因数和倍数教案

时间:2024-10-11 15:40:53 教案 我要投稿
  • 相关推荐

因数和倍数教案

  作为一名老师,总不可避免地需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!以下是小编收集整理的因数和倍数教案 ,仅供参考,希望能够帮助到大家。

因数和倍数教案

因数和倍数教案 1

  教学目标:

  1、通过动手操作和写不同的乘法算式,认识倍数和因数。

  2、依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

  3、在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  教学重点、难点分析:

  由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。

  教学课时:

  第一课时

  教具学具准备:

  1、学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

  2、教师准备多媒体课件。

  一、创设情景,明确探究目标

  师:人与人之间存在着许多种关系,我和你们的关系是……

  生:师生关系。

  师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

  1、操作激活。

  师:我们已经认识了哪几类数?

  生:自然数,小数,分数。

  师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

  2、全班交流。

  1×12=12 2×6=12 3×4=12

  12×1=12 6×2=12 4×3=12

  12÷1=12 12÷2=6 12÷3=4

  12÷12=1 12÷6=2 12÷4=3

  师:在这3组乘、除法算式中,都有什么共同点?

  生汇报。

  师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。

  师:2和6与12的关系还可以怎样说呢?

  生:2和6是12的因数,12是2的倍数,也是6的倍数。

  师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

  小组合作,交流汇报。

  师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

  揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。

  师:你能不能用同样的方法说说另一道算式?

  (指名生说一说)

  师:你有没有明白因数和倍数的.关系了?

  那你还能找出12的其他因数吗?

  3、举例内化:

  你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)

  4、下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

  生:因为没有说明18是谁的倍数,所以不对。

  师:

  师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

  二、自主探究,找因数和倍数

  1、拓展提升,主动建构:

  ⑴迁移尝试:请学生试着找出36的所有因数。

  ⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法( )×( )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。

  ⑶启迪思考:怎样找才能不重复不遗漏?

  小组合作,自主探究,汇报交流。

  找一个数的因数时要做到不重复也不遗漏,方法可以有:

  用乘法( )×( )=36的方法,一对一对地写;

  或者是用除法36÷( )=( )的方法想,而且是有顺序地从小到大全部写。

  36的因数有:1,2,3,4,6,9,12,18,36。(板书)

  ⑷试一试找20的所有因数。

  ⑸介绍36的因数的另一种写法----集合

  用集合形式写18的因数

  2、创设情境,自主探究:

  请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,( )÷6=1、( )÷6=2、( )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。

  请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)

  3、迁移内化,自主探究:

  ⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。

  2的倍数有:2,4,6,8,10,12……

  5的倍数有:5,10,15,20,25……

  ⑵引导观察:请学生观察以上这些数的倍数,有什么发现?

  (一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)

  (3)还记得因数吗,出示课件

  观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)

  三、变式拓展,实践应用

  指导学生做书本“练习二”的第2题和第3题。

  四、全课总结

  师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?

  课堂练习:游戏:“我的朋友在哪里?”

  游戏规则:

  (1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”

  (2)相应学号的同学站起来,其他同学判断是否正确。

  作业安排:

  引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数

因数和倍数教案 2

  教学内容:九年义务教育六年制小学数学第八册P70-72。

  教学目标:

  1、使学生结合整数乘除法运算初步认识倍数和因数的含义,学习找一个数的倍数和因数的方法,能准确,完整地找出一个数的所有因数。

  2、发现一个数的倍数,因数中最大的数、最小的数及其个数方面的特征。

  3、让学生初步意识到可以从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括能力。

  教学重点:倍数和因数概念的掌握,学习找一数的倍数和因数的方法。

  教学难点:找一个数的倍数和因数方法的掌握。

  设计理念:本节课是一节概念课,让学生在活动中清楚什么是倍数和因数。让学生学会自己发现,归纳方法,提高学生分析能力。

  教学步骤

  教师活动过程

  学生活动过程

  我们学过哪些数?

  对0、1、2、3、4......都是自然数。

  除0以外的自然数是我们今天研究的数。

  自由发言

  二、教学倍数和约数的意义

  什么是倍数和因数呢?

  板书:1、4×3=12

  2、6×2=12

  3、12×1=12

  算式1中4、3、12的关系,我们可以说:12是4、3的倍数

  3、4是12的因数

  你能像刚才那样说说6×2=12中各个数的关系吗?

  根据12×1=12可以怎样说呢?

  在4+3=7中我们能说7是4和3的.倍数,4和3都是7的因数吗?

  3×2=6,说6是倍数对吗?为什么?

  1、倍数和因数都是表示两个数之间的关系,不能单独说那个数是倍数,那个数是因数。

  2、只有一个自然数是两个自然数的乘积时候才能谈上它们之间具有倍数和因数的关系。

  完成想想做做第1题

  板书:24÷4=6

  能说24是4、6的倍数,4、6是24的因数吗?你是怎样想的?

  4×6=24

  这样你看出来了吗?

  学生回答:12是6、2的倍数,2、6是12的因数

  你知道哪些数是3的倍数吗?说说可以怎样找一个数的倍数?

  板书:3×1=3

  3×2=6

  3×3=9

  ......

  3的倍数有3、6、9、12......能写完吗?为什么?

  谁能总结一下找一个数的倍数的方法?用这个数分别与1、2、3......相乘。

  谁能写出2、5的倍数吗?

  板书:2的倍数有2、4、6......

  5的倍数有5、10、15......

  一个数的最小倍数是本身,没有最大的倍数,一个数的倍数的个数是无限的。

  四、教学找一个数的因数

  1、提问

  2、谈话

  3、归纳

  4、模仿练习

  你知道36的因数有哪些吗?

  怎样找全36的因数,并不遗漏呢?

  板书:()×()=36

  36÷1=36

  36÷2=18

  36÷3=12

  36÷4=9

  36÷6=6

  还有吗?为什么?

  36的因数有1、2、3、4、6、9、12、18、36

  我们可以用什么方法找一个数的因数。

  你能找出15的因数、16的因数吗?

  板书:15的因数有1、3、5、15

  16的因数有1、2、4、8、16

  说说是怎样找的,从刚才的活动中你能得出什么结论?

  一个数的最小因数是1,最大因数是它本身,一个数的因数是有限的。

  五、组织练习

  1、做“想想做做”第2题问表中的“应付元数都是4的倍数吗”为什么?

  2、做“想想做做”的第3题,问:题中的排数都是24的因数吗?每排人数呢?为什么排数和每排人数是总人数的因数呢?

