倒数的认识教学设计集锦15篇
作为一名无私奉献的老师,有必要进行细致的教学设计准备工作,借助教学设计可以更好地组织教学活动。我们该怎么去写教学设计呢?下面是小编为大家收集的倒数的认识教学设计,仅供参考,大家一起来看看吧。
倒数的认识教学设计1
教学内容:
教科书第50页例7及相应的练习
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、培养学生举例、观察、比较、抽象概括能力。
3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入
分别出示一四组算式(加减乘除),指名报答案,找这一组算式的共同点(和是1,差是1,积是1,商是1 );
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)
二、教学新课
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1.
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的'数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的倒数
1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
好的,接下来,老师要来考考大家了,有信心吗?我报一个数,你们一起说出这个树的倒数,5/9的倒数是9/5,7/6,6/10,11/8,3/7
2、师: 同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究
a 四人为一小组,选择一种情况研究
b 生交流汇报,师板书例子
c 引导概括求倒数的方法
3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1.)(板书)
4、归纳如何求一个数的倒数
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
倒数的认识教学设计2
教学目标
1。通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2。使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3。通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点 :
理解倒数的意义,学会求倒数的方法。
教学难点:
发现倒数的一些特征。
教具准备
课件
设计意图
通过观察,使学生发现一个分数的'倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课
找找下面文字的构成规律
呆———杏 土———干 吞———吴
按照上面的规律填数
——( ) ——( ) ——( )
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数
二、新知探究
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢? 能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所 以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5 、7/2 两个分数的倒数。
学生试做讨论后,教师讲过程 。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2。怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
三、巩固练习
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1—5题。
四、课堂小结
今天我们学习了有关倒数的哪些新知识?
倒数的认识教学设计3
教学内容:
课本28页 倒数的认识
教学目标:
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学准备:
PPT课件,卡片
教学过程:
一、情境导入,引出问题
1、列举数学中两个数乘积是1的算式。
2、揭示课题:倒数的认识。
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、合作探究、解决问题
1.探究倒数的意义。
(1)观察刚才列举的例子,找出特点。
(2)出示倒数的意义:乘积是1的两个数互为倒数。
(3)小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)
(4)举例子:3/8×8/3=1,3/8和8/3互为倒数,3/8的倒数是8/3,8/3的倒数是3/8.
(5)口答练习:
2.探究求一个数(分数)的倒数的方法。
(1)小组合作,自学例1。
(2)小组派代表交流例1
(3)学生交流求一个分数倒数的方法。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
(4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×( )=1,所以1的倒数是1。而0×( )=1呢?
1的倒数是它本身,0没有倒数。
(5)引导学生概括求倒数的方法。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(6)练习:师生对口令,找倒数。
老师说一个数,学生快速抢答出它的倒数。
3、探究求整数、小数、带分数的倒数方法
师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A:学生选择一种研究,教师巡视指导。
B:学生交流汇报,教师分别板书一例。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的.意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1.请你填一填。
2.我是小法官。
3.游戏:找朋友。
师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
板书设计: 倒数的认识
乘积是1的两个数互为倒数。
求一个数(0除外)倒数的方法:
把这个数分子、分母调换位置。
倒数的认识教学设计4
教学目标:
1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学过程:
一、情境导入,引出问题
1. 谈话理解“互为”。
师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?
让一名学生(甲)说出自己的好朋友是谁?(乙)
师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?
(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。
2. 游戏,按规律填空。
吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )
(1 )学生观察填空,指名回答,并说出是怎么样想的。
(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?
同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?
教师揭示课题:倒数的认识。
5. 师:看到这个课题,大家想提什么问题?
根据学生回答,选择板书。如:
(1 )什么是倒数?
(2 )怎么样求一个数的倒数?
(3 )认识倒数有什么作用?……
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、 合作探究、解决问题
1. 探究倒数的意义。
(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?
(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?
(3 )小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:
A :分子、分母相互调换位置的两个数叫做互为倒数。
B :乘积是1 的两个数叫做互为倒数。
师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)
2. 探究求倒数的方法。
(1 )学习例1 :写出7/8 、5/2 的倒数。
A :学生试写,教师巡视,提醒书写格式。
B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
C :学生交流求一个分数倒数的方法。
(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
A :学生选择一种研究,教师巡视指导。
B :学生交流汇报,教师分别板书一例。
C :引导学生概括求倒数的方法。
(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。
1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?
