圆的面积教学设计

时间:2024-10-10 16:25:48 教学设计 我要投稿

圆的面积教学设计15篇

  作为一位兢兢业业的人民教师,常常要根据教学需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那么大家知道规范的教学设计是怎么写的吗?以下是小编收集整理的圆的面积教学设计,希望对大家有所帮助。

圆的面积教学设计15篇

圆的面积教学设计1

  教学目标:

  1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能够利用公式进行简单的面积计算。

  3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重难点:

  渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学过程

  一、尝试转化,推导公式

  1、确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2、尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?

  引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

  3、探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  预设:

  分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

  师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。

  4、推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

  预设:

  根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

  师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

  预设:

  教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的`话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  预设:

  老师根据学生的回答进行相关的板书。

  师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

  二、运用公式,解决问题

  1、教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  预设:

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2、完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

  订正。

  3、教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

  预设:

  教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

  交流,订正。

  三、课堂作业。

  教材第70页第2、3、4题。

  四、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  课后作业:完成数练第31页。

圆的面积教学设计2

  一、激趣导入

  1、课件出示牧羊图,让学生欣赏,并找一找你认识的平面图形。图画内容:把一只羊用一根2米长的绳子拴在树桩上吃草。

  2、谈话:同学们,羊能够吃草的最大范围是什么形状?羊能够吃到多大面积的草呢?你们想知道吗?今天这堂课我们就一起来学习“圆的面积”这一知识,相信上完这一课,大家一定能够解决这个问题。[板书:圆的面积

  3、看到这个课题,你想知道些什么?

  学习目标:

  (1)了解什么是圆的面积;

  (2)了解与哪些因素有关;

  (3)知道圆面积公式的推导过程,掌握圆面积的计算公式,会计算圆的面积。

  二、实践导学

  (一)认识圆的面积

  1、什么叫圆的面积。

  2、小组讨论

  3、圆的大小主要与哪些因素有关?

  (1)半径;

  (2)直径;

  (3)周长。

  (二)回忆平行四边形面积公式推导过程

  1、指名分别说出平行四边形面积公式推导过程。(然后课件展示)

  2、谈话:我们能不能也象求平行四边形面积公式一样将圆转化成已学过的图形来求面积呢?

  3、小组讨论

  (三)操作探究

  1、转化圆形推导公式

  (1)让学生拿出卡纸(1),观察卡纸(1)上的圆被等分成多少分,圆被转化成什么图形?

  (2)让学生拿出卡纸(2),观察卡纸(2)上的.圆被等分成多少分,圆又被转化成什么图形?

  (3)教师课件展示圆被平均分成16等份后转化的图形。

  (4)观察比较,你有什么发现?

  2、引导学生观察比较,推导圆面积计算公式。

  (1)将圆通过剪拼,可以转化成已经学过的什么图形?

  (2)新的图形与原来的圆有什么联系?

  (3)试推导圆的面积公式。(课件展示)

  长方形的面积=长×宽

  圆的面积=c÷2×r=2πr÷2×r=πr2

  s=πr2

  三、练习巩固

  1、运用公式学习例1、

  学生试做,说根据,总结强调。

  2、完成基本练习(做一做)

  四、拓展提高

  1、解决“小羊吃草”问题

圆的面积教学设计3

  一、教材内容:

  本节课内容是求圆的面积

  二、教学目标:

  知识目标:

  ⑴引导学生通过观察了解圆的面积公式的推导过程

  ⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、

  能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。

  情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。

  三、教学重点难点:

  重点:圆的面积公式的推导过程以及圆的面积公式的应用。

  难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。

  四、教学流程

  1、复习迁移,做好铺垫

  师问:

  (1)长方形面积公式

  (2)平行四边形面积公式

  师:平行四边形面积公式的求法是借住谁来推导出来的?

  2、创设情景,引入课题

  用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的面积有多大?

  问题:

  (1)小牛能够吃草的最大面积是一个什么图形?

  (2)如何求圆的面积呢?

  3、师生互动,探索新知

  (1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?