  教后反思:

因数和倍数教案 3

  小学数学五年级下册主要教学内容和重难点。

  主要教学内容:

  图形的变换,因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计,数学广角和综合应用等。

  五年级下册的重点难点:

  1.图形的变换。重点掌握一般几何图形的对称轴,认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90°。

  2.因数与倍数。使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。掌握2、5、3的倍数的特征。概念较多,需要理清概念之间的关系,不能死记硬背,在理解的基础上掌握概念,并学会灵活运用。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,

  3.长方体和正方体。掌握体会长方体和正方体的特征、掌握长方体、正方体的体积及表面积公式,探索某些实物体积的测量方法,促进学生空间观念的进一步发展。这一部分难度最大,因为是刚刚开始形成理性的空间观念。建议:(1)所学知识与现实生活的密切联系。结合平时生活的实体观念物体。如长方体的顶点,棱,面,表面积,体积,容积。如火柴盒。(2)加强动手实践、自主探索,让学生经历知识的形成过程。如做纸盒。

  4.分数的意义和性质。这是学生从直观数学到抽象数学的转变,感性认识上升到理性认识。概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。为了培养学生的数感,我会要求熟记常用的分数与小数互化。如24X0.875。这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。

  5.分数的加法和减法。相对简单一些。本单元是数学运算的重要基础知识之一,能否熟练掌握分数加减法的计算方法是评价学生是否拥有良好的计算能力,拥有良好的数感的一项重要尺度。

  6.统计。理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  7.数学广角。引导学生通过观察、猜测、实验、推理等活动向学生渗透优化的数学思想方法,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受数学的魅力。

  3.三年级下册青岛版数学第二十三页导学稿如何解决估算方法

  估算,拼音 ɡū suàn,意思是大致推算,近义词:预算。

  1.四舍五 入:0,1,2,3,4,均不进位,5,6,7,8,9,进位。

  2. 进一法:进一法是去掉多余部分的数字后,在保留部分的最后一个数字上加1。

  这样得到的近似值为过剩近似值(即比准确值大)。例如,一条麻袋能装小麦200斤,现有880斤小麦,需要几条麻袋才能装完?用880除以200,商为4,余数为80,即使用4条麻袋不可能装完,因此必须采用进一法用5条麻袋才能装完。

  3.去尾法:去尾法是去掉数字的小数部分,取其整数部分的常用的数学取值方法,其取的值为近似值(即比准确值小),这种方法常常被用在生活之中。

  4.数量单位估计法:用实际生活中的物体去感知数量单位,实际体验数据的大小多少。

  5.小学数学因数与倍数怎么进行导入呢

  《倍数和因数》这一内容与原来教材比有了很大的不同,老教材中是先建立整除的概念,再在此基础上认识因数倍数,而现在是在未认识整除的情况下直接认识倍数和因数的。数学中的“起始概念”一般比较难教,这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。

  这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

  (一) 操作实践,举例内化,认识倍数和因数

  我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的.揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,减缓难度,效果较好。

  (二)自主探究,意义建构,找倍数和因数

  整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

  新课程提出了合作学习的学习方式,教学中的多次合作不仅能让学生在合作中发表意见,参与讨论,获得知识,发现特征,而且还很好地培养了学生的合作学习能力,初步形成合作与竞争的意识。

  找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里我充分发挥小组学习的优势讨论交流,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

  (三)变式拓展,实践应用

  练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

因数和倍数教案 4

  教学内容:国标版教材四年级下册第70页--72页倍数和因数,想想做做第2,3题。

  教学目标:

  知识和技能方面:

  1、让学生理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

  情感与态度方面:

  2、让学生初步意识到可以从一个新的角度来研究非零的自然数的特征及其相互关系,培养学生的观察、分析和抽象概括的能力,体会数学内容的奇妙、有趣,产生对数学的好奇心。

  教学重点:倍数和因数的意义的理解和掌握。

  教学难点:找一个数的倍数和因数的方法。

  教学过程:

  一、解决问题,引入新授

  1、你们学校有冬季运动会吗?现在体育老师有个数学问题需要你们帮忙解决,愿意吗?(课件出示例题)

  体育老师要将12名女生分组训练跳绳,要求每组人数相同,可以怎样分?

  (学生读题,指名说说解决问题的方案,不完整的再补充,共有6种)

  提问:你能用乘法算式将这几种方案表示出来吗?

  (指名口答,教师进行整理,有序用课件呈现:1×12=122×6=123×4=12)

  在学生口答时说明:1×12=1212×1=12用一道算式1×12=12来表示。

  请学生总结各个算式表示的方案。

  2、教学倍数和因数的意义

  1)、揭示课题

  教师指着3×4=12

  提问:这是一道什么算式?(整数乘法)

  这道算式向学生说明:根据3×4=12我们今天要学习一个新知识--倍数和因数。(板书出示课题:倍数和因数)

  课件出示:根据3×4=12可以说12是3的倍数,12也是4的倍数,4和3都是12的因数。

  (指名一位学生复述,再全班齐说)

  提问:你能根据1×12=122×6=12这两个算式和你的同桌照样子说说谁是谁的倍数,谁是谁的因数吗?

  (再指名说,注意倾听学生发言)

  2)、你能在小组内举一些这样的算式,让其他的同学照样子说一说谁是谁的倍数,谁是谁的因数吗?

  (四人小组进行交流,教师巡视进行指导,再指名全班2-3人说一说)

  注意捕捉学生发言中的错误引出,或由教师出示“100×20=20xx所以20xx是倍数,100和20是因数”请学生判断。倍数和因数相互依存的关系,即甲数是乙数的倍数,那么乙数必定是甲数的因数;

  3)课件出示:为了方便,我们在研究倍数和因数时,所说的一般指不是0的自然数。

  二、探索找一个数的倍数

  掌握了倍数和因数的意义,我们要来学习怎样找一个数的倍数了。

  1、出示例题:你能找出多少个3的倍数?(指名读题)

  出示:“3的倍数有:“

  提问:3的倍数有哪些?

  (指名说,教师板书)

  提问:你是怎样找到这个数的倍数的?

  (教师随机指着3的两个倍数提问,并相应板书算式)

  最后整理完成板书:3×1=33×2=63×3=93×4=123×5=15

  说明:从你们的回答中,老师明白了3的倍数应该是3与一个数相乘的积;找3的倍数时,可以按从小到的顺序,依次用1、2、3------与3相乘,是吗?

  提问:你能按从小到大的顺序有条理的说出3的倍数吗?