1 的倒数是它本身,0 没有倒数。
求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1. 下面哪两个数是互为倒数。
4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8
2. 写出下面各数的倒数。
4/11 , 16/9 , 35 , 15/8 , 1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3. 争当小法官,明察秋毫。
(1 )1 的倒数是1 。(2 )所有的数都有倒数。
(3 )3/4 是倒数。(4 )A 的倒数是1/A 。
(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。
(6 )7/5 的倒数是7/2 。
(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。
(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。
4. 填空。
3/4 ×( )=1 7 ×( )=1
2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1
5. 游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的`学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
《倒数的认识》教学反思:
本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
倒数的认识教学设计5
教材分析
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学情分析
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
教学目标
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点和难点
理解倒数的意义,会求一个数的倒数。
教学过程
略
教学反思
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的'分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。
倒数的认识教学设计6
教学重点:
认识倒数并掌握求倒数的方法
教学难点:
小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的'倒数关系呢?
请看:那么我们就说xx是xx的倒数,反过来(引导学生说)
xx是xx的倒数,也就是说和互为倒数。
xx和xxx存在怎样的倒数关系呢?2和呢?
2、深化理解
提问:
①什么是互为倒数?怎样理解这句话?(举例说明)
②0有倒数吗?为什么?1有倒数吗?什么?
3、求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?
倒数的认识教学设计7
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:理解倒数的意义,求一个数的倒数。
教学难点:从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、
计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的`另一个数吗?
3/4×( )=1 ( )×9/7=1
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?
如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/5 4/9 6 7/2 1 1.25 1。2 0
学生独立完成,然后交流。
倒数的认识教学设计8
教学目标:
1、通过独立计算以及小组讨论等活动认识倒数,理解倒数的意义,能准确的说出,互为倒
数的两个数乘积为一,并且相乘的两个数分子、分母颠倒了位置
2、通过合作交流探讨出求一个数的倒数的方法,并能正确的求出一个数的倒数。
3、在探究交流的活动中,提高观察、抽象、概括的能力,发展数学思维。
教学重点:
认识倒数并能准确的求一个数的倒数。
教学难点:
小数求倒的方法
教具准备:
课件
教学流程(师生活动)设计
备课组成员
修改意见
一、创设情境,提出问题。
1、师:请同学们完成一下计算:
2、组织学生观察以上算式,说出你的发现。
3、你还能再列举出其他类似的算式吗?
4、师:乘积是1的两个数之间存在着一种特殊的关系——互为倒数。
今天我们就一起来认识倒数,研究倒数。
二、探索交流,解决问题。
①倒数的意义
问题 1:请认真阅读课本第 28 页例 1 以上的部分,然后告诉老师
什么是倒数?互为倒数的两个数有什么特点?“互为”两个字又是什么
意思?先独立思考,然后小组讨论。
生汇报,师引导交流评价。
【随堂小测 1】第 29 页第 2 题的(1)( 2)题
②求一个数的倒数
问题 2:通过交流、探讨,你发现怎样才能正确的求一个数的倒数?
独立思考后,小组间讨论。
【随堂小测 2】第 28 页做一做
问题 3:特殊数 0 和 1 的倒数你会求吗?你有什么发现?
小结:1 的倒数是 1,0 没有倒数。
问题 4:0.45 的`倒数你会求吗?说说你的思考过程。
独立思考后,小组间讨论。
【随堂小测 3】第 29 页第 2 题的(3)( 4)
思考:互为倒数的两个数有什么特点?如何求整数的倒数?如何求
分数的倒数?
三、巩固应用,内化提高 。
四、回顾整理,反思提升。
通过这节课的学习,你有什么收获?有什么感受
板书设计
倒数的认识教学设计9
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的'差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0。2的倒数是0。25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/310.8(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
倒数的认识教学设计10
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的'倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
倒数的认识教学设计11
教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
3、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:
理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
教具准备:多媒体课件。
教学过程:
一、旧知铺垫(课件出示)
1、口算:
(1)× × 6× ×40
(2)××3××80
2、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识
二、新授
1、课件出示知识目标:
(1)什么叫倒数?怎样理解“互为”?
(2)怎样求一个数的`倒数?
(3)0、1有倒数吗?是什么?
2、教学倒数的意义。
(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。
(2)学生汇报研究的结果:乘积是1的两个数互为倒数。
(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)
(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
3、教学求倒数的方法。
(1)写出的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。
(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
4、教学特例,深入理解
(1)1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)
(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)
5、同桌互说倒数,教师巡视。
三、当堂测评
1、练习六第2题:
2、辨析练习:练习六第3题“判断题”。
3、开放性训练。
3/5×( )=( )×4/7=( )×5=1/3×( )=1
四、课堂总结
你已经知道了关于“倒数”的哪些知识?
你联想到什么?
还想知道什么?
设计意图
倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。
教学后记
第十一、十二课时:整理和复习
倒数的认识教学设计12
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的`认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于
倒数的认识教学设计13
教学内容:
数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:
理解倒数的意义和怎样求一个数的倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数。
一、游戏导入
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)
二、探究意义
1.找特点
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒 )
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1 )师及时板书
师:谁还能很快说出乘积是1的两个数吗?
