《有理数》说课稿

时间:2025-09-08 08:00:20 说课稿 我要投稿

《有理数》说课稿

  作为一名教师,时常要开展说课稿准备工作,借助说课稿可以提高教学质量,取得良好的教学效果。那么什么样的说课稿才是好的呢?下面是小编整理的《有理数》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。

《有理数》说课稿

《有理数》说课稿1

  我说课的内容是义务教育课程标准实验教科书(人教版)《数学》七年级上册第一章第四节《有理数的乘法》的第一课时,我将从教材分析、教学目标、教学方法、学法指导、教学程序设计等五个部分进行阐述。

  一、教材分析

  1、教材的地位和作用

  有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。

  2、教材的重点和难点

  本节课的重点是有理数的乘法法则。这是因为:

  (1)要熟练地进行有理数的乘法运算,就得深刻理解运算法则,对法则理解得越深,运算才能掌握得越好。

  (2)学好有理数的乘法法则,对将要学习的有理数的除法以及其他的运算都是至关重要的。

  本节课的难点是有理数乘法中的符号法则。由于初一年级的学生刚接触负数,对负数的意义理解不深,因此,与小学算术数的乘法比较,学生对含有负数特别是两个负数相乘的意义的理解,思维角度变化较大,思维强度也增大。

  二、教学目标

  1、知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

  2、过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。

  3、情感与态度:激发学生学习数学的兴趣,培养学生勇于探索新知的精神。

  三、教学方法

  本节课的教学是以启发式教学为主,通过教师的引导,启发调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则。它符合教学论中的.自觉性和积极性。并有利于培养学生勇于探索新知的创新精神。

  四、学法指导

  通过本节课的教学,教师引导学生学会观察、比较、归纳等学习方法。让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则,学会自主探究、合作的学习方式,培养学生良好的学习品质。

  五、教学程序设计

  本节课我的设计理念是:遵循“教学、学习、研究”同步协调的原则,依据教材,恰当地创设情境,激发学生对数学的好奇心和求知欲,通过独立思考,不断发现和提出问题,分析并创造性地解决问题,教师为学生构建开放的学习环境引导学生体验探索、研究的过程。让学生在探究合作交流的过程中,展示思维过程。

  以下我将对每一教学环节分别教什么怎么教,为什么这么教,教学目标的控制等方面加以说明:

  (一)创设情境、引入新课

  教师利用课件出示问题,学生根据教师交给的问题,独立思考并解决问题,为今后讨论做准备。提供这一组问题,目的在于前两个学段学过求几个相同加数的和用乘法,沿用这个规定,就可以得到(—2)+(—2)=(—2)×2;(—2)+(—2)+(—2)=(—2)×3,……于是就得到我们前两个学段没有学过的负数与正数相乘的乘法,从而引入新课,使学生思路清晰。

  (二)观察——猜想

  这一教学环节首先让学生观察算式感知两个有理数相乘的三种情况,再以如下问题使学生初步感悟两个有理数相乘的符号法则,最后猜想出有理数的陈法则。

  意图是以学生已有知识结构为基础,由一系列算式,猜想出有理数乘法法则,培养学生观察、猜想、归纳、概括的能力。

  (三)探究——验证

  教师启发学生“为区分方向,我们规定:向左为负,向右为正,为区分时间,我们规定:现在前为负,现在后为正”。学生根据教师给出的蜗牛爬行的例子结合问题(1)——(4)先独立思考,然后合作探究,互相启发,互相学习,激发灵感,并得出算式。意图是利用数轴通过蜗牛运动的例子验证有理数乘法法则学生容易接受,并有意识地引导学生主动去探索,从而充分验证了学生的猜想。

  (四)比较——提炼

  在学生探究的基础上让同学们完成下面的填空题,从而使学生更进一步明确了两个有理数相乘的符号规律,通过观察比较使学生用自己的语言归纳提炼出法则,有利于培养学生观察、比较、分析和概括的思维能力。

  (五)分析法则、掌握实质

  教师设计以下例子目的使学生归纳出有理数乘法法则步骤,初步培养学生的化归意识。设计抢答题是想让学生熟悉法则,掌握法则实质。

  (六)应用——巩固:

  例1和例2的教学通过学生板演来完成,再由师生共同评价与完善。例1是运用乘法法则进行运算的基本题,而且一举两得,不仅让学生练习了有理数的乘法,而且得出了有理数范围内倒数的定义;例2是说明有理数乘法的意义,即在什么情况下用乘法解决问题。通过课堂练习不仅巩固了课堂所学的知识由可以使学生体会学习数学成功的喜悦。

  (七)小结——反思这一环节我设计了三个问题:

  1、本节课你学到了什么?

  2、本节课你有何收获?

  3、你还有什么疑问?

  目的是使学生学会反思回顾总结梳理课堂所学知识完善认知结构,发挥学生的主体作用,提高他们的表达能力。

  (八)作业——延展

  为了满足不同的学生需要本节课后作业设置了必做题和选做题,通过作业不仅巩固有理数乘法的运算而且也为下节课将要学习的几个不等于零的数乘法和有理数的乘方做铺垫设下伏笔。进一步体现《数学课程标准》所要求的人人都能获得必需的数学、不同的人在数学上得到不同的发展。

《有理数》说课稿2

  教学内容分析:

  《有理数的乘方》是人教版七年级上第一章第五节内容,是有理数的一种基本运算,从教材编排结构上,此节内容共3课时,本课为第一课时,是在学生学习了有理数的加、减、乘、除运算后学习的,是有理数乘法的推广和延续,也是后续学习有理数的混合运算、科学计数法和开方及指数幂运算的基础,起到承前启后的作用。通过本节课学习可以让学生发现规律,培养学生的归纳能力,感受化归及分类的数学思想。

  教学目标分析:

  (1)、知道乘方、底数、指数和幂的概念,会进行有理数的乘方运算;

  (2)经历有理数乘方概念的推导,培养学生观察、比较、分析、概括的能力,进一步感受化归、分类的数学思想方法

  (3)学生尝试利用知识的迁移获得新知,通过发现问题、研究问题,探索规律,增强数学应用意识。

  教学重难点分析:

  1、学情分析:从知识基础看,学生在小学已学习了求正方形的面积及正方体的体积,具备求一个正数的平方和立方的知识水平,且刚学完有理数的乘法,能帮助学生很好的`理解乘方的定义及表示,实现知识的正迁移。但学生对于有理数乘方的符号法则的掌握上会有难度,对于这类计算容易混淆,是本节课的难点。

  2、教学重、难点

  教学重点:理解乘方定义,会进行有理数的乘方运算;

  教学难点:有理数乘方运算的符号法则的形成与运用

  教法学法分析:

  教法:启发式教学,多媒体辅助教学;

  学法:观察、比较、归纳,合作探究。

  教学过程设计:

  1、创设情境提出问题

  (1)、边长为3的正方形的面积是___3×3可以记作___,读作_________.

  (2)、棱长为3的正方体的体积是___3×3×3可以记作___,读作_________.

  通过创设问题情境,唤起旧知,为学习新知做好铺垫

  2、自主探索形成新知

  观察下列各式有何特征?