  学生在找3的倍数时已经感觉找不完,那么老师追问:你能把3的倍数全找完吗?所以后面就用”------“表示,一般情况下写出5个就可以了。

  板书添上”------“

  2、小结

  你能说说我们是怎样来找3的倍数的吗?(学生如又困难,可以同桌间先说一说)

  (找3的倍数时,可以按从小到的顺序,依次用1、2、3------与3相乘,而每次乘得的积都是3的倍数)

  那么你能以此类推说说怎样找其他的数的倍数吗?(指名学生说,可以举例)

  小结:找一个数的倍数,可以按从小到的顺序,依次用1、2、3------与这个数相乘,而每次乘得的积都是这个数的倍数

  3、”试一试“:(任选其中两题完成)

  出示:2的倍数有:

  5的倍数有:

  7的倍数有:

  9的倍数有:

  (要求学生任选其中两题进行练习,速度快的同学可以完成剩余的题目)

  (投影出示学生的作业,集体订正)

  提问:谁能选择一题说一说,你是怎样来找这个数的倍数的?

  4、发现特征

  课件出示:3的倍数有:3,6,9,12,15------

  2的倍数有:2,4,6,8,10------

  5的.倍数有:5,10,15,20,25-----

  7的倍数有:7,14,21,28,35------

  9的倍数有:9,18,27,36,45------

  提问:观察上面几个例子,你能发现这些数的倍数有什么共同的特点吗?将你的发现告诉小组同学。

  (四人小组进行讨论,指名两人说一说,并用课件突出重点显示)

  (扑捉学生发言中有用的话,如:“最小的倍数”,“后面都有省略号”等等)

  教师再用课件出示:一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数。

  学会找一个数的倍数了,下面我们要学什么呢?

  三、探索找一个数的因数

  1、出示:你能找出36所有的因数吗?

  提问:你能联系前面所学知识,想一想怎样来找36的因数吗?会的同学在小组内说说你的想法!

  (四人小组进行讨论,教师巡视认真倾听并加以指导,再分别指名不同方法进行介绍)

  根据班级实际情况选择学生共同认可的方法(乘法或除法)进行教学:

  1)、“乘法找”:指名说一说你是怎样来找36的因数的?教师将其方法进行整理板书:

  板书:36的因数有:1,2,3,4,6,9,12,18,36。(根据算式,一对一对的写)

  1×36=36

  2×18=36

  3×12=36

  4×9=36

  6×6=36追问:找完了吗?

  提问:你认为怎样才能不重复,不遗漏的找出36所有的因数?

  (指名回答,板书强调:有序)

  注意提醒学生再写的时候也要一对一对的来写。

  提问:怎样利用乘法来找一个数的因数?

  (利用乘法算式,按一个因数从小到大的顺序,一组一组的找,两个乘数就是积的因数)

  2)、“除法找”若有学生提出就让学生说说想法,若没有学生提出那么老师就提出来做一个相应的介绍,用36依次去除以1,2,3,等能被它整除的数。

  出示:36÷1=36

  36÷2=18

  36÷3=12

  36÷4=9

  36÷6=6

  36的因数有:1,2,3,4,6,9,12,18,36。

  提问:怎样用除法来找一个数的因数呢?

  (利用除法算式,按除数从小到大的顺序,一组一组的找,除数和商都是被除数的因数)

  2、小结

  你能根据我们找36的因数的过程来说一说找一个数的因数的方法吗?

  学生根据自己的实际情况选择适合自己的方法进行总结,教师加以补充和肯定。

  3、“试一试”(任选其中两题完成)

  15的因数有:

  16的因数有:

  18的因数有:

  24的因数有:

  (要求学生任选其中两题进行练习,速度快的同学可以完成剩余的题目)

  (投影出示学生的作业,集体订正,任选两题说说是怎样来想的)

  4、发现特征

  课件出示:

  36的因数有:1,2,3,4,6,9,12,18,36。

  15的因数有:1,3,5,15。

  16的因数有:1,2,4,8,16。

  18的因数有:1,2,3,6,9,18。

  24的因数有:1,2,3,4,6,8,12,24

  提问:观察上面几个例子,你发现这些数的倍数有什么共同的特点?

  (四人小组进行讨论,指名两人说一说,并用课件突出重点显示)

  若学生说的正确,随即表扬,并请学生阅读“数学知识库”中的相关内容,再指名读一读,教师再用课件出示:一个数的因数的个数是有限的,一个数最小的因数是1,最大的因数是它本身。

  5、掌握了一个数的倍数和因数的特点后老师要考考你们了!

  课件提问:一个数既是12的因数,又是12的倍数,这个数是()。

  四、巩固练习(试时间而定,留做课堂练习)

  1、完成“想想做做”第2题,学生先看题目。

  提问:谁能说说从表格中你知道了什么?

  (学生独立完成填写,全班汇报交流)

  提问:表中的“应付元数”都是4的倍数吗?4的倍数还有哪些?

  2、完成“想想做做”第3题,学生先看题目。

  提问:怎样来求每排的人数?

  (学生独立完成填写,全班汇报交流)

  提问:排数都是24的因数吗?每排的人数呢?你是怎样想的?

  五、课堂总结

  谁能说一说在这节课上你都知道了哪些有关倍数和因数的知识?

因数和倍数教案 5

  课前准备

  教师准备 多媒体课件

  学生准备 100以内的数表

  教学过程

  ⊙谈话引入,揭示目标

  师:上节课我们把数进行了分类整理,这节课我们就一起来复习因数和倍数的相关知识。

  ⊙回顾与整理

  1.回顾旧知,构建知识网络。

  (1)回顾:因数和倍数这部分知识有哪些概念?

  (因数、倍数、质数、合数、奇数、偶数等)

  (2)讨论:各概念之间的关系是怎样的?

  (组内交流)

  (3)梳理:小组合作,用自己喜欢的方法进行知识梳理。

  (4)汇报:各自的知识梳理方法。

  (课件展示学生的梳理方法,肯定其优点后,引导其完善树状知识网络图)

  2.复习、理解相关概念。

  (1)因数和倍数。

  ①在数学上,关于“因数”和“倍数”是怎么定义的?