  (2)让学生动手操作:

  教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。

  (3)让学生转化的过程进行展示。(略)(多组学生展示)

  (4)用多媒体进行验证。

  让学生闭起眼睛想一想是不是分得的`份数越多拼成的图形越接近于长方形。

  师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。

  (5)引导归纳:

  思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?

  思考2:长方形的长、宽与圆有什么关系呢?

  再次多媒体展示动画。

  师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,

  即:圆的面积=长方形的面积=长×宽=πr×r

  得到:s圆=πr×r

  师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。

  4、实际应用,强化新知

  (1)利用公式解决实际问题:求小牛吃草的最大面积是多少?

  师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。

  (2)出示例题:

  例题1:已知一个圆的直径为24分米,求这个圆的面积?

  a、让学生独立练习,b、指名板演,c、师生评议。

  例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)

  a、学生独立练习,b、指名板演,c、师生订正。

  师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。

  5、巩固练习,深化新知

  1、判断题

  (1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()

  (2)半径为2厘米的圆的周长与面积相等。()

  2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。

  3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少

  6、课内总结,梳理新知

  师:(1)本节所学的主要公式是什么?

  (2)如果求圆的面积,必须知道什么量?

  (3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。

  7、布置作业

圆的面积教学设计4

  一、学习目标:

  1、通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能利用公式进行简单的面积计算,会解决简单的实际问题。

  3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。

  重点:

  圆的面积公式的推导及应用公式计算。

  难点:

  圆面积公式的推导过程。

  二、教学准备:

  教学课件

  分成不同等份的圆形卡纸、纸板、胶棒

  三、教学过程:

  (一)、复习铺垫,导入新课:

  1、看到老师手中的圆,你能想到有关圆的什么知识?

  学生汇报。

  2、你们还想知道圆的什么知识?

  学生交流。

  3、那你知道什么是圆的面积吗?

  学习圆的面积的概念。

  请学生到台前比划比划。

  4、你已经会计算哪些平面图形的面积了?打开练习本写一写。

  全班反馈。

  师课件出示图形及公式。

  5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。

  学生汇报交流,教师课件演示。

  回忆平行四边形面积计算公式的推导过程。

  高宽

  6、总结方法:这些图形面积公式的推导过程有什么共同点?

  预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。

  师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?

  师板书:转化法

  (二)、利用转化,推导公式:

  1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?

  学生操作。

  2、师:谁能告诉老师你们小组把圆转化成了什么图形?

  生到台前展示。

  预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。

  师:大家真了不起!通过动手操作把圆转化成了这么多近似的`图形。

  师板书:操作法

  3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?

  预设:生1:平均分的份数越多,拼成的图形越接近于长方形。

  生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

  4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。

  (1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?

  (2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?

  (3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?

  小组同学之间互相说说推导过程。

  5、全班演示、汇报:

  学生到台前演示交流。

  (1)把圆16等分拼成近似的平行四边形。

  (2)把圆32等分拼成近似的长方形。

  (=(r)

  ①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。

  ②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。

  教师课件演示。组织学生进行语言表述。

  (三)、认真练习,巩固新知:

  1、师:计算圆的面积一定要有什么条件?学生交流。

  2、课件出示练习题:

  (1)求下面各圆的面积。

  r= 3厘米

  d= 2分米

  C= 12。56米

  (2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)

  (3)圆形花坛的直径20m,它的面积是多少平方米?

  拓展练习:

  一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。

  (1)这头奶牛最多可吃掉多大面积的草?

  (2)奶牛吃不到的草坪的面积有多大?