  (1)2×2×2×2=

  (2)(-3)×(-3)×(-3)=

  引导学生通过类比、探究、归纳乘方定义及表示,实现知识的迁移,培养学生归纳、概括的能力。明确乘方是乘法的特殊形式,体现化归的数学思想。

  3、应用新知巩固概念

  练习1、2巩固乘方定义及乘方表示的注意点,培养学生良好的学习习惯。例题进一步强化乘方运算

  4、探索研究发现规律

  通过题组训练,探索规律,合作交流,获得乘方运算的符号法则,充分发挥学生的学习主体作用,体现分类的数学思想。

  5、应用新知巩固训练

  进一步巩固学生对符号法则的运用及利用乘方的知识解决问题的能力

  6、拓展思维知识延伸

  利用故事提高学生学习数学兴趣,培养学生应用数学解决解决问题能力,激发学生的探索的热情。

  7、课堂小结归纳反思

  锻炼学生及时总结的良好习惯和归纳能力

  教学评价分析:

  对学生探究过程的参与及与同学合作交流进行评价,以增强学生学习主动性;

  (1)关注学生的智力参与度

  (2)学生的课堂参与度

  2、对不同层次的学生采取分层练习的评价方式,以满足不同层次的学生知识技能的发展。

《有理数》说课稿3

  一. 教材的地位和作用

  有理数的加法是小学算术加法运算的拓展,是初中数学的起始部分,也是初中数学运算最重要,最基础的内容。熟练掌握有理数的加法运算是学习有理数其它运算的前提,同时,也为后继学习实数、代数式运算、方程、不等式、函数等知识奠定基础。有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。就本章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。二.教学目标 1、认知目标:

  (1)理解有理数加法的意义;

  (2)理解并掌握有理数加法的法则; (3)应用有理数加法法则进行准确运算; 2、 能力目标:

  (1)培养学生准确运算的能力; (2)培养学生归纳总结知识的能力; 3、情感目标:

  (1)通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造。 (2)体会有理数加法的数形思想。

  三.教学重点、难点:

  整节课都是围绕着有理数加法法则进行的,因此根据《教学大纲》的要求,本节课的重点是:有理数加法法则的理解与运用。突破策略:?利用多媒体手段,借助于动画演示,化抽象为具体.?讲清楚探究有理数加法法则的方法和过程。由于学生第一次接触带有符号的两个数

  相加,必须克服小学里长期形成的算术加法的思维定势的影响,特别是异号两数相加的符号和绝对值因此我确定本节课的`难点是:异号两数相加加法法则的理解和应用。突破策略;?精选各种有趣的题型,让学生通过训练,尝试成功. ?利用多媒体手段,借助于动画演示,化抽象为形象,化难为易。

  教学方法

  我在本节课主要采用“引导——发现教学法”,并借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。

  本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具多媒体 ,让学生在多媒体演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。

  在整个教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  学习方法

  七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。观察能力,记忆能力和想象能力也随着迅猛发展。他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。所以在教学中我抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  本节课学生主要采用“探究学习法”,学生通过多媒体的演示;主动探索,发现规律;并及时进行归纳总结,使学生的主体地位得以体现又让学生充分感受探究有理数加法法则的过程,符合学生的认知过程。并且将单调的练习转换成学生互相提问,互相比赛的方式,使学生的学习热情得以调动。

  采用这种学习方法的优点是:学生主动参与知识的发生、发展过程,在解决问题的过程中学习,在探究的过程中,激发学生学习兴趣和创作新热情。掌握这种学习方法后,对学生的终生学习、终生发展有积极的意义。

  教学过程

  《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固。

《有理数》说课稿4

  一、教材分析:

  《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。

  "数的运算"是"数与代数"学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1、知识目标:

  经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。

  2、能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。

  3、情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。

  为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。

  二、学情分析:

  我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张"白纸",因此关注学生的情况对教学是十分有必要的。

  在生活中学生经常会进行同类量之间的.比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为"数的运算"的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的"最近发展区"来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。

  此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。

  三、教法选择及学法指导:

  《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用"引导——发现法"组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,()体验知识产生和发展的全过程。

  一、教材分析:

  《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。

  "数的运算"是"数与代数"学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1、知识目标:

  经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。

  2、能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。

  3、情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。

  为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。

  二、学情分析:

  我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张"白纸",因此关注学生的情况对教学是十分有必要的。

  在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为"数的运算"的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的"最近发展区"来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。

  此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。

  三、教法选择及学法指导:

  《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用"引导——发现法"组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。

  四、过程分析:

  教学环节

  教 学 活 动 设 计

  设 计 说 明

  创设情境自然引入

  1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的?

  2、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4–(–3)后引入课题:有理数的减法

  (板书课题)

  通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础。

  从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣。同时这也符合七年级学生的认知特征,使学生乐于进一步探索。

  探索规律

《有理数》说课稿5

各位评委、老师:

  大家好!今天我授课的课题是“有理数的加法(二)"。下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。

  一、教材分析与处理

  有理数的加法运算律在整个知识系统中的地位和作用是很重要的。初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。

  根据教学大纲的要求,来确定本节课的教学目标。教学总目标为通过本节课的学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。具体从以下三方面而言:一、 知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。二、过程方法: 培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。教学重点:有理数的加法运算律的理解与掌握。教学难点:灵活运用加法运算律使运算简便。

  二、教学方法和数学手段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的运算律,并进行总结。教学过程中尽力引导学生成为知识的发现者,把教师的'点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  三、教学过程的设计

  1、回顾:回顾上节课的内容—有理数的加法法则。让同学回忆之前的内容,渐渐进入学习状态。

  2、引入:在引入上,让同学们运用加法法则进行计算 ,并提出问题,引导学生进行观察和思考。让学生自已动脑思考问题,使同学在解决问题的同时产生一种成就感,从而更加积极主动的学习,并且营造了良好的学习氛围。

  3、授课:法则的得出重在体现知识的发生,发展,形成过程。通过同学的观察和思考,并在老师的指导下总结出有理数的运算律:加法交换律和加法结合律在有理数范围内适用。并准备一些相应的例题,主要采取讲练结合的方式,边做边总结。

  4、课堂小结:归纳总结由学生完成,老师做适当的补充和引导。最后教师对本节课进行最后的说明和归纳。

  5、随堂练习:在习题的配备上,我特别注意针对性,所以习题的配备虽简却精。主要让学生在练习的过程中能够对本堂课的内容理解进一步加深,同时注重调动学生的积极性,使学生在一种比较活跃的氛围中学习,并解决问题。

  6、作业设计:作业的设计旨在学生对本节课的知识进行复习和巩固,主要起到延续课堂的作用,让同学们对知识的掌握更加牢固。

  以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

《有理数》说课稿6

  一、教材分析:

  “数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算.通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.

  鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:

  1 、知识目标:

  经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。

  2 、能力目标:

  经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。

  3 、情感目标:

  在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。

  为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用.教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.

  二、学情分析:

  我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。

  在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在.因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。

  此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强.因此在教学过程中要做好调控。

  三、教法选择及学法指导:

  《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者.基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学.其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。

  上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的.本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。

  四、过程分析:

  教学环节教学活动设计设计说明

  一、创设情境,自然引入

  1 、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。提问:合肥今天的温差是多少度?你是怎样计算的?

  2 、自然过渡到乌鲁木齐的温差的计算问题,在学生列出算式4 –(– 3)后引入课题:有理数的减法

  (板书课题)通过温度的比较让学生明白减法的实际意义在于同类量之间的比较,为后来运用减法解决实际问题打下基础.

  思考:从学生身边的实际引入新课,让学生感受到数学就在自己身边,增强学数学的乐趣.同时这也符合七年级学生的认知特征,使学生乐于进一步探索.

