关于小学数学教案四篇
作为一名无私奉献的老师,通常需要准备好一份教案,教案有助于顺利而有效地开展教学活动。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的小学数学教案4篇,欢迎大家分享。
小学数学教案 篇1
教材分析:
捆小棒这个教学内容,其实主要是学习认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念,学生在这之前已经学习了有关10以内数的认识及有关10以内的加减法。
学情分析:
学生已经初步理解了加减法的含义,掌握了10以内各数的顺序及大小,会进行10以内的加减法计算,并对20以内数及运算有一些初步认识。但是,要让学生熟练掌握20以内数的知识,并能熟练正确地完成20以内的计算,还必须经过必要的学习,对于有困难的学生,还允许他们有一个循序渐进,逐步提高的过程。
教学目标:
1、 在具体的活动中,认识11-20各数,能正确地数、认、读、写11-20各数,知道这些数是由一个十和几个一组成的。
2、 通过具体的操作活动,培养学生的操作能力和语言表达能力,使学生体验数位的含义,建立数位的概念,并培养合作意识。
3、 通过有趣的数学活动,使学生体验数学的趣味性,感受学习数学的快乐。
教学重点:
掌握数的意义和组成。
教学难点:
明确不同数位上数字的含义。
教学过程:
教学环节教师活动预设学生行为提出问题,合作探究。1、 猜测。学生估计的数板书在黑板上(教师拿出一捆10小棒)同学们能猜出有多少根小棒吗?(数一数)2、 思考。各小组数小棒要得出准确的根数,我们应怎么办?你有什么好办法能较快地数出整捆的根数?方法一:一根一根数3、 探索方法二:二根二根数给每个小组提供一捆小棒,1捆是(1)个十,10个一就是(1)个104、 交流?选择有代表性的'数数方法在全班汇报,可能有:?5、 说说?1捆是()个十,10个一就是()10?动手操作,感知数的组成。1、 11的认识(学生马上就回答出11。)1) 数一数a 因为我本来就知道10上面是11。同学们都有了一捆小棒,再拿出1根小棒,你们知道这表示多少吗?b 10加1就是11。2) 说一说c 一捆是10,再加旁边的1根,就是11。你们怎么这么快就看出是11呢?怎么看的?可能出现:学生边听边认3) 讨论?11当中有两个1,这两个1表示的意思是一样吗??4) 认识计数器,?看一看自己手中的计数器,玩一玩,说一说你知道了些什么?并在计数器上拔出11动手操作,感知数的组成2、 摆一摆、拔一拔学生边说边摆小棒。1) 用自己喜欢的方法摆一摆15、19,并告诉你们组的同学为什么这么摆?同桌说含义拨计数器。2) 在计数器上拔出这两个数,说说含义。2个十就是20。3) 20的认识。刚才认识了15、19,知道19由1个十和9个一组成,9根再数上1根,是几根呢??我们也把这10根捆成1捆,现在是多少?为什么??在计数器上拔出2个十,并说含义。所表示的意义3、 拔数练习。4人小组,1人说,另3人拔。4、 看直尺,感知数的顺序、大小。1) 读一读各自准备好的直尺,读一读。2) 看看尺子上的数,你能提一些数学问题吗?5、找一找。抽生说在我们生活中还有哪些地方见到过11-20各数?应用新知,巩固提高。1、看图写数。学生完成2、找朋友。3、我会说。1) 19的前面是( ),后面是( )。2) 比14多1的是( )。3) 17的邻居是( )和( )。4) 比16大,又比19小的数有( )。总结师总结生总结
自我评价:
20以内的数绝大多数儿童在入学前已初步会数,但对于数的概念却未必都清楚,同时一年级的小朋友参与数学活动,很少是因为认识上的需要,而只是对数学活动本身感兴趣。因此,在本设计中除了落实知识技能的教学目标外,更关注学生的态度,让学生在玩中学,学中玩。使学生感受到成功的喜悦,体会到学数学是一件很有趣的事。
小学数学教案 篇2
第一课时
教学内容:
求稍微复杂的“求一个数是另一个数百分之几”的应用题(课本第90页的例2及“做一做”)。
教材分析:
这部分内容是求一个数是另一个数的百分之几问题的发展,是在求比一个数多(少)几分之几的基础上教学的。这种问题实际上还是求一个数是另一个数的百分之几的问题,只是有一个条件题目中没有直接给出,需要根据条件先算出来。解答求一个数多(少)百分之几的问题,可以加深学生对百分数的认识,提高用百分数解决实际问题的能力。
教学目标:
1、知识与技能
掌握稍复杂的求一个数比另一个数多(或少)百分之几的问题的解答方法。
2、过程与方法
通过学习,培养学生利用已有的基础知识,来探索解决新问题。
3、情感、态度与价值观
提高学生迁移类推和分析、解决问题的能力。
教学重点:
掌握解决此类问题的方法。
教学难点:
理解题中的数量关系。
导学过程
一、巩固复习
1、把下面各数化成百分数。
0.63 1.08 7 0.044
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位“1”)
(1)某种菜籽的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
二、授新课
1、根据数学信息提出问题:
出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划造林比实际造林少百分之几?