  四、板书设计:

  学习方法:

  转化法

  长方形面积=长×宽

  操作法↓ ↓

  圆的面积=圆的周长的一半×圆的半径

  化曲为直S = πr × r

  平行四边形面积=底×高

  ↓ ↓

  圆的面积=圆的周长的一半×圆的半径

  S = πr × r

  五、教学反思:

  圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。

  (一)、重视自主探究,促进合作交流。

  让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。

  引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。

  (二)、运用多媒体手段,激发学生学习兴趣。

  在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。

  (三)、练习设计适当,由浅入深地巩固新知。

  课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

圆的面积教学设计5

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的.面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

圆的面积教学设计6

  教学内容:

  六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

  教学目的:

  1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

  教学重点:

  理解和掌握圆面积的计算公式的推导过程

  教学难点:

  圆面积计算公式的`推导

  教学过程:

  一 、创设情境,提出问题

  ( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:

  1、这个圆的面积有多大猜猜看;

  2、试想圆的面积和哪些条件有关?

  3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

  1、你摆的是什么图形?

  2、你摆的图形与圆的面积有什么关系?

  3、图形各部分相当于圆的什么?

  4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。

  三、 应用知识,拓展思维

  1师:要求圆的面积必须知道什么?

  2 运用公式计算面积

  A完成羊吃草的面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

  四 归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教学设计7

  教材分析

  圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  学情分析

  学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的'数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。

  教学目标

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确的计算圆的面积。

  2、理解圆的面积公式的推导过程,理解转化的数学思想。

  3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重点和难点

  重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。

  难点:理解圆的面积公式的推导过程,掌握转化的数学思想。

圆的面积教学设计8

  教学内容:

  新人教版数学六年级上册第67—68页,圆的面积。

  教学目标:

  1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。

  2、经历圆的面积计算公式的推导过程,体会转化的思想方法。

  3、培养认真观察的习惯和自主探究、合作交流的能力。

  教学重难点:

  1、运用圆的面积计算公式解决实际问题。

  2、理解圆的面积计算公式的推导过程。

  教学准备:多媒体课件

  教学方法:自主探究,合作交流

  教学过程:

  一、小测验:

  1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。

  2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。

  二、问题引入

  1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?

  2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)

  3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)

  三、探索新知

  (一)复习,平面图形面积的计算方法。

  (二)探索圆面积的计算方法

  1、我们一起来推导圆的面积公式吧!

  2、利用多媒体课件展示圆的面积公式的推导过程。

  (1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。

  (2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。

  3、在图形的拼凑与转化中,同时观察与思考以下问题。

  a、拼凑中,圆在转化成什么图形?

  b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?

  4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的`宽是半径(r)

  因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)

  如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2

  5、学生齐读公式

  S= πr2

  教师强调r2= r × r(表示2个r相乘)

  (三)应用公式

  一个圆的半径是4厘米。它的面积是多少平方厘米?

  思考:

  1、本题已知什么,要求什么?已知圆的半径,求圆的面积。

  2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,

  3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。

  例

  1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?

  2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。

  3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。

  4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。

  (四)知识应用

  1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。

  课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。

  2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。

  3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。

  四、课堂总结:这节课,你有哪些收获?

  说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。

  五、作业布置:

  教材第71页,练习十五,第1题~第4题。

圆的面积教学设计9

  教学内容: 圆的面积 教学目标:

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

  2、理解圆的面积公式的推导过程,感受转化的数学思想。

  3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重难点:

  重点:理解和掌握圆面积的计算方法。 难点:圆面积公式的推导。 准备:圆形纸片 教学过程:

  一、谈话引入

  明确圆的面积的含义(在黑板上画好一个圆),谁上来指一指:哪是这个圆的周长?(生用粉笔比划圆的周长,强调起点即终点。)对于一个平面图形除了研究它的周长,一般还可以研究它的什么?(面积)你能指出哪是这个圆的面积吗?(生用手比划)那么谁能说说什么叫做圆的面积呢?(引导学生用自己的话说一说,逐步规范:圆所占平面的大小叫做它的面积。)

  导入课题:圆的面积

  二、引导探究

  1、猜测圆的面积与半径的关系。 (1)猜测圆的面积与什么有关系?

  (在黑板上再画一个小一点的圆)比一比,这两个圆的面积哪个大一些?为什么?你认为圆的面积的大小与什么有关系?

  (2)猜测圆的面积与半径有什么关系?

