》教学设计15篇03-14