  [整数A除以整数B(B≠0),除得的商是整数且没有余数,我们就说整数A能被整数B整除,或者说整数B能整除整数A。

  如果整数A能被整数B(B≠0)整除,整数A就叫作整数B的倍数,整数B就叫作整数A的因数。倍数和因数是相互依存的。

  如45能被9整除,所以45是9的倍数,9是45的因数]

  师:为了方便,在研究因数和倍数时,所说的数指的是非零整数。

  ②举例说明因数和倍数各有什么特征。

  预设

  生1:一个数的因数的个数是有限的,其中最小的是1,最大的是它本身。如20的因数有1,2,4,5,10,20。共6个。

  生2:一个数的倍数的个数是无限的,其中最小的是它本身,没有最大的倍数。如4的倍数有4,8,12,…

  生3:一个数最大的因数等于它最小的倍数。

  ……

  (2)质数与合数。

  根据一个数所含因数的个数的不同,还可以得到质数与合数的概念。

  ①什么是质数?最小的'质数是什么?

  [一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数),最小的质数是2]

  ②什么是合数?最小的合数是什么?

  (一个数,如果除了1和它本身还有别的因数,这样的数叫作合数,最小的合数是4)

  (3)公因数和公倍数。

  ①什么叫公因数?什么叫最大公因数?

  (几个数公有的因数,叫作这几个数的公因数。其中最大的一个叫作这几个数的最大公因数)

  ②什么叫公倍数?什么叫最小公倍数?请举例说明。

  预设

  生:几个数公有的倍数,叫作这几个数的公倍数,其中最小的一个,叫作这几个数的最小公倍数。如2的倍数有2,4,6,8,10,12,14,16,18,…3的倍数有3,6,9,12,15,18,…其中6,12,18,…是2和3的公倍数,6是它们的最小公倍数。

因数和倍数教案 6

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

  教学目标:

  1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

  2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

  3.使学生主动参与操作、思考、探索等活动,获得解决问题的.成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

  教学重点:

  认识因数和倍数。

  教学难点:

  求一个数的因数、倍数的方法。

  教学准备:

  小黑板、准备12个同样大的正方形学具。

  教学过程:

  一、操作引入,认识意义

  1.操作交流。

  引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

  交流:你有哪些拼法?请你说一说,并交流你表示的算式。

  结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

  2.认识意义。

  (1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

  (2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

  (3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。

因数和倍数教案 7

  教学内容

  教材第6页例3及练习二第3~8题及思考题。

  教学目标

  1.通过学习,使学生能自主探究,找出求一个数的倍数的方法。

  2.结合具体情境,使学生进一步认识自然数之间存在因数和倍数的关系,掌握求一个数的因数和倍数的方法。

  3.初步学会从数学的角度提出问题、理解问题,并能用所学知识解决问题。在解决问题的过程中,培养学生概括、分析和比较的能力,使学生体会数学知识的内在联系。

  教学重难点

  重点:掌握求一个数的倍数的方法。

  难点:理解因数和倍数两者之间的关系。

  教学过程

  一、 复习导入

  10,28,42的因数有哪些?你是用什么方法找出这些数的因数个数的?一个数的因数中,最大的是几?最小的是几?

  二、新课讲授

  1.探索找倍数的方法。(教学例3)

  出示例3:2的倍数有哪些?

  师:你会找2的倍数吗?给你们1分钟的时间,看谁写得又对、又快、又多!准备好了吗?开始!

  师:时间到,你写了多少个2的倍数?生1:15个。生2:24个。

  师:大家都是用的什么方法呢?

  生1:我是用乘法口诀,一二得二,二二得四……这样写下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  师:哪些同学也是用乘法做的?

  师:你们都是用2去乘一个数,所得的积就是2的倍数。还有不同的方法吗?www.xkb1.com

  生3:我用的是除法,用2÷2=1,4÷2=2 ,6÷2=3,……依次除下去。

  师:很好!如果给你更长的时间,你能把2的倍数全部写出来吗?(不能)

  师:为什么?(因为2的倍数有无数个)

  师:怎么办?(用省略号)

  师:通过交流,你有什么发现?

  引导学生初步体会2的倍数的个数是无限的。

  追问:你能用集合图表示2的倍数吗?

  学生填完后,教师组织学生进行核对。

  (4)即时练习。让学生找出3的倍数和5的倍数,并组织交流。学生举例时可能会产生错误,教师要引导学生根据错例进行适时剖析。

  4.反思提炼。师:从前面找因数和倍数的过程中,你有什么发现?

  先让学生在小组内交流,再组织全班集体交流,通过全班交流,引导学生认识以下三点:

  (1)一个数的最小因数是1,最大因数是它本身。

  (2)一个数的最小倍数是它本身,没有最大倍数。

  (3)一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

  三、课堂作业

  1.指导学生完成教材第7~8页练习二第3~8题及思考题。

  学生独立完成全部练习后教师组织学生进行集体订正。

  集体订正时,教师着重引导学生认识以下几点:

  (1)第4题“15的因数有哪些?”和“15是哪些数的倍数”答案是一样的。

  (2)第5题中的第(2)小题是错的,因为一个数的倍数的个数是无限的,第(4)小题也是错的,因为在研究因数和倍数时,我们所说的`数指的是自然数,不含小数。

  (3)思考题:两数如果都是7(或9)倍数,它们的和也一定是7(或9)的倍数,即如果两数都是n的倍数,它的和也是n的倍数。

  2.利用求倍数的方法解决生活中的实际问题

  出示:妈妈买来几个西瓜,2个2个地数,正好数完,5个5个地数,也正好数完。这些西瓜最少有多少个?

  理解题意,分析解答。

  教师提示“2个2个地数,正好数完,说明西瓜的个数是2的倍数,5个5个地数,也正好数完,说明西瓜的个数是5的倍数,所以西瓜的个数同时是2和5的倍数。

  交流汇报:2的倍数有2,4,6,8,10,12,14,16,18,20,…

  5的倍数有5,10,15,20,25,30,…

  2和5共同的倍数有10,20,…所以2和5共同的倍数最小的是10。

  答:这些西瓜最少有10个。

  四、课堂小结

  1.师:通过本节课的学习,你有什么收获?(学生交流)

  2.让学生自学“你知道吗?”

  板书设计

  因数和倍数

  2×1=2 2÷2=1

  2×2=4 4÷2=2

  2×3=6 6÷2=3

  2×4=8 8÷2=4

  2的倍数有2,4,6,……

  一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

因数和倍数教案 8

  第一课时:公倍数和最小公倍数

  教学内容:教科书第22-23页的例1、例2和“练一练”,练习四的第1-4题。

  教学目标:

  1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。

  2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长3厘米、宽2厘米的长方形纸片,边长6厘米、8厘米的正方形纸片;练习四第4题里的方格图、红旗和黄旗。

  教学过程:

  一、经历操作活动,认识公倍数

  1、操作活动。

  提问:用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。

  学生独立活动后指名在实物展示台上铺一铺。

  提问:通过刚才的活动,你们发现了什么?