  正方形的面积是半径的平方的4倍,圆的面积比正方形的面积要小。因此圆的面积可能是半径的平方的3倍多,甚至有可能会想到圆周率是3.1415……

  2、探究圆的面积与半径的关系——公式推导 (1)回顾以前学过的平面图形的面积推导过程。

  A、长方形、正方形,直接用面积单位去量,找规律得到的;

  B、平行四边形、三角形、梯形等不能用面积单位去量。因为不能用面积单位去密铺,用的是转化的方法。

  (2)统一认识,寻求转化的方法

  A、圆是曲线图形,也不能用面积单位去密铺,应该运用转化的方法;

  B、商讨转化的方法:剪开——化曲为直;沿半径剪开——便于研究面积与半径的关系。

  (3)自主探究:剪一剪,拼一拼,找一找,推导出圆的面积计算公式。 A、拼成近似的长方形

  同学们:请你以小组为单位,对照课本合作完成以下填空: (1)我们把圆分成若干等份,剪开后,拼成一个近似的( )形。 我们发现分成的份数越多,拼成的图形就( )。 (2)拼成的( )形的面积与圆形面积是( )的。 长方形的( )相当于圆的( ); 长方形的( )相当于圆的( )。

  长方形的长等于圆周长的一半( r)长方形的宽等于圆的半径(r)

  长方形的面积 = 长 × 宽

  圆的面积 = 圆周长一半( r)×半径(r)

  S = π r2 B、拼成近似的三角形

  三角形的面积=底×高÷2 圆的.面积 =(圆周长的1/4) ×(4个半径)4r÷2 C、拼成梯形的下去再探讨 (4)交流,统一认识 A、公式:S=πr2

  B、圆的面积与什么有关?回到课始的猜测。

  三、总结

  本节课你有什么收获?

  四、实践

  1、已知r=4cm,求S。

  2、已知d=8cm,求S。

  板书设计:

  圆的面积

  圆所占平面的大小叫圆的面积。

  长方形的面积 = 长 × 宽

  圆的面积 = πr × r = πr2

  《 圆的面积》教学反思

  济渎路 翟彩艳

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不同

  本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、学具演示,激发探究

  通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该以上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地

  参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积教学设计10

  【教学目标】

  1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  1.CAI课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的.面积)

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  3.探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  4.推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,谁能首先告诉老师,这个长方形的宽是多少?

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  二、运用公式,解决问题

  1.教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  2.完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)

  3.教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。

  三、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  四、课堂作业。

圆的面积教学设计11

  教学内容:

  小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:

  圆面积公式的推导。

  教学难点:

  弄清圆与转化后的近似图形之间的关系。

  学具:

  每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:

  课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的面积)那么圆的面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的.图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

圆的面积教学设计12

  教学目的

  1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  教学重点:圆面积计算

  教学难点:公式以及推导。

  教学过程

  一、复习并引入课题。

  1.口算:2π 9.42÷π 12.56÷π

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?

  课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

  二、新课讲授

  1.圆的面积的含义。

  问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

  问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的'做法吗?(学生回答,老师给予肯定。)

  教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  强调:如果分的等份越多所拼的图形就越接近长方形。

  问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

  引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

  学生独立完成圆面积公式的推导:

  总结:我们用S表示圆的面积,那么圆面积的大小就是:

  再次强调:

  (1)拼成的图形近似于什么图形?

  (2)原来圆的面积与这个长方形的面积是否相等?

  (3)长方形的长相当于圆的哪部分的长?

  (4)长方形的宽是圆的哪部分?

  (5)用S表示圆的面积,那么圆的面积可以写成:S=πr

  2 3.圆面积公式的应用。

  师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

  学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

  (学生独立完成,教师巡视,对有困难的学生给予辅导。)

  教师板演计算过程。

  出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

  问题:你能利用内圆好外圆的面积求出环形的面积吗?