  二、探索规律,归纳结论

  在学生提出可以用4 –(– 3)计算乌鲁木齐的温差后,教师鼓励学生充分探索计算4 –(– 3)的方法,得出结果为7。

  在学生得出4 –(– 3)=7后,教师引导学生比较4 –(– 3)=7与4+3=7这两个算式及其结果.

  在学生对有理数的减法计算提出初步的猜想“减去一个数等于加上这个数的相反数”后,教师设问:

  只有4 –(– 3)=4+3=7这一个例子,你能不能断定这个猜想成立?

  引导学生通过列举具有不同代表性的特例,如:正数减去正数、正数减去零、正数减去负数、负数减去正数、负数减去零、负数减去负数、零减去正数、零减去零、零减去负数等.

  最后请学生根据上面的数学活动经验自主总结归纳有理数的`减法法则.(教师板书这一法则)学生得出结果的方法可能不一样,教学中只要是合理的都应鼓励。

  如采取逆运算的方法,或利用温度计直接数读数的方法等。

  对4 –(– 3)=7与4+3=7的观察、比较,是进一步探索有理数减法法则的基础.可借助多媒体课件演示算式的规律,帮助学生探索其中的内在关系。

  思考:从提出猜想到得出正确得结论之间有一个探索验证的过程,这个过程正是新课程改革所提倡的“做数学”的过程,教学中要提供足够的时间让学生探索、交流。

  学生通过相互补充,不断列举不同代表性的特例,在合作交流中彻底理解有理数相减时总成立的一般法则.而这个“举例”过程,正是一个“数学化”的过程,正是一种对数学素养的培养。

  学生的归纳可能不规范,教师可请学生互相交流、补充使之规范,从而培养学生的抽象概括能力及口头表达能力。

  三、例题讲解,即时反馈

  1 、师生共同完成P53例1,其中第(1)小题教师讲解,其余各题请学生完成.

  在完成例1后,教学中采用分组竞赛的方法及时处理P54 “随堂练习”.

  2 、师生共同完成P53例2 、 P54例3

  教师要通过引导学生分析实际情境,让学生在实际情境中进一步体会减法的意义,并熟练利用减法法则进行减法运算。

  教师讲解第(1)小题时要点明算理,规范解答。

  互动交流式的练习方式让学生的学习更积极主动.学生在活动中能体会参与数学活动的乐趣。

  例2 、例3是实际问题,它们的解答有利于培养学生“用数学”的意识。

  四、拓展应用

  师生一起分析P55的习题第5题.在弄清题意后,请学生填写方阵图.

  解决问题的核心是找到“每个数都加上的同一个数”是什么,这就是有理数的减法在这个实际情境下的应用.

  另一方面,本题也提供了一个三阶幻方的一般填法,拓展了知识面,并为“试一试”的思考。

  五、课堂总结

  多媒体出示总结性问题:

  1 、这一节课我们一起学习了哪些知识?

  2 、对这些内容你有什么体会,请与你的同伴交流。

  鼓励学生积极发言,增进师生、生生之间的交流、互动。

  六、布置作业

  1 、课堂作业:

  P54—55习题2.6第1 、 2 、 3 、 4题

  2 、课外思考:

  P55习题2.6试一试利用课堂作业及时反馈本课重、难点。

  利用课外思考给部分学生提供进一步发展的机会。

《有理数》说课稿7

尊敬的各位评委、老师、亲爱的同学们:

  大家好,我是1号选手,今天我说课的内容是新课标人教版七年级上册第一章第四节的内容《有理数乘法》,我将从以下几个方面进行说课。

  一、教材分析

  (一)教材的地位与作用

  有理数的乘法是在引入了负有理数以及学过有理数的加法之后学习的。它与有理数加法运算一样,是建立在小学算术的基础上。因此,有理数乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。

  (二)学情分析

  1、学生在小学的学习中已经熟练掌握了两个正数之间、正数与零之间的乘法运算。

  2、通过对有理数加法运算的学习,学生对负数参与运算有了一定的认识,已经明确计算时要先确定和的符号,再确定和的绝对值的基本方法。

  3、在学习有理数加法法则的过程中,学生已经尝试了借助数轴来分析问题的方法。

  根据课程标准对本节教学内容的要求和学生原有的知识经验及认知规律,确定如下教学目标:

  (三)目标分析

  1、知识与技能目标

  掌握有理数乘法的意义和法则,能熟练运用有理数乘法法则进行乘法运算。

  2、过程与方法目标

  通过对实际问题的观察、分析、操作概括等活动,经历对有理数乘法法则的探索过程,培养学生的分析概括能力。

  3、情感态度与价值观

  激发学生学习兴趣,培养学生化归及分类讨论思想和勇于探索的精神。

  (四)教学重、难点分析

  根据本节课的内容和学生的认知发展水平,确定本节课的重点是:掌握有理数的乘法法则,会进行有理数的乘法运算。难点是:有理数的乘法法则的探索和对法则的理解。

  (五)教法和学法

  《新课程标准》中明确指出:学生是学习的主人,教师是学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生的实际情况,教学中我主要采用“引导——探究法”组织教学。同时鼓励学生采用自主探索与合作交流相结合的方式进行学习,让学生亲身体验知识的发生、发展、发现的全过程,增强学生的参与意识,促进学生对知识的理解和掌握,真正提升学生的数学素养。

  二、教学过程

  基于上述思想,为了有效的突出重点,突破难点,实现知识的“再创造”,本节课的教学过程我设计了如下几个环节:

  第一个环节:创设情境,提出问题。

  对于引入课题,我采用回顾乘法的意义,要求学生把几个相同负数的连加,写成乘积的形式并口答,这时只引入异号两数相乘的情况,缺少两个负数相乘以及0与负数相乘这两种类型。接着提出问题:你能给出下列各式的结果吗?两个有理数相乘有几种情况?

  回顾复习以前的相关知识,由学生所熟悉的正数乘法运算引入未知的负数参与的乘法运算,能够形成知识迁移,做好中学与小学知识的衔接,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到新的探索活动中就过来。

  第二个环节:类比感知,归纳结论。

  根据七年级学生形象思维能力强,而抽象思维能力还在形成的特点,本着由浅入深,由易到难,由形象思维过渡到抽象思维的原则,我设计了:蜗牛问题,建立模型,探索规律,归纳法则这样四个层次,来逐步展开对课题的探究。这样可以更好的展示知识的形成过程;更好的突出重点,突破难点;可以减轻学生对法则的理解难度。

  1、蜗牛问题

  第一步,借助多媒体,出示“蜗牛问题”。用多媒体课件演示一只蜗牛在直线L上,沿着一定的方向,以每分钟2cm的速度爬行,要求学生根据多媒体演示,直观感受蜗牛最后所在的位置,然后回答4个问题,如果蜗牛一直向右爬行,3分钟后它在什么位置?蜗牛一直向左爬行,3分钟后它在什么位置?蜗牛一直向右爬行,3分钟前它在什么位置?蜗牛一直向左爬行,3分钟前它在什么位置?通过演示,学生很容易就能看出各种情况下蜗牛最后所在的位置,因此我打算指名学生回答,并对回答正确的学生给予一定评价。本环节动画演示,激发学生的学习兴趣和探究欲望,但是学生的这种认识是直观的,感性的,需要一定的理性思维作支撑,因此,我进入下一个环节————建立模型。

  2、建立模型在本环节中,我给与学生充分的合作交流、自主探索的时间和空间。通过创设情境、设置问题并用课件向学生演示蜗牛在直线上的运动过程,激发学生的学习兴趣。而且设置了四个问题:第一个问题,可以看成是与以前学过的乘法一样,学生容易理解。第二个问题中,结合有理数加法时的讲法,向右为正,向左为负,很容易得出负数与正数相乘结果。第三个问题是关键,在这个问题中,对于时间规定了现在前为负,有了这个规定,就可以得出正数与负数相乘的结果。此难点一但突破,第四个算式学生通过类比,也就迎刃而解了。