  引导:⑴用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺了几次?怎样用算式表示?

  ⑵铺边长8厘米的正方形呢?每条边都能正好铺满吗?

  2、想像延伸。

  提问:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。

  4、揭示概念。

  讲述:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。

  说明:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,同样可以用省略号表示。

  引导:用3厘米、宽2厘米的长方形纸片不能正好铺满边长8厘米的正方形,说明什么?为什么?

  二、自主探索,用列举的方法求公倍数和最小公倍数

  1、自主探索。

  提问:6和9的公倍数有哪些?其中最小的公倍数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ① 依次分别写出6和9的公倍数,再找一找。

  提问:你是怎样找到6和9的公倍数的?又是怎样确定6和9的最小公倍数的?

  ② 先找出6的倍数,再从6的倍数中找出9的倍数。

  ③ 先找出9的倍数,再从9的`倍数中找出6的倍数。

  引导:②和③有什么相同的地方?哪一种方法简捷些?

  2、明确6和9的公倍数中最小的一个是18,指出:18就是6和9的最小公倍数。

  3、用集合图表示。

  指导学生填集合图后,引导:12是6和9的公倍数吗?为什么?27呢?哪几个数是6和9的公倍数?

  4、完成“练一练”

  完成后交流:2和5的公倍数有什么特点?

  三、巩固练习,加深对公倍数和最小公倍数的认识

  1、练习四第1题。

  提问:这里在图中要写省略号吗?为什么?如果没有“50以内”这个前提呢?

  2、练习四第2题。

  引导:4与一个数的乘积都是4的什么数?5、6与一个数的乘积呢?怎样找到4和5的公倍数?填空时为什么要写省略号?

  3、练习四第3题。

  集体交流时说说是怎样找的。

  四、全课小结

  提问:今天学习的是什么内容?什么是两个数的公倍数和最小公倍数?怎样找两个数的最小公倍数?

  引导:你还有什么疑问?

  五、游戏活动

  练习四第4题。让学生在小组里玩一玩,再想一想。

  提问:涂色的方格里写的数与3和4有什么关系?

  教学后记:

  第二课时:求两个数的最小公倍数的练习

  教学内容:完成练习四的第5~8题。

  教学要求:

  1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

  2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

  教学过程:

  一、基础练习

  找出下面每组数的最小公倍数。

  4和6 3和7 5和9 10和6

  二、完成第25页的5~8题。

  1、第5题

  ⑴ ①让学生观察左边4题,说说这几组数有什么共同的特点。

  ②找出每组两个数的最小公倍数。

  ③比较和交流:有什么发现?

  (两个数的最小公倍数就是它们的乘积。)

  ⑵独立完成右边4题,再比较交流发现了什么?

  2、第6题

  先由学生独立完成。

  然后说说分别是什么方法求出每组上数的最小公倍数的?

  3、第7题

  先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实

  际上就是求7和8的最小公倍数。

  4、第8题

  先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。

  三、小结:通过今天这一节课的学习,你有什么收获?

  四、思考题

  提示:先用列举法找3、4和6的最小公倍数。

  教学后记:

  第三课时:公因数和最大公因数

  教学内容:

  教科书第26-27页的例3、例4和“练一练”,练习五的第1-5题。

  教学目标:

  1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

  2、使学生学会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中进行有条理的思考。

  3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

  教学准备:

  长18厘米、宽12厘米的长方形纸片,边长6厘米、4厘米的正方形纸片。

  教学过程:

  一、经历操作活动,认识公因数

  1、操作活动。

  ⑴先让学生用边长6厘米、4厘米的正方形纸片分别铺长18厘米、宽12厘米的长方形。

  再提问:哪种纸片能将长方形正好铺满?

  ⑵交流:还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形?

  ⑶1、2、3、6有什么共同的特征?

  ⑷4为什么不是12和18的公因数?

  揭示:1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数。

  二、自主探索,用列举的方法求公因数和最大公因数

  1、自主探索。

  提问:8和12的公因数有哪些?最大的公因数是几?你能试着找一找吗?

  学生自主活动,在小组里交流。可能的方法有:

  ①先找出8的因数,再从8的因数中找出12的因数。

  ②先找出12的因数,再从12的因数中找出8的因数。

  2、明确8和12的公因数中最大的一个是4,指出:就是8和12的最大公因数。

  3、用集合图表示。

  出示相交的集合圈,让学生把8和12的因数分别填在集合图中的合适部分,再看图说说各自的想法。

  4、完成“练一练”

  重点让学生操作与填空。

  三、巩固练习,加深对公因数和最大公因数的认识

  1、练习五第1题。

  填好后让学生看图说说15和20的因数分别有哪些,公因数有哪些,最大公因数是几?

  2、练习五第2题。

  3、练习五第3题。

  先让学生独立完成,再具体说说找两个数的公因数和最大公因数的方法。

  4、练习五第4题。

  先出示第1组数,让学生判断,并说说是怎样判断的。然后完成先面几组。

  5、练习五第5题。

  鼓励学生用自己的方法找出每组数的最大公因数,并说说是怎样做的,怎样想的。

  四、全课小结

  提问:今天学习的是什么内容?什么是两个数的公因数和最大公因数?怎样找两个数的最大公因数?

  引导:你还有什么疑问?

因数和倍数教案 9

  第二单元《因数和倍数》

  执笔: 审核: 五年级___班 姓名: 20xx年 月 日 教学内容:质数和合数综合练习

  教学重点:掌握质数、合数、偶数、奇数之间的联系和区别。教学难点:会运用质数和合数解决实际问题。

  课堂练习。

  1、填空:

  (1)一个数,如果只有()两个因数,这样的数叫做质数。

  (2)一个数,如果除了()还有别的因数,这样的数叫做合数。(3)20以内的质数有(),其中()是偶数。

  2、判断:

  (1)所有的质数都是奇数。()(2)所有的偶数都是合数。()(3)除0外,自然数不是质数就是合数。()(4)两个质数的和都是偶数。()(5)两个合数的和都是偶数。()(6)除0和2以外,所有的`偶数都是合数。()

  3、分类:

  1,13,27,41,57,61,73,84,95,47,11,15,33,49,51,63,87,99

  质数

  合数

  我发现:________________________________________________________

  4、按要求在括号内填上数字:(1)()比9大比13小的奇数;()是最小的合数。(2)()是100以内最大的质数;()是100以内最大的奇数。(3)()是最小的自然数;()既不是质数也不是合数。

  5、金星小学六年级组织夏令营活动,共有516人参加,每辆客车乘坐人数在40~50人之间,请你帮忙算一算,学校租用几辆大客车,可以正好使每辆车载的人数相等,每辆车载多少人?