2、让学生先解决前两个问提。
解决这类问题要先弄清楚哪两个数相比,哪个数是单位“1”,哪一个数与单位“1”相比。
3、学生自主解决“实际造林比计划增加了百分之几”的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解“实际造林比原计划增加百分之几”的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位“1”。)
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)÷12=2÷12≈0.167=16.7%
提问:14-12表示什么?再除以12表示什么?
方法二:14÷12≈1.167=116.7%
116.7%-100%=16.7%
提问:14÷12表示什么?再减去100%表示什么?
(4)小结解题方法:
像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位“1”,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。)
(5)改变问题:问题如果是“计划造林比实际造林少百分之几?”,该怎么解决呢?
学生列出算式:(14-12)÷14
(再次强调两个问题中谁和谁比,谁是单位“1”。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位“1”。)
三、巩固练习
1、独立完成课本第90页“做一做”的题目。
2、练习二十二第1、2题。
四、布置作业
练习二十二第3、4题。
第二课时
教学内容:
教学稍微复杂的“求一个数的百分之几是多少”的应用题。(课本第93页例3和“做一做”)
教材分析:
这部分内容教学是求一个数的百分之几是多少的问题。这类问题实际上与求一个数的.几分之几是多少的分数乘法问题类似,只是给出的条件以百分之几来表示。由于有相关的分数乘法问题的基础,所以这里只通过例3教学求比一个数多百分之几的数是多少的问题,其他的求一个数的百分之几是多少、求比一个数少百分之几的数是多少等问题则安排在习题中让学生尝试解决。
教学目标:
1、使学生掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。并能正确地解答这类应用题。
2、感受数学与生活的联系,培养学生的应用意识和解决简单的实际问题的能力。
教学重点:
掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:
正确、灵活地解答这类百分数应用题的实际问题。
教学过程:
一、巩固复习
1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。现在图书室有多少册图书?
2、学生找出这道题目的分率句,确定单位“1”,并根据数量关系列式:1400×(1+)
二、授新课
1、教学例3
(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?
(2)学生读题,找条件和问题,明确这道题是把谁看成单位“1”。
(3)引导思考:从“今年图书册数增加了12%”这句话中,你能知道些什么?
① 今年图书增加的部分是原有的12%。
② 今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:
方法一:1400×12%=168(册)
1400+168=1568(册)
提问:1400×12%表示什么?再加1400表示什么?
方法二:1400×(1+12%)
=1400×112%
=168(册)
提问:1+12%表示什么?再乘1400表示什么?
2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的百分之几,都要用乘法计算)
3、巩固练习:完成P93“做一做”第1题。
三、巩固练习
1、补充练习。
(1)出示练习:
①油菜籽的出油率是42%。2100千克油菜籽可榨油多少千克?
②油菜籽的出油率是42%。一个榨油厂榨出油2100千克,用油菜籽多少千克?
(2)分析理解:
A、出油率是什么意思?这两道题有什么相同和不同?
B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?