  这样设计符合七年级学生的心理特点,易引起学生的学习兴趣。在此教学活动中我以学生的发展为本,让学生经历探索的过程,培养学生把实际问题抽象成数学问题的能力和自主学习的能力。通过文字的叙述和算式的有机结合,使得乘法算式的.得出自然合理,更有助于一般结论的归纳。课件动画效果可以使情境更生动,有助于学生思考问题得出结论,使学生由感性认识上升到理性思维。接着我引导学生进入第三步:探索规律。

  3、探索规律

  通过对建立模型中4个问题的解答,学生对有理数乘法有了一定的认识,接着让学生根据自己对有理数乘法的思考,填空:让学生清楚同号相乘,积的情况以及异号相乘,积的情况,并且明确乘积的绝对值等于各乘数绝对值的积。

  在上面的问题中只涉及到同号两数相乘与异号两数相乘,于是我又设置了想一想。新课程标准指出:“要让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程。”启发学生探索有理数中的特殊数“0”与其他数相乘的规律,以此引导学生运用数学模型解决实际问题、通过前面问题的解决,学生对有理数的乘法法则已经到了呼之欲出的地步,于是我进入第4个环节:法则归纳。让学生对有理数乘法法则进行归纳,以填空形式引导学生对照实例自主完成。进一步引导学生观察积的符号的特点,师生共同归纳出有理数的乘法法则。

  4、归纳法则

  你能概括出有理数的乘法法则吗?归纳:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。(多强调)

  由于学生刚接触负数,对负数的意义理解不深,计算时很容易算对绝对值的乘积而忽视了符号问题,或者,注意了符号而又忘记了把绝对值相乘,于是我设置了做一做及想一想,让学生能准确的运用法则进行有理数的乘法运算,并清楚运算时的几个步骤、然后引导学生进行归纳:有理数相乘,先确定积的符号,再决定积的绝对值。通过这些层层设置的问题,引导学生讨论发现,归纳结论。这些环节展示了知识的形成过程,培养了学生探究能力,锻炼了学生概括表述能力、在探究归纳的过程中,也培养学生类比和分类讨论的思想,以及从特殊到一般的思想,并渗透数学建模的思想方法。

  第三个环节:知识运用,加深理解。

  1、运用法则进行计算

  在知识运用,加深理解这一环节,为了提高学生计算的准确度,培养学生的运算能力,并为多个有理数的乘法及乘除法混合运算奠基,在选题时,例1安排了分数、小数、带分数及整数参与运算。在(2)中设计了整数与小数相乘、(4)设计了小数与带分数相乘,在学生解题的基础上,都分别总结了两种计算方法;并由学生总结解题的方法和技巧:当因数是小数时,一般可化为分数再相乘;当因数是带分数时,一般要化为假分数再相乘。同时通过(1)的计算要让学生明白:乘积是1的两个数互为倒数、

  2、运用法则解决实际问题

  有理数的乘法运算法则只是计算工具,更主要的还是运用它来解决生活中的实际问题,因此我设计了例2,每登高1km的气温变化量为—6℃,攀登3km后,气温有什么变化,这个问题的解决对学生来说,难度不大,因此我打算让学生上黑板演板。通过这个问题的解决,让学生体验到数学来源于生活又服务于生活的数学理念,培养了学生的应用意识。

  两个例题的解决采取了师生互动方式,评价采取生生评价的方式,提高兴了学生学习兴趣,培养了学生严谨的数学思维习惯。

  为了充分挖掘了学生的思维潜能,我设置了变式训练,拓展思维这一环节、第四个环节:变式训练,拓展思维。

  通过变式训练题,进一步加深了学生对有理数乘法法则的理解与应用,使学生的学习巩固过程成为再深化、再创造的过程。第1题的6个计算是对法则进行巩固;第2题是对法则运用的巩固;第3个问题让学生给出乘积为—20的乘法运算的式子,很多学生会给出(—5)×4=—20或者4×(—5)= — 20等异号两数相乘的式子,但也有很多学生会给出三个或者三个以上数相乘的式子,此时,教师给予高度评价。这种开放性的试题,让不同学生的思维潜能得到展示,体现了“不同的人在数学上得到不同的发展”的数学理论。

  接着在思考题中让学生独立思考、分组讨论,完成填空,进一步培养学生的合作意识,使学生有效的理解本节课的难点。

  最后利用摸牌游戏,激发学生的学习兴趣,抓住学生对竞争充满兴趣的心理特征,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。

  第五个环节:总结收获,畅谈体会。

  在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价,让学生对所学知识有比较清晰的轮廓体系,也让学生形成善于反思、总结的学习习惯。

  及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法,同时培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。

  第六个环节:布置作业,巩固深化。

  新课程强调发展学生的数学交流能力,我用小日记给学生提供一种表达数学思想和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。必做题和选做题,体现分层教学,让“不同的人在数学得到不同的发展”,从而让学生巩固本节所学知识,并能解决实际问题。

  本节课我的板书设计是这样的,这样板书一目了然,直观形象,达到了教学的目的。

  三、教学反思

  在教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教学法,通过课件和师生的双边活动,使学生的知识和能力得到提高。通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,让全体学生参与教学的全过程,从而更好的促进学生全面、持续、和谐的发展。

  我的说课到此结束,恳请各位专家批评,指正。谢谢大家!

《有理数》说课稿8

  教学目的

  1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

  2.通过有理数的加法运算,培养学生的运算能力.

  教学重点与难点

  重点:熟练应用有理数的加法法则进行加法运算.

  难点:有理数的加法法则的理解.

  教学过程

  (一)复习提问

  1.有理数是怎么分类的?

  2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

  3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

  -3与-2;3与-3;-3与0;

  -2与+1;-+4与-3.

  (二)引入新课

  在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

  (三)进行新课 有理数的加法(板书课题)

  例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

  两次行走后距原点0为8米,应该用加法.

  为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

  1.同号两数相加

  (1)某人向东走5米,再向东走3米,两次一共走了多少米?

  这是求两次行走的路程的和.

  5+3=8

  用数轴表示如图 :略

  从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

  可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

  (2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

  显然,两次一共向西走了8米

  (-5)+(-3)=-8

  用数轴表示如图 :略

  从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

  可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

  总之,同号两数相加,取相同的符号,并把绝对值相加.

  例如,(-4)+(-5),同号两数相加

  (-4)+(-5)=-( ),取相同的.符号

  4+5=9把绝对值相加

  (-4)+(-5)=-9.

  口答练习:

  (1)举例说明算式7+9的实际意义?

  (2)(-20)+(-13)=?

  2.异号两数相加

  (1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

  5+(-5)=0

  可知,互为相反数的两个数相加,和为零.

  (2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

  就是 5+(-3)=2.

  (3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

  由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

  就是 3+(-5)=-2.

  请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

  最后归纳

  绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0

  例如(-8)+5绝对值不相等的异号两数相加

  85

  (-8)+5=-( )取绝对值较大的加数符号

  8-5=3 用较大的绝对值减去较小的绝对值

  (-8)+5=-3.

  口答练习

  用算式表示:温度由-4℃上升7℃,达到什么温度.

  (-4)+7=3(℃)

  3.一个数和零相加

  (1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

  显然,5+0=5.结果向东走了5米.