  学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。

  (1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  (2)强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。

  四、课堂小结

  总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

  另外,我们在前面也学习了如何求圆的周长,需要注意的是:

  (1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

  (2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;

  (3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积

  长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr

  教学反思

  圆的面积是学生在学习了圆的基本特征、圆周长的探讨、应用后学习的,因为学生在学习圆的周长公式探讨的时候已经明白了“化曲为直”的数学思想,所以在探讨圆的面积公式时,在这个基础上再渗透“数学的极限思想”,学生在这样的情况下,学习的圆的面积计算,有利于学生知识的迁移,这样,也是学习上的一次飞跃,所以,在教学过程中,我注重了以下几个环节的教学:

  一、从圆的周长到圆的面积体验其中不同

  本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、演示操作,加深理解当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。

  四、引导学生主动参与知识的形成过程。

  五、存在和改进的地方有:

  1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;

  2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!

圆的面积教学设计13

  一、以旧引新(6分钟)

  1.复习正方形的面积公式和圆的面积公式。

  2.回答下面各圆的面积。

  1.说出S正=a2、S圆=πr2

  2.左圆面积=π×22=4π

  右圆面积=π×(2÷2)2=π

  1.边长是5cm的正方形面积是多少?

  5×5=25(cm2)

  2.如果r=4cm,则圆的面积是多少?

  3.14×42

  =3.14×16

  =50.24(cm2)

  二、动手操作,感知特点。(15分钟)

  1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,

  思考:

  (1)外方内圆的图形是怎样组成的?它有什么特点?

  老师明确:外方内圆的图形称为圆外切正方形。

  (2)外圆内方的图形是怎样组成的?它有什么特点?

  老师明确:外圆内方的图形称为圆内接正方形。

  2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。

  3.引导学生在圆内画一个最大的正方形。

  4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。

  1.

  (1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。

  (2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。

  2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。

  3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。

  4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。

  3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。

  三、探究思考,解决问题。(10分钟)

  1.计算圆外切正方形与圆之间部分的面积。

  (1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。

  (2)组织学生算出正方形和圆之间部分的面积。

  2.计算出圆内接正方形与圆之间部分的面积。

  课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。

  1.

  (1)观察图形的`特点,讨论计算方法并尝试汇报交流。

  (2)分别算出这个圆和正方形的面积:

  S圆=3.14×12=3.14m2

  S正=2×2=4m2

  S阴=S正-S圆

  =4-3.14

  =0.86m2

  2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。

  4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?

  四、拓展应用。(5分钟)

  1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。

  2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?

  1.读题,审题,明确题意后,尝试独立完成。

  2.独立完成,然后全班汇报。

  5.计算阴影部分的面积。

  ×102π-102≈57(cm2)

  五、全课总结。(5分钟)

  1.谈谈这节课你有哪些体会。

  2.布置作业。

  学生谈本节课学习的收获。

  教学过程中老师的疑问

圆的面积教学设计14

  教学内容:

  教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:

  进一步掌握圆的面积公式,能正确计算圆的.面积

  教学难点:

  能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教学设计15

  教学内容浙教版小学数学第十一册教材P141—143、例1

  教材分析《圆的面积公式》这部分内容是在学生初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。教材首先提出圆面积的概念,接着提出如何把圆转化成已学过的图形来计算面积的问题。把未知的问题转化成已知的问题,是常用的数学思想和方法。让学生用这种数学思想和方法来解决新的比较复杂的问题。教材采用实验的方法,把圆平均分成若干份,再拼成一个近似长方形,然后由长方形的面积公式推导出圆面积计算公式。

  学情分析在之前,学生已认识了各种平面图形的`特征以及学会了三角形、平行四边形及梯形面积的推导方法,知道可以利用剪拼的方法把要学的图形转化成已学过的图形,然后研究两者间的关系,从而推导出公式,并已渗透转化的思想,为学习圆面积公式的推导找到了学习的方法。而且让学生动手剪拼进行操作活动,使学生了解图形之间的联系,既能加深对图形性质的认识,又能发展学生的认知能力。

  教学目标

  1.理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能够利用圆面积公式进行计算。

  3.培养学生动手操作、观察分析、概括推理的能力。

  教学重点圆面积计算公式的推导和利用公式进行正确计算。

  教学难点极限思想的渗透与圆面积公式的推导过程。

  教学准备多媒体课件、 圆的平面图形1个、剪刀、直尺等

  教学过程

  一、创设情境

  1.播放录像:美丽的校园景色、各种形状的花坛。

  问:你能计算出它们的占地面积吗?