  6、食品店运来42个面包,如果每5个装一袋能正好装完吗?如果每3个装一袋,能正好装完吗?为什么?

因数和倍数教案 10

  这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材安排了三道例题、两道“试一试”及相应的“想想做做”,例1通过用12个同样大的正方形拼成不同的长方形的操作,让学生写出不同的乘法算式,在此基础上教学倍数和因数的意义。例2教学找一个数的倍数,并结合“试一试”引导发现一个数倍数的特征。例3教学找一个数的因数,再结合“试一试”引导发现一个数因数的特征。通过本节课的学习,要达到以下教学目标:

  1、通过操作活动得出相应的乘除算式,帮助学生理解倍数和因数的意义;探索求一个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。

  2、使学生在认识倍数和因数以及探索一个数的倍数或者因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。

  教学重点是理解倍数和因数的含义,掌握找一个数的倍数和因数的方法。

  教学难点是掌握找一个数的倍数和因数的方法。为了顺利完成教学目标,有效突出重点,突破难点,在尊重教材的基础上,我打算根据学生的认知特点和心理特征,通过激趣、操作、比一比谁写得多,找朋友等形式多样的活动激发学生持续的学习兴趣,让学生通过独立思考、合作交流进行自主探索,教师及时引导学生掌握数学思考的方法。

  基于以上认识我预设了如下几个教学环节:

  激发兴趣,引入新课

  首先和学生交流生活中的各种各样的关系,“比如你们和老师是什么关系?你和妈妈呢?其次引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又培养了学生的兴趣。

  第二个环节:操作发现,理解概念,我准备分三个层次进行教学。

  (1)操作体验,初步感知倍数和因数的意义。通过操作我们能发现许多的知识。请同学们拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并思考一下其中蕴涵着那些不同的乘法算式。再让学生根据算式猜一猜“他可能是怎么摆的”,然后电脑演示相应的操作。用12个大小完全相同的'小正方形,进行不同的摆法展示,为了避免简单的操作,引导学生通过算式来想他是怎么摆的。组织交流,引出算式与概念鉴定。学生充分经历了“由形到数、再由数到形”的过程,既为倍数和因数概念的提出积累了素材,又初步感知倍数和因数的关系,为正确理解概念提供了帮助。

  (2)在具体的乘法算式中,理解倍数和因意义。值得注意的是,教材没有给出抽象的意义,而是结合乘法算式进行直观的描述,这样不仅降低了难度,而且为学生的后续学习拓展了空间。因此,教师首先根据算式介绍倍数和因数的意义,然后让学生根据其余两道乘法算式模仿的说一说,充分的读一读,在通过“能说4是因数,12是倍数吗?这一反例的教学,充分感受倍数和因数是相互依存的。

  (3)及时练习。我把 “想想做做”第1题改为学生自己出题,说说谁是谁的倍数,谁是谁的因数,既达到了巩固的目的,来自学生自身的材料又更加真实,学生更容易接受。同时考虑到学生受思维定势的影响,可能所举例子都是乘法算式,教师就需及时有效“介入”比如,“24除以3=8”,促成学生不仅从乘法的角度去思考而且也可以从除法的角度进行,为后面找一个数的因数做好伏笔。第三个环节是探索方法,发现特征,分两个层次进行,首先教学找一个数的倍数。我将教学过程设计成了一个个问题链,什么样的数是3的倍数?,怎样找才能有条理?比一比谁找的倍数多?能把3的倍数全找完吗,应该怎样表示问题的答案?你有什么窍门找一个数的倍数?在学生自主探索的基础上,小组合作,全班交流,学生之间积极互动,“捕捉”对方的想法,完善自己的认知理解掌握找一个数倍数的方法并结合“试一试”,通过交流比较,发现“一个数的倍数的个数是无限的,一个数最小的倍数是它本身,没有最大的倍数”。第二个层次教学找一个数的因数,相对于找一个数的倍数而言,找一个数的因数无疑难度增加了,在此环节中不必急于告诉学生方法,而是放手让学生独立思考,尝试探索“从学生的角度看问题是教学取得实效的关键”对学生出现的情况我作了充分的预设:有的可能是用乘法想(乘积是36的两个数是36的因数)有的可能是用除法想(除数和商都是36的因数)这两种方法都出现一个问题:无序。从而导致重复、遗漏现象。为了解决问题,我再次放手,小组交流,,并在此基础上让学生自主探求”怎样找才会有序,找到什么时候为止”?用自己的语言总结,最后师生达成共识:按一定的顺序一对对的找,找到两个数接近为止。从而在互相评价、充分比较、集体交流中感悟有序思考的必要性和科学性。由于一个数倍数特征的借鉴,一个数因数的特征放手让学生自己总结。

因数和倍数教案 11

  教学内容:教科书第30页,练习五第12~14题、思考题。

  教学目标:

  1.通过练习,使学生进一步掌握求两个数最大公因数和最小公倍数的方法,进行有条理思考。

  2.通过练习,使学生建立合理的认知结构,锻炼学生的思维,提高解决实际问题的能力。

  教学重点:进一步理解公倍数和公因数的含义,弄清它们的联系与区别。

  教学难点:弄清公倍数和公因数联系与区别。

  教学过程:

  一、揭示课题

  今天我们继续完成一些公因数、公倍数的有关练习。

  二、基础训练

  1.写出36和24的公因数,最大公因数是多少?

  2.写出100以内10和6的公倍数,最小公倍数是多少?

  学生独立完成,汇报交流。

  说说自己是用什么方法找到的?

  三、综合练习

  1.完成练习五第12题。

  谁能说说什么数是两个数的公倍数?两个数的公因数指什么?

  在书上完成连线后汇报方法。

  你是怎样找出24和16的`公因数的?你是怎样找到2和5的公倍数的?

  2.完成第13题。

  独立完成。交流各自方法。

  3.完成第14题。

  独立完成。交流各自方法。

  求最大公因数和最小公倍数的方法有什么相同和不同?

  什么情况下可以直接写出两个数的最大公因数?什么情况下可以直接写出两个数的最小公倍数?