  (2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

  容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

  请同学们把(1)、(2)画出图来

  由(1),(2)得出:一个数同0相加,仍得这个数.

  总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

  有理数加法运算的三种情况:

  特例:两个互为相反数相加;

  (3)一个数和零相加.

  每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

  (四)例题分析

  例1 计算(-3)+(-9).

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

  解:(-3)+(-9)=-12.

  例2

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大一个较小)

  解: 解题时,先确定和的符号,后计算和的绝对值.

  (五)巩固练习

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

《有理数》说课稿9

  今天我将要为大家说的课题是:有理数的加减法第一课时

  首先,我对本节教材进行一些分析

  ㈠教材结构与内容简析

  本节内容在全书及章节的地位:略

  ㈡教学目标:

  1.知识与技能:

  使学生掌握有理数加法法则,并能运用法则进行计算;

  2.过程与方法:

  在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力

  3.情感态度与价值观

  通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。

  ㈢教学重点:有理数加法法则。

  ㈣教学难点:异号两数相加的法则。

  下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

  ㈤教法

  数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,

  我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的'教学方法

  ㈥学法

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  1、理论:记忆加法法则;

  2、实践:足球赛记分动笔动手;

  3、能力:加法运算能力

  ㈦教学准备:课件或章前足球赛图

  ㈧教学设计:

  一、创设情景,孕育新知

  活动一:观摩足球赛:

  足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

  (1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①

  (2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.

  答:上半场赢3球,下半场输2球,全场赢球,也就是

  (3)(-2)=1;③

  上半场输了3球,下半场赢了2球,全场输了1球,也就是

  (-3)(2)=-1;④

  上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

  (3)0=3;⑤

  上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;

  上半场打平,下半场也打平,全场仍是平局,也就是

  00=0.⑥

  二、自主探究,获取新知

  活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?

  这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数。

  活动三:

  应用举例变式练习

  例1计算下列算式的结果,并说明理由:

  (1)(4)(7);(2)(-4)(-7);

  (3)(4)(-7);(4)(9)(-4);

  (5)(4)(-4);(6)(9)(-2);

  (7)(-9)(2);(8)(-9)0;

  (9)0(2);(10)00.

  学生逐题口答后,教师小结:

  进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

  解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)

  =-(39)(和取负号,把绝对值相加)

  =-12.

  活动四:教学22页例1、例2(详见课本)

  三、巩固练习,运用新知

  活动五:练习:23页1.2

  四、归纳小结,升华新知

  同学们分组讨论,学习了哪些知识?并交流。

  有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加;

  2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

  3.一个数同0相加,仍得这个数

  知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

  五、回归实践,再用新知

  作业:31页:课外作业选做

  针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!

《有理数》说课稿10

  一、教学内容

  《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

  在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

  二、设计理念

  七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以"问题串"引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

  三、教学目标与重难点

  目标:

  1.使学生掌握有理数加法法则,并能运用法则进行计算;

  2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

  3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

  重点:会用有理数加法法则进行运算。

  难点:异号两数相加的法则。

  四、学情分析

  1.学生非常熟悉正数加正数,正数加零的情况。

  2.有理数的'分类、数轴、绝对值的相关知识已经掌握。

  3.学生善于形象思维,思维活跃,能积极参与讨论。

  五、教学策略

  1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

  2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

  3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

  六、教学流程

  1.回顾旧知,启发思维

  展示课件上的三个问题,请同学们思考并回答。

  (1)有理数是怎么分类的?

  (2)有理数的绝对值是怎么定义的?

  (3)下列各组数中,哪一个数的绝对值大?

  7和4; -7和4; 7和-4; -7和-4

  【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

  2.创设情境 引入课题

  问题一:两个有理数相加,有多少种不同的情形?

  答:正+正,负+负,正+负,正+0,负+0,0+0.

  【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

  问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

  请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

  师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回"研究生"共同研究有理数的加法运算吗?

  (出示课题)

  【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

  (二)分析问题探究新知

  问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

  学生们各抒己见,总结法则。

  1、 同号两数相加,取相同的符号,并把绝对值相加。

  2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0.

  3、 一个数同0相加,仍得这个数

  老师总结口诀:"同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑".

  【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

  (三)运用新知深入体会

  例1计算(-3)+(-9)。

  分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)。

  解:(-3)+(-9)=-12.

  分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

  解题时,先确定和的符号,后计算和的绝对值。

  课堂练习:

  1.计算(口答)

  (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

  (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

  2.计算

  (1)5+(-22); (2)(-1.3)+(-8)

  (3)(-0.9)+1.5; (4)2.7+(-3.5)

  3.用">"或"<"填空:

  (1)如果a>0,b>0,那么a+b____0;

  (2) 如果a<0,b<0,那么a+b____0;

  (3) 如果a>0,b<0,|a|>|b|,那么a+b____0;

  (4) 如果a<0,b>0, |a|<|b|,那么a+b____0;

  【设计意图】帮助学生熟悉法则,并养成"算必有据"的习惯。更重要的是渗透了研究一般与特殊关系的思想。

  问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

  (1)如果a>0,b>0,那么a+b=+(|a|+|b|)

  (2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

  (3) 如果a>0,b<0,|a|>|b|,那么a+b=+(|a|-|b|)

  (4) 如果a<0,b>0, |a|<|b|,那么a+b=-(|b|-|a|)

  (5)a+0=a.

  【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

  (四)延伸拓展敢于挑战

  问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

  问题六:小学学过的运算律是否适用于有理数的加法?

  【设计意图】由课堂延伸到课外,()不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

  (五)归纳总结感受思想

  (1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

  (2)本节课你学习到了哪些数学思想方法?

  【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

  (六)布置作业

  (1)P56 习题1、3

  (2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

  【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

  七、设计说明

  1.通过"问题串"的设置,激发兴趣,引起学生深层次的思考;

  2.通过"互举例子"、"小组竞赛"两个活动,鼓励学生主动参与活动。

  3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

  4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

《有理数》说课稿11

  一、说教材

  1、教材的地位及作用。

  有理数的运算是本章的重点,是学好后续内容的重要前提。本节课是在学习了有理数乘法的基础上进行的,是熟练进行有理数运算的必备知识,它与有理数的其它运算形成了一个完整的知识体系。整节内容渗透了从一般到特殊、化未知到已知、用已知求新知的数学思想方法。通过本节学习让学生感受数学学习的乐趣,体验数学思维的力量,发展学生自主创新的意识。

  2、教学目标。

  根据学生已有的认知基础及本课教材的地位及作用,依据课程标准,我确定本节课的教学目标为:

  (1)知识技能方面:理解有理数除法的意义,熟练掌握有理数除法法则,会求有理数的倒数,会进行有理数的除法运算。

  (2)过程与方法方面:通过有理数除法法则的导出及运算,让学生体会转化思想,感知数学知识的普遍性、相互转化性。

  (3)情感态度方面:通过生生合作,使学生体会在解决问题中与他人合作的重要性,通过积极参与教学活动,让学生充分体验问题的探索过程,培养学生的探究意识,激发学生学好数学的热情。

  3、教学重点、难点

  在整个知识系统中,学生能够熟练地进行有理数的运算是很重要的,因此本节课的教学重点确定为熟练进行有理数的除法运算。勤思、善思,是学好数学的必要条件。本节内容是在有理数乘法的基础上进行的,有理数的除法可以利用乘法进行,基于此,教科书中给出了两种法则,对初一学生来说,理解这两种法则有一定的难度,因此,本节课的教学难点定为:理解有理数的'除法法则。