(生回答)
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)
师:那么乘积是1 的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1 的两个数叫互为倒数)
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/5 7/2 8/6 5/12 10/4
(指名回答师板书)
师:你们是怎么找出每个数的倒数的?
(说自己的方法)
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:6 0.5 2 7/8 1
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论
0为什么没有倒数?(0和任何数相乘都不得1)
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)
四、小结并揭示课题
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空
1、乘积是()的两个数叫()倒数。
2、因为7/15 x 15/7 =1 所以7/15和15/7( )
3、 5的倒数是( )。 0.2的倒数是( )。
4、()的倒数是它本身。()没有倒数。
5、8×()=1 0.25×()= 1
()×2/3=1 7/2×( )=( )×8=( )×0.15 =1
2、当把小医生。
1、得数是1的两个数叫互为倒数。()
2a是一个整数,它的倒数一定是 1/a 。()
3、因为2/3×3/2=1,所以2/3是倒数。()
4、1的倒数是1,所以0的倒数是0。()
5、真分数的倒数都大于1。()
6、2.5和0.4 互为倒数。()
7、任何真分数的倒数都是假分数。()
8、任何假分数的倒数都是真分数。()
3、面各数的倒数
2.5 4 1/8 2 6/7 0.12
4、列式计算
1、7/6加上它的倒数的和乘2/3,积是多少?
2、 1减去它的倒数后除以0.12,商是多少?
3、已知A×3/2=B×3/5,(A、B都是不为0的数)
求A、B的大小
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的.成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。
倒数的认识教学设计14
教学内容:
人教版六年制小学数学课本第十一册《倒数的认识》。
教学目标:
1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。
教学想法:
去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。
一、直接导入,展示目标。
1.出示课题:倒数的`认识。
看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。
2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)
二、研究学习,到达目标。边学边练
1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。
把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)
2.概括“倒数”的意义。
下定义:乘积是1的两个数互为倒数。
尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。
3.怎样求一个数的倒数?
你能找出与这些数互为倒数的数吗?
4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。
小结方法:谁发现了求一个数的倒数的方法?
特例:0没有倒数?
5.作业指导。求一个数的倒数的过程。
求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?
小红:3/5=5/3
小明:3/5的倒数是5/3。
6.当堂作业:P24的做一做。P25的第4题。做在书上。
三、拓展目标,巩固提高。
1.判断:(对的在括号里打“√”,错的打“×”)
2。开放性填空。(假定法)
四、自主小结,延伸目标。
谈谈自己的收获和学习体会。
教后反思:
1.教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。
2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。
3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。
倒数的认识教学设计15
教材分析:
这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。
设计理念:
本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。
教学目标:
认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
能力目标:培养学生观察、归纳、猜想、推理和概括的能力。
情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。
教学重点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学难点:
使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
教学过程:
一、 创设活动情景,引入概念
师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?
生(众):能!
师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。
题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12
生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)
(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)
师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探索研究,深入理解
师:同学们能不能说说你对倒数的意义的理解?
提示:“互为”是什么意思?
生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。
师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。
生:(争先恐后地)不对!
师:那我该怎么说呢?
生:3/4和4/3互为倒数。
师:还有其他的说法吗?
生:3/4是4/3的倒数,4/3是3/4的倒数。
师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?
生:能!
师:好!我我来考考大家!
三、 运用概念,探讨方法
师:(投影,出示例2)
3/5 6 7/2 5/3 1/6 1 2/7 0
找一找,下面的哪两个数互为倒数?
(小组探讨交流,并说说是怎样找的?汇报交流结果。)
生:有两种方法来找一个数的倒数:
1、看看两个分数的'乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
师:(征求意见)大家同意他的说法吗?
生:同意!
师:大家认为哪一种方法更快呢?
生:第二种。
师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)
四、 出示特例,深入理解
师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?
生:有!1和0。
师:(提问)那1和0有没有倒数呢?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
五、 巩固练习
(用多媒体投影出示下列各题,学生先做,再全班交流)
1、 写出下列各数的倒数。
4/11 16/9 35 7/8 4/15
2、 下面说法对不对?为什么?
(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。
(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。
(3)0的倒数还是0。
(4)一个数的倒数一定比这个数校
六、归纳小结,交流共享
师:本节课你学到了什么,你有什么体会?
生:我认识了什么叫倒数,还学会了怎样求倒数。
七、布置作业:练习7第7题。
【倒数的认识教学设计】相关文章:
《倒数的认识》教学设计07-25
倒数认识教学设计02-17
“倒数的认识”教学设计07-08
倒数的认识教学设计08-15
倒数的认识教学设计11-15
《倒数的认识》的教学设计01-21
倒数的认识教学设计(优选)11-19
倒数的认识教学设计优秀04-25
[优秀]倒数的认识教学设计09-01
倒数的认识的教学设计15篇01-27