(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
小学数学教案 篇3
教学 目标
1、经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能列出简单试验所有可能发生的结果。
3、对一些简单事件发生的可能性作出描述,并和同伴交换想法。
教学 重难点
不遗漏的列出试验可能发生的结果。
教学准备
3个转盘、若干个纸杯纸箱、4个红色乒乓球、3个黄色乒乓球、3个黑色乒乓球。学生自制转盘课时安排 1
教学过程
游戏引入:
师:今天,我带来了一位老朋友,他要和我们一起玩游戏。
(录音)同学们好,我是淘气!我来玩个游戏,看谁猜的又对又快!
师:(出示转盘)如果转动指针,指针可能停在什么颜色的地方?
有生说指向紫色,有生说也可能指向黄色。
师动手转动指针,进行验证。
(录音)小朋友猜对了吗?两种颜色都有可能指到。那么谁的可能性大一些,谁的可能性小一些呢?
生答。
师:小朋友们说的有道理,在这个活动中,两种颜色都可能指到,只是指向哪种颜色的可能性的大小不同。今天我们就通过猜一猜的活动,来研究可能性大小的问题。
游戏的延续
1、(录音)淘气:我还带来了一个转盘,这次还要请大家来猜猜指针会指向哪种颜色?指向哪种颜色的'可能性大些?
师:(出示转盘)谁愿意来猜?
生:可能转向紫色。
生:也可能转向黄色。
生:指向两种颜色的可能性一样。
师:为什么说指向两种颜色的可能性一样?
生:因为两种颜色的面积一样大。
师:小朋友说的很好,两种颜色的面积一样时,转动指针,指向两种颜色的可能性是差不多的。请学生到黑板前动手拨一拨,进行验证。
2、师:昨天小朋友在家也制作了一个转盘,拿出来让大家猜一猜,然后动手转一转,看看你猜对了吗?生出示自制的转盘,在小组内活动。
教师下到各组参与活动,对同学的错误判断及时纠正。
3、(录音)淘气:刚才你们活动的好热闹!我也很想参与。我准备了一个与众不同的转盘,你们帮我想想指针指向各种颜色的可能性的大小情况,好吗?
师出示转盘。让学生说一说看法,以及理由。
生:转向橙色的可能性最大,转向黄色的可能性最小。因为面积大的指向的可能性最大,面积小的指向的可能性最小。
师:在玩转盘的过程中,你们发现了什么道理?
生答。(多请几位学生说一说。)
游戏二(抛纸杯)
1、宣布规则。
师:接下来我们来做一个“抛纸杯”的试验,
每个同学抛5次纸杯,每次的结果都要记录在试验单上。4人都抛完5次,再与同伴交流自己的结果,组长并将出现各种结果的次数进行汇总,最后得出结论。
2、小组活动。(师下到各组参与活动。)
3、交流结果。尽量请每个小组都汇报他们的试验结果及结论。
师将各组的试验结果进行汇总,这样累计的次数多了,更容易得出正确的结论。
4、形成结论。
纸杯抛出,落地后侧放的可能性最大,因为侧面的面积最大,正放的可能性最小,因为底部的面积最小。
游戏三(摸球)
1、师:刚才的游戏同学们都玩的不错,我们再来玩一个“摸球”游戏。(出示纸箱,并放入2个黄球和1个白球)
师:任意摸出一个球,有几种结果?摸到哪种球的可能性大,摸到哪种球的可能性小。
生答。
师:你能说一说你是怎么判断的吗?
师请一生到讲台前摸球验证。
2、师:(在箱内再放入3个红球)现在任意摸出一个球,有几种结果?摸到哪种球的可能性大,摸到哪种球的可能性小。
生答。并请学生说一说是怎么判断的。
师:有可能摸到黑球吗?
生答。
3、(在箱内放入2个白球和2个黄球)师:一次摸出2个球,可能出现几种结果?
生在小组内讨论。
汇报结论。
:
师:小朋友,这节课我们上得真愉快,你们都学会了什么?
延伸作业
抛出一枚图钉,可能出现什么结果?用表格的形式列举出来。
板书设计
猜一猜
小学数学教案 篇4
教学目标
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的`表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
【小学数学教案】相关文章:
小学数学教案(经典)08-18
小学数学教案(精选)09-06
小学数学教案08-24
小学数学教案11-14
【推荐】小学数学教案01-30
【热门】小学数学教案01-25
创意小学数学教案06-21
小学数学教案【优秀】09-07
小学数学教案【精】06-29
(精)小学数学教案08-09