  二、说教法

  为了突出重点、突破难点,使学生能达到本节设定的教学目标,我采用的教学方法是:

  针对初一学生的思维依赖性强,思维活跃,但抽象概括能力相对较弱的特点,本节课充分借助多媒体来增强直观效果。运用“自学—辅导”模式,遵循“面向全体,尊重主体”的教学理念,采用“先学后教,当堂训练”的课堂教学结构,把教学过程化为学生自学、大胆猜想、合作交流、归纳总结的过程,使课堂教学遵循从生动、直观到抽象思维的认识规律。

  三、说学法

  在教学活动中,为了激发学生自主学习,真正做到课堂教学面向全体学生,在教师的组织引导下,采用自主探究、合作交流的研讨式学习方式,让学生思考问题、获取知识、掌握方法,从而培养学生动手、动口、动脑的能力,成为学习的真正主人。

  四、教学过程设计

  1、设计问题,导入课题,提出课堂教学目标。

  本着设计问题要有启发性、探索性的原则,首先出示了学生熟知的问题8÷(-4)=?也就是说(-4)x?=8

  得出(-4)x(-2)=8所以8÷(-4)=-2而我们知道8x(-1/4)=-2所以8÷(-4)=8x(-1/4)

  2、指导学生自学。

  课件揭示自学指导

  (1)阅读教材第34页内容;

  (2)小组讨论疑难问题。这样做的目的是:让学生带着明确的任务,掌握恰当的自学方法,从而使自学更有效,与此同时,坚持每次自学前给予方法指导,可以使学生积累自学方法,从而提高学生的自学能力。

  3、学生自学,教师巡视。

  学生根据自学指导开始自学,通过察言观色,了解学生自学情况,使每个学生都积极动脑,认真学习,从而挖掘每个学生的潜力。在这个过程中,我会重点巡视中差的学生,帮助他们端正学习态度。

  4、检查自学效果。

  课件展示与例题类似的习题,让后进生板演或回答,要面向全体学生,后进生回答或板演时,要照顾到全体同学,让他们聆听别人回答问题,随时准备纠正错误,通过巡视,搜集学生存在的错误,并在头脑里分类,哪些属于新知方面的,哪些属于旧知遗忘或粗心大意的,把倾向性的错误用彩色粉笔写在黑板对应练习处,供讲评时用。通过这个过程,培养学生分析问题和解决问题以及学已致用的能力。

  5、引导学生更正,指导学生运用。

  学生观察板演,找出错误或比较与自己做的方法,结果是否与板演的相同,学生自由更正,让他们各抒己见,小组讨论,说出错因,更正的道理,引导学生归纳,上升为理论,指导以后的学习。这个过程既是帮助后进生解决疑难问题,又通过纠正错误,训练一题多解,使优等生了解更加透彻,训练他们的求异思维和创新思维,培养了他们的创新精神和一题多解的能力。同时,在这个过程中,要引导学生寻找规律,帮助学生归纳上升为理论,引导学生找出运用时可能出现的错误,这是从理论到理论架起一座桥梁,以免学生走弯路。

  6、当堂训练。

  为学生巩固知识,加深理解,我给出一组练习,这组题目,分三个梯度:法则的直接运用、有理数的除法运算、解决实际问题,而且把这些题分为必做题、选做题。通过完成课堂作业,检测每一位学生是否都能当堂达到学习目的。在这个过程中,我会不断巡视,了解哪些同学真正做到了“堂堂清”,哪些同学课后需要“开小灶”,使课外辅导要有针对性。

  7、反思小结,观点提炼。

  通过前六个环节,学生已对本节课所学的内容有了较深刻的理解和掌握,引导学生进行反思,整理知识,总结规律,提炼思想方法。让学生从多角度对本节课归纳总结、感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。

  8、布置作业。

  课本38页四题让学生做到作业本上,以考查学生对本节基本方法和基本技能的掌握情况。

  五、两点说明。

  (一)、板书设计

  这节课的板书我是这样设计的,在黑板的正上方中间处写明课题,然后把板书分为左右两部分,左边是有理数除法的法则,为了培养学生把文字语言转化成符号语言的能力,板书中只出现两种法则的符号表示,从而加深他们对法则的理解,板书右边是学生的板演,以便于比较他们做题中出现的问题。板书下方是课堂小结,重点写出:有理数的除法可以转化成有理数的乘法,以体现本节课中的重要的数学思想方法。

  有理数的除法

  有理数除法的法则:a÷b=a×1/b(b≠0)板演练习:

  1

  a>0,b>0,a/b>0;a<0,b<0,a b="">0; 2

  a>0,b<0,a/b<0;a<0,b>0,a/b<

  0.3

  课堂小结:有理数的除法有理数的乘法

  转化

  (二)、时间分配:

  教学过程中的八个环节所需的时间分别为:1分钟、2分钟、5分钟、8分钟、8分钟、16分钟、2分钟、1分钟。

  教学目标

  1、理解有理数除法的意义,掌握有理数除法法则一,会进行有理数除法运算。

  2、通过有理数除法法则的导出及运算,让学生体会转化思想.培养学生新旧知识联系的思维能力。

  3、通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  通过新旧知识的联系,激发学生的求知欲望。

  教学重点

  有理数除法法则

  教学难点

  (1)商的符号的确定

  (2)0不能作除数的理解

  教学过程

  两段式设计的基础:可以运用学生学习有理数减法法则时用过的方法对推导除法法则的正迁移作用

  一、从学生原有认知结构设计问题

  1、计算:4×(-2);(2)-3×5;(3)(-2)×(-5).

  2、已知乘积和一个因数,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.今天我们就来探求有理数的除法应当怎样进行?

  二、学生预习问题的设置

  议一议:

  (1)对于除法运算(-8)÷(+4),你能用乘法的知识求出商来吗?如果能,所得的商应是什么数?

  (2)请你举出更多有理数除法的例子试一试。举出4个例子。

  (3)你能由此归纳出和有理数乘法法则相国类似的有理数除法法则吗?

  三、学生课堂交流阶段

  1、组内交流

  2、小组汇报

  四、教师总结

  1.同号两数相除得正,异号两数相除得负,并把绝对值相除;

  2.0不能做除数,0除以任何数都得0。

  教师在总结中要对这种逆运算的关系进行强调,因为4×(-2)=-8,所以(-8)÷(+4)=-2;

  同样-3×5=-15,15÷(-3)=5.

《有理数》说课稿12

  本节课选自上海市二期课改新教材数学六年级第二学期第五章:有理数5.6节有理数乘法的第一课时.

  从以下四个方面:教材分析教材处理教法和学法教学过程向大家介绍我对本节课的理解..