  4.完成思考题。

  (1)小组讨论方法。

  (2)指导解法。

  把46块水果糖分给同学后剩1块,也就是同学们分了多少块糖?(46-1)38块巧克力分给同学后剩3块,也就是分了多少块巧克力?(38-3)每种糖都是平均分给这个小组的同学,因此这个小组的人数既是45的因数,又是35的因数。要求小组最多有几人,就是求45和35的什么?(最大公因数)(45,35)=5因此这个组最多有5名同学。

  5.阅读“你知道吗”介绍了我国古代求两个数的最大公因数的重要方法————辗转相除发法,以及用短除法求两个数的最大公因数和最小公倍数的符号表示方法

  四、课堂

  大家在学习公倍数和公因数这一单元时,首先要明白公倍数和公因数的意义,最大公因数和最小公倍数的意义,其次要掌握找公倍数、公因数、最小公倍数、最大公因数的方法,才能为后面的学习做好准备。

因数和倍数教案 12

  一、教学过程:

  (一)动手操作,感受并认识因数与倍数。

  1、老师和同学们都在课前准备了几个小正方形,如果用这些小正方形拼成一个长方形,可以怎么拼?(让学生独立拼摆)

  2、全班交流,请学生上黑板拼一拼,拼法用乘法算式表示出来。

  指出:有三种拼法,列出三个不同的乘法算式,今天我们研究的内容就藏在着三个算式中。

  3、教师选择一个算式指出4×3=12,4是12的因数,12是4的倍数,看这个算式还可以说:谁是谁的因数?谁是谁的倍数吗?

  4、揭示课题:倍数和因数。

  5、看其他两个算式,你还能说什么吗?你觉得哪个算式给你的感觉有些特别?

  6、自己写一个乘法算式,让你的同桌说一说谁是谁的因数,谁是谁的倍数,选一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能说16是倍数,2是因数。

  7、完成想想做做(1)。

  8、完成想想做做(2)。(交流:应付元数与4元有什么关系?省略号表示什么意思?从这个省略好你知道了什么?)

  9、想想做做(3)。(从中发现了什么?24有那些因数?最大的是几?最小的是几?)

  (二)找倍数和因数。

  1、找一个数的倍数(让学生自己在纸上写,然后交流:你是怎么找的?)

  提问:

  (1)3的最小的倍数是几?最大的呢?

  (2)3的倍数有无数个,那么该怎么表示?

  2、完成试一试。

  反思:怎样找一个数的倍数比较方便?一个数的倍数最小是几?找得到最大的倍数吗?

  3、找一个数的因数。

  先让学生独立找36的因数,再进行交流。

  提问:36最小的因数是几?最大的呢?怎样找才能保证不重复不遗漏?对好的方法及时的给以肯定。

  完成试一试

  4、提问:15的最小因数是几?最大的因数是几?16呢?你有什么发现?

  5、巩固练习:

  (1)4的倍数有:

  (2)25以内4的倍数有:

  (3)30的因数有:

  (4)15的因数有:

  (三)课堂小结:略。

  (四)作业布置:

  1、6的倍数有:

  2、7的倍数有:

  3、100以内9的倍数有:

  4、24的因数有:

  5、11的.因数有:

  二、教学反思:

  本节课重点围绕“理解倍数和因数的含义,能按要求找出一个数的倍数和因数”进行教学。在写一个数的倍数和因数时,要让学生经历探索的过程,在相互交流时,得出最优的方法,在探索倍数和因数的规律时,既不能让学生毫无目的的去探究,也不能把这个结论直接告诉学生。

  先出示一些具体的数,从这些具体的数的基础上进行探究,起到了较好的效果。在探究一个数的因数的方法时,先在前面孕伏着除法中也有倍数和因数,为探究一个数的因数埋下了伏笔。这个方法要比倍数的方法难一些,教师要有耐心,把学生的方法全部板书在黑板上,然后通过比较,发现商也是这个数因数,又发现一个数的因数,是成队出现的,所以怎样做到既不重复,又不遗漏,就要有序思考,与前面学过的找规律的方法有机地联系在一起。

因数和倍数教案 13

  课前考虑:

  1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,保守教材是按数学知识的逻辑系统(除法整除约数和倍数)来布置的,这种概念的揭示,从笼统到笼统,没有同学亲身经历的过程,也无须同学借助原有经验的自主建构,同学获得的概念是刻板、冰冷的。假如能借助同学的操作和想象活动,唤起同学的.“因倍意识”,自主建构起“因数和倍数”的意义,那么同学获得的概念必定是生动的、有意义的。

  2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉同学,迫切地寻求结果,还是给同学充沛的探究时间,让他们通过独立考虑、交流讨论,从而发现问题、解决问题呢?很多胜利的教学标明,在教学中为同学营造出一个“对话场”,在生生、师生多角度、多层面的对话中,能让师生相互分享经验、沟通考虑,生成新的看法。

  3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为同学的智慧生长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给同学数学知识的同时,更教会他们数学考虑的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。

  教学目标:

  1.通过“活动建构”,使同学领会因数和倍数的意义;通过独立考虑、交流谈论,初步掌握求一个数所有因数的方法。

  2.在解决问题的过程中,培养同学思维的有序性、条理性,增强同学的探究意识和求索精神。

  3.通过教学,让同学从中感受到数学考虑的魅力,体验到数学学习的乐趣。

  教学准备:

  练习纸、学号卡等。

  教学重、难点:

  掌握求一个数的所有因数的方法,学会有序地进行考虑。

因数和倍数教案 14

  一、教学内容

  教材分两段:

  例1教学公倍数和最小公倍数的认识,例2教学求两个自然数的公倍数和最小公倍数;

  例3教学公因数和最大公因数的认识,例4教学求两个自然数的公因数和最大公因数。

  安排了实践与综合应用“数字与信息”。

  二、教材编写特点和教学建议

  1.借助操作活动,经历概念的形成过程。

  以往教学公倍数的概念,通常是直接找出两个自然数的倍数,然后让学生发现有的倍数是两个数公有的,从而揭示公倍数和最小公倍数的概念。公因数和最大公因数的教学同样如此。本单元教材注意以直观的操作活动,让学生经历公倍数和公因数概念的形成过程。

  这样安排有两点好处:

  一是学生通过操作活动,能体会公倍数和公因数的实际背景,加深对抽象概念的理解;

  二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。

  以公倍数为例,教学时应让学生经历下面几个环节:

  第一,准备好必要的图形。要为学生准备长3厘米、宽2厘米的长方形,边长6厘米和8厘米的正方形,也要准备边长为12、18、24厘米等不同的正方形。

  第二,经历操作活动。让学生按要求自主操作,发现用长3厘米、宽2厘米的长方形可以正好铺满边长6厘米的正方形,而不能正好铺满边长8厘米的正方形。在发现结果的同时,还应引导学生联系除法算式进行思考。这是对直观操作活动的初步抽象。

  第三,把初步发现的结论进行类推,先自己尝试看还能铺满边长是多少的正方形,再在小组里交流。不难发现能正好铺满边长12厘米、18厘米、24厘米等的正方形;在此基础上,还应引导学生思考12、18、24等这些边长和长方形的长、宽有什么关系。

  第四,揭示公倍数和最小公倍数的概念,突出概念的内涵是“既是……又是……”即“公有”。

  第五,判断8是不是2和3的公倍数,让学生通过反例进一步认识公倍数。理解概念的外延。在此基础上,教材注意借助直观的集合图显示公倍数的意义。公因数的教学同样如此。

  为了帮助学生加深对最小公倍数和最大公因数的理解,教材在练习中安排了一些实际问题。如第25页第7题,先引导学生用列表的策略通过列举找到答案,再引导学生联系最小公倍数的知识解决问题。第8题也可用最小公倍数解决问题,但也允许学生用列表的策略列举出答案。第29页第10题让学生先在图中画一画找到答案,也可让学生联系最大公因数的知识解决问题。第11题为学生提供了彩带图,学生可以在图中画一画,也可以直接用最大公因数的知识思考。

  2.提倡思考方法多样化,找公倍数和公因数。

  课程标准只要求在1~100的自然数中,能找出10以内两个自然数的公倍数和最小公倍数,二是只要求在1~100的自然数中,能找出两个自然数的公因数和最大公因数,而不是用分解质因数的方法求出公倍数或公因数。

  不教学用分解质因数的.方法求最小公倍数和最大公因数还有两个原因:

  一是通过列举出两个数的倍数或因数的方法,找出公倍数或公因数。突出对公倍数和公因数意义的理解;

  二是学生对用短除的形式求最大公因数和最小公倍数的算理理解有困难,减轻学生的学习负担。在教学找公倍数或公因数时,应提倡思考方法多样化。以求8和12的公因数为例,学生可能会分别写出8和12的所有因数,再找一找;也可能先找出8的因数,再从8的因数中找出12的因数,或着先找出12的因数,再从中找出8的因数。

  在找出公倍数或公因数之后,还应引导学生用集合图表示出来。要让学生经历填集合图的过程,明确集合图中每一部分的数表示的意义,体会初步的集合思想。

  对于两个数有特殊关系时的最小公倍数和最大公因数,教材在练习中安排,引导学生探索简单的规律。由于教材不讲互质数,所以两个互质数的最小公倍数是它们的乘积,最大公因数是1这样的结论不要出现,只要求学生在具体的对象中感受。

  为了拓宽学生对求最小公倍数和最大公因数方法的认识,教材在“你知道吗”栏目里介绍了“辗转相除法”求最大公因数和用短除法求最大公因数和最小公倍数,并介绍了两个数的最大公因数和最小公倍数的符号表示。教学时,可以让学生结合阅读进行思考。必要时,教师可以进行简单的讲解。

  3.通过调查、交流和尝试,感受数在表达信息中的作用。

  教学“数字与信息”这一实践与综合应用时,应注意引导学生通过调查和交流参与活动,感受数字在表达信息中的作用。

  课前调查的内容有:

  (1)110、112、114、120等特殊电话号码是什么号码;

  (2)自己所在学校和家庭居住地的邮政编码;

  (3)自己家庭成员的出生日期和身份证号码;

  (4)生活中用常见的数字编码表达信息的例子;

  (5)自己学籍卡上的学籍号。课后调查的内容有:

  (1)去邮局调查有关邮政编码的其他信息;

  (2)生活中还有哪些常见的数字编码。教学时,应引导学生充分开展交流活动:比如,为什么有些编号的开头是0?怎样从身份证中看出一个人出生的日期?身份证上的数字编码有哪些用处?等等。

  在此基础上,教材在“做一做”中让学生结合实际问题,尝试用数字编码表达信息。比如,为某宾馆的两幢客房大楼的房间编号,为一年级新生编号,还安排了与方位和距离联系的问题,用编码表示家大约在学校的什么位置。

  教学时,可以根据需要和时间情况,灵活安排教学时间。

因数和倍数教案 15

  教学内容:

  《因数与倍数认识》第5页。

  教学过程:

  一、创设情境,引入新课

  1、互为关系的辨析(以人与人之间的关系,如你和爸爸、妈妈的关系,你和老师之间的关系,存在这些关系的双方互相的关系表示为例,辨析互为关系)

  2、小结互为关系,引入课题。(板书课题:因数与倍数)

  二、探究新知

  (一)认识因数与倍数

  1、回顾学过学过的几类数(自然数,小数,分数)

  2、揭示因数与倍数的研究范围,(现在我们来研究自然数中数与数之间的关系。)

  3、整除算式的辨别(给下面算式分类,并描述算式的`特征)(出示课本P5例1)

  4、学生自我分类,小组讨论分类结果,完善分类。

  5、辨析整除的意义,自学了解因数、倍数的意义,组内交流自学成果,议一议,辨明因数与倍数。

  6、全班交流,选择分类后的算式,说说什么是因数和倍数?说说谁是谁的因数,谁是谁的倍数。

  7、当堂训练

  (1)完成课本P5下面的“做一做”(独立说、组内互相说、全班交流说) (2)判断:课本P7 T5(1)

  (二)因数和倍数的求法

  1、自学课本P6例2和例3,初步了解因数与倍数的求法。

  2、组内讨论因数与倍数的求法,一个数的因数与倍数的个数、一个数的最小的因数和最大的因数、一个数最小的倍数和最大的倍数。 3、全班交流上面组内交流的知识点,适时辅导,各自完善。 4、当堂训练

  (1)完成练习二T1(独立练习、组内交流完善、选择性全班交流)

  (2)完成练习二T5(独立判断、组内交流完善、全班交流)

  三、总结与分享

  与老师和同学分享你的收获与感悟。

【因数和倍数教案 】相关文章:

倍数和因数教学反思02-26

《倍数和因数》教学反思04-22

因数和倍数教学反思04-11

《因数和倍数》教学反思03-14

《因数与倍数》说课稿12-22

《因数与倍数》教学设计07-18

倍数与因数教学设计07-26

因数倍数教学设计10-05

五年级下册因数和倍数教学反思04-13

公因数与最大公因数教案08-13