  2.媒体演示(从各种形状的花坛中提炼出下面的图形)。

  (1)学生说出这些图形的面积计算公式。

  (2)用什么方法推导出三角形面积计算公式的?

  教师板书:

  剪拼

  要学的图形 已学的图形

  转化

  3.媒体出示圆形。

  今天要学习圆的另一个知识,就是圆占平面的大小叫圆的面积。(请学生摸一摸哪里是圆的面积?)

  (板书课题:圆的面积)

  二、公式推导

  1.提出问题,制定方案

  (1)小组讨论:对于圆我们前面已经学习了什么?圆与以前我们研究的平面图形有什么不同?你想通过什么方法推导圆的面积公式?你认为你面临最大的困难是什么?

  (2)小组汇报:

  a.不同之处:圆是由一条封闭曲线围成的平面图形,而以前学过的平面图形都是由几条线段围成的封闭图形。

  b.面临的困难:如何曲线变直线。

  2.操作实验,分析问题

  (1)学生动手实验、剪拼图形。(允许学生根据发现的规律结合课本内容分组合作完成圆面积计算公式的推导)。

  (2)交流汇报。

  ①学生汇报剪拼过程,同时教师贴示。

  ②观察思考(教师有意选取一组剪拼成长方形的来交流)

  a.拼成的图形像什么图形?为什么说它像长方形而不是长方形?

  b.谁有办法把边变得更直些?把这个近似长方形变得更近似长方形?

  (教师媒体演示)

  c.把圆分成64等分后,拼接后的图形它的边会怎么样?图形会怎么样?

  d.生闭眼想象:如果把圆面等分成128份,256份……一直这样下去分成很多很多份,剪拼后的图形是什么情形?

  3.推导公式,解决问题

  (1)观察讨论

  当圆转化成近似长方形时,你们发现它们之间有什么联系?

  (2)学生填实验报告。

  (3)学生交流汇报推导过程。

  (4)观看课件演示过程,并请同桌两位同学互说一次。

  三、公式应用

  1.简介千古绝技:中国古代数学家的割圆术。

  公元3世纪我国数学家刘徽推算出圆周率时采用的"割圆术"。这种以直代曲,用有限逼近无限的数学思想就是我国古代数学家的首创……

  2.解答引入时花坛占地面积(若设计一个自动旋转喷灌装置应装在哪儿?)。

  3.根据下面所给的条件,求圆的面积。

  (1)直径10厘米(2)周长12。56

  (生独立解答,思考(2)面积和周长相等吗?做了这些题目你有什么体会?)

  四、课堂总结

  1.这节课你学会了什么?

  2.这节课你有什么感受?

  五、课外拓展

  1.媒体出示:学校现有一块长方形土地(长50米、宽25米),打算在上面建造一个圆形体育馆,最大可以占地多少平方米?

  2.已知正方形的面积是25平方厘米,求圆的面积。如图:

  3.一支森林考察队发现了一颗要3人才能合围的大树,现要算出这棵大树的横截面(圆形)面积,怎么办?(探讨哪一种测量法合理简洁)

  板书设计

  圆的面积

  圆所占平面的大小叫圆的面积。

  长方形的面积 = 长 × 宽

  圆的面积 = πr × r = πr2

  (周长的一半)

  剪拼

  要学的图形 已学的图形

  转化

【圆的面积教学设计】相关文章:

圆的面积教学设计02-05

《圆的面积》教学设计05-19

《圆的面积》教学设计10-31

圆的面积教学设计教案08-02

(优选)圆的面积教学设计11-16

《圆的面积》教学设计优秀05-08

《圆的面积》教学设计12篇10-24

《圆的面积》教学设计15篇08-07

圆的面积教学设计14篇11-01

《圆的面积》教学设计13篇11-02