  教材分析

  1.本节在教材中的地位和作用

  有理数的减法和除法是通过转化为有理数的加法和乘法来进行计算的,所以加法和乘法的运算是有理数运算中的重点部分。本节内容是培养学生计算能力的一个重要环节,与今后学习的有理数的混合运算、实数运算、代数式的运算、解方程以及研究函数等内容密切相关。

  有理数乘法分为2课时,第一课时着重研究有理数乘法的法则,使学生通过实际问题的探讨来接受乘法法则的合理性,让学生感知到数学知识来源于生活并应用于生活。同时培养了学生的分类研究意识和抽象概括的能力,也为后面学习的乘方和混合运算打下了好的基础。

  2.教学目标

  教学大纲中要求学生理解有理数的乘法法则,学会运用法则准确运算。同时结合二期课改的理念:培养学生的数学能力,确定如下的教学目标。

  1)知识与技能目标:理解有理数乘法法则,会利用法则进行乘法运算。培养学生的运算能力

  2)过程与方法目标:通过探索有理数乘法法则的过程,培养学生观察、归纳、概括能力。学习分析问题时分类研究、举例验证和抽象概括的`方法。

  3)情感态度与价值观:感受法则与生活的密切联系,理解有理数法则的合理性,激发学生对数学学习的兴趣、对生活实践的积极态度。

  3)教学重点和难点

  预备年级这一阶段的学生很难把握学习内容的主要特征,往往对法则的理解和运用有很大的困难,因此本节的重点和难点确定为:

  教学重点:理解和运用有理数的法则

  教学难点:有理数乘法中符号的法则

  教材处理

  本节结合课本中的行程问题的实例,配合多媒体的运用,把问题直观形象的展现在学生面前,通过直观的教学方式,让学生参与进来,通过学生的试验---观察---感性认识----理性认识的探究过程获取运算法则的知识,这一过程能使学生更加体会到数学贴近生活,理论来自于实践,在探究中能感受到“数”“形”结合的数学思想。

  在法则的运用上利用课本上的练习达到熟练法则的目的,通过变式训练的配备达到提高学生能力的目的,在课堂中适当安排学生遍题互测的环节,更能调动学生学习的积极性,活跃课堂的氛围。

  教法和学法

  在教学过程中,要注重教师的导向作用和学生的主体作用,通过直观形象的教学方式吸引学生成为知识的发现者,为学生创设良好的动手、动脑的机会,为学生的自主探究、自主学习提供了一个好的环境,使其在学习知识的同时得到能力上的提高。

  教学过程

  教学环节教学设计设计意图引入问题:结合小学的知识说出两个有理数乘法运算的情形?(正×正正×0 0×0正×负负×负)创设情景,引入新课,探索新知,培养学生思维的有序和全面性。

  新课讲解

  一、探索规律演示课件:通过行程问题的实例,用时间、速度、位置三者之间的关系来为上诉几种情况的有理数相乘的例子编排实际的情形。结合课件的演示师生共同分类探究列出几种算式。增强探索法则的直观性,促进学生对法则的感性认识,使学生感受到法则的合理而自然的接受,培养分类探究的意识和分析观察的能力。

  二、概括归纳结合上面所得出的几种算式,观察每个式子中的两个因数及积的符号,学生通过观察、讨论得出有理数的乘法法则进一步感受有理数的乘法法则,提高学生的归纳总结能力,和运用数学语言的表达能力

  三、例题讲解及变式训练通过例题的示范,规范书写的形式,熟练法则的运用。通过变式训练(结合自己的学生的实际情况设置)提高学生对法则的应用水平和运算能力。

  四、自主小结五、作业的安排板书设计5.6有理数的乘法

《有理数》说课稿13

各位领导、各位老师:

  上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。

  今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。

  一、 教材分析

  1、教材的地位与作用:

  有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

  2、教学目标:

  根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下:

  ⑴、知识与技能:

  让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。

  ⑵、过程与方法:

  在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。

  ⑶、情感、态度和价值观:

  让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

  3、教学重点与难点:

  有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

  二、教法学法

  1、学情分析:

  在知识掌握方面,由于学生刚学完有理数的'加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。

  在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

  在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

  2、教学策略:

  根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

  三、教学过程

  1、设置游戏,引入新课:

  首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

  游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: × × × × ;

  游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;

  最后引导学生思考这两个算式的特点,引入新课。

  这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

  2、合作交流,探索新知:

  先让学生分组讨论下面算式特点:① × × × × ,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)

  接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a 。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。

  n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

  3、迁移训练,总结规律:

  在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙- ﹚×﹙- ﹚×﹙- ﹚,④﹙- ﹚×﹙- ﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。

  本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

  4、应用新知,尝试练习:

  本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚ 、-2 、﹙ ﹚ ,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2 ,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。

  第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

  5、归纳小结,形成体系:

  首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

  四、设计说明

  本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。

《有理数》说课稿14

  一、教材分析

  教材的地位和作用

  本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.

  二、目标界定

  常言说,好方法不如正确的方向,数学课堂上的目标就是一节课的灵魂和方向标,为此结合有理数在数学数体系中的位置以及学生已有知识和认知规律,我制定了以下三维目标

  知识:有理数的概念及分类。

  方法:数学分类方法。

  情感:培养学生选定标准、严密分类的数学素养。

  三、 教学重点、难点及突破策略:

  教学重点:有理数的概念。

  教学难点:正确理解分类的标准和按一定的标准进行分类;合作交流、查找资料进行难点突破。

  四、说教学流程

  鉴于初一年级学生的年龄特点,及已有知识和认知的规律。他们对概念的理解能力,分析剖析、问题的能力都不强,精神不能长时间集中,但思维比较活跃、好奇心比较强。我决定采取启发式教学法及激趣、设疑情感性教学,创设问题情境,引导学生主动思考,用大量的实例和生动、严密的数学语言激发学生学习兴趣,调节学习情绪。

  本节课通过创设问题情境导入课题;阅读质疑,自主探究;多元互动,合作探究;训练检测,目标探究;迁移运用,拓展探究五个环节完成本课时的学习。

  导入:(1分钟)有人说,中国汉字最具创造力,一个字可以写成一幅画,那么我抓住有理数一词的字面意思,巧设课引:同学们,看课题:教师直接板书课题《有理数》,什么是有理数呢?难道咱们今天要给数的家族评理来了吗?看哪些是有理的数?要想弄个明白,请把心思投入这节课的学习。

  行家一再提倡:教师不是要教给学生知识,而是教给他们学知识和使用知识的方法。所以,我以自主阅读、质疑、独立思考、合作探究贯穿学生获取知识的`全过程。

  阅读质疑,自主探究(10分钟)

  1、自主阅读课本第6页,(1)找到有理数的概念。(2)明确有理数(按整数和分数)的分类。2.记录你对问题的理解及疑惑。

  2、阅读提示:深入剖析,围绕下列问题阅读与思考:

  通过最近的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗?_______,_________,______。(比如正负数、零或整数分数,突出其不同类。为下面的按不同标准分类埋伏笔。)

  问题展示(1):观察三位同学所写的数做一下分类,该分为几类,又该怎样分呢?请认真思考后把自己的想法与别人交流。

  分为类,分别是:

  归纳:

  统称为整数,统称为分数统称为有理数.

  (2):我们是否可以把上面的数换另一种角度进行两类?如果可以,应怎样分呢?(正负数和零)

  3、数集概念解释:深奥道理浅显化,为使学生易于接受数集这一概念,我要举生活中物以类聚人以群分的例子,使道理生活化,并能够借此对学生进行思想品德教育。把一些数放在一起,就组成了一些数的集合。如所有的整数放在一起就组成了整数集合。数集一般用圆圈或大括号表示。

  多元互动合作探究(10分钟的时间)

  整体把握知识点,再次阅读课本6--7页的相关内容,自主加合作重点梳理有理数分类的两种方法(整数和分数;正负数和零)和不同的数集。

  如所有的正数组成正数集合,所有的负数组成负数集合;零和负数统称为_非正数集合,零和正数统称为非负数集合。

  训练检测目标探究(10分钟)

  有人说,知识就是力量,使用知识才可以使知识的能量进行释放。相信大家有能力使用今天所学的知识完成下面的题目。

  1、下列说法中不正确的是……………………………………………()

  A.-3.14既是负数,分数,也是有理数

  B.0既不是正数,也不是负数,但是整数

  C.-xxxx既是负数,也是整数,但不是有理数

  D.O是正数和负数的分界

  2、下列说法正确的是()

  A、整数就是正整数和负整数B、分数包括正分数、负分数

  C、正有理数和负有理数组成全体有理数D、一个数不是正数就是负数。

  3、下列一定是有理数的是()

  A、πB、aC、a+2D、

  3、、判断题:(打“√”或“×”)

  (1)、自然数是整数。﹝﹞

  (2)、有理数只包括正数和负数。﹝﹞

  (3)、我们知道了有理数有两种分类方法。﹝﹞

  (4)、零是最小的自然数。﹝﹞

  (5)、正整数包括零和自然数。﹝﹞

  (6)任何分数和小数都是有理数。﹝﹞

  4、完成课本第6--7页练习第1、2题。尤其提醒学生:小数也要分在分数集合内;集合圈内的省略号表示本集合中的数是无限的,而本题中只填了所给的几个数,所以用省略号。

  5、图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?____________

  正数集合整数集合

  迁移应用拓展探究(9分钟)

  学习链接

  1.本节课学了哪些数学知识:

  2.本节课学会的数学方法及数学思想:

  3.本节知识的梳理过程中,应提醒大家注意什么问题?(如概念分类混淆)

  二.学习链接2

  .观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗?

  ①1,-1,1,-1,1,-1,1,-l,____,____,____,…;

  ②1,-2,3,-4,5,-6,7,-8,____,____,____,…;

  提示学生:学习这类型题目应从符号和数字两方面考虑。

  三、有理数含义揭晓:有理数原意为可写成两个整数的比的数,并不是字面意思理解为有一定道理的数。因为所有的整数都可看着分母是1;零可看着它与零以外的所有数的比;有限小数和无限循环小数都可以化成分数,所以它们都是有理数;而无限不循环小数不能写成两个整数比的形式,所以不是有理数,如π,它是将来要学习的无理数。

  知识赏阅:数的由来与发展(2分钟)

  人类在漫长的生活实践中,由于记事和分配物品等方面的需要,逐渐产生了数的概念。我国古代《易经》一书中有“结绳而治”的记载.现

  在我们已经认识了自然数、负整数、分数和小数,这些都属于有理数.你了解这些数的由来与发展吗?请到图书馆或上因特网查找有关数的发展史的资料,写一篇数学小论文,介绍数的由来与发展.

  撰写“数的发展与由来”的小论文,主要是让学生体会数学在人类文明发展与进步中的作用,这也是一个对学生能力的培养的机会.应该告诉学生到图书馆查阅资料及搜索网站的方法.如用google搜索,怎样打如关键词,能找到什么资料,怎样下载,对下载的资料怎样进行裁剪等等..

  课堂小结:这节课咱们既获得了有理数概念、分类,了解了一些数集,又学会了一些数学思想和方法,并从中感受到了数学的逻辑性和严密性。相信大家在以后的数学学习中会越学越有趣,数学素养会越来越深。

  板书设计:有理数

  概念有理数

  数集

  分类有理数分类

  数集种类

  作业:

  1、课本第4页第1题

  2、基础训练第一课时

  这篇初一上册数学说课稿:《有理数》说课稿就介绍到这里了,希望大家喜欢!

《有理数》说课稿15

  1. 教学目标

  1.1地位、作用

  在初中阶段,要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把实际问题转化成数学问题的数学意识,增强学生对数学的理解和解决实际问题的能力.运算能力的培养主要是在初一阶段完成. 有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提.有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,也是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习.

  1.2学情分析

  在初中数学教学中,非智力因素在认知过程中起十分重要的作用,而兴趣在非智力因素中占有特殊的地位,它是学生学习自觉性和积极性的核心因素,是学习的强化剂.因此,从初一开始培养学生对数学的兴趣,是其学好数学的重要保障.围绕这一点,在教学中要让不同程度的学生都有体验成功的机会,教学中教师为导、学生为主,充分认识初一学生这个年龄段的心理特征:好奇心强;好胜心强;抽象思维能力弱,过分依赖直观;意志薄弱,缺乏毅力.

  另一方面,课本知识的传授是符合学生的认知发展特点的在前期段,学生已经储藏了两个正数的加法,较大数减较小数的减法,引入了负数,有必要再学习有理数的加法,然后过渡到有理数的其它运算,再到式的运算、方程、函数的运算;同时,负数、数轴、绝对值的学习又为这节课的学习方法奠定了基础.

  1.3教学目标

  根据本节所处的地位与作用,结合学生的具体学情,确定本节课的教学目标如下:

  知识目标:通过将生活中的问题转化为有理数加法的全过程,使学生直观形象地理解有理数加法的意义,掌握有理数的加法法则,并能正确运用.

  能力目标:通过情境的设计,培养学生的探索创新精神.在学生学习的过程中,渗透分类思想、数形结合思想与及综合、归纳、概括的能力.

  情感目标:通过教师引导下的探索,让学生感受到数学学习的价值与乐趣.

  1.4教材处理

  根据本节教材的内容,我把有理数的加法划分为两个课时,第一课时学习有理数的加法法则并能准确进行两个数的加法运算;第二节课学习有理数的加法运算律并能准确进行多个数的加法运算.

  2. 重点、难点

  2.1教学重点:有理数加法法则的理解与运用(而不是简单地记忆法则).

  2.2教学难点:异号两数加法的实际意义及法则的归纳.

  3. 教学方法与教学手段

  本课采用多媒体辅助教学,从学生熟悉的人物出发,激发学生探索欲;通过层层铺垫,引导学生利用已学数学工具探索新知;在学生探索的基础上,有意识地引导学生对多样化的结果进行分类整理;在法则的提炼过程中,培养学生类比、归纳和概括的学习能力.

  在本节的设计过程中,利用了一道开放性习题引出课题,让学生在研究中学习,对学生进行能力培养,充分跨越学生的最近发展区.

  4. 教学过程:

  4.1创设情境,让学生的思维“动”起来

  [生活情境]刘翔是世界男子青年锦标赛110米栏的冠军,是中国人的骄傲.从他的体育精神中我们应该学习他坚忍不拔的刻苦精神,激励学生爱国、立志.将跑道抽象为数轴,起跑点为原点,将生活问题数学化.

  说明:这种从生活到数学的建模,从学生感兴趣的题材出发,为创设下文的探索情境作一个兴奋点的刺激,让每个学生都有信心并且能够积极尝试、探索.

  4.2体验进程,让学生的思维“活”起来

  “数学是问题的心脏”,是教学的出发点,由问题引入课题能使学生产生较强的未知欲.

  [开放式探索] 刘翔在一条东西方向的跑道上往返跑步进行训练,他连续跑了两段路,共跑了80米.问刘翔两次以后的位置可能在哪里?

  设计意图:这是一道条件不唯一,结果也不唯一的开放性题型,对学生有一定的挑战性.它的优点在于:只要理解题意,任何一个学生都能答对至少一种正确答案;同时它的答案又分多种情况,学生由于思维的不完备性,很容易丢失答案,并且这种错误在别人的提醒中能马上恍然大悟.这是一道能锻炼学生思维的灵活性、严谨性及答案适用分类讨论、培养学生概括能力的好题.在本题中,包含学生对有理数加法的意义的理解及探索有理数加法加数的几种类别(从正负性上区分),在求和的过程中,让学生有机会经历从实物模拟到表象操作再到符号操作的转化.

  教学方法:用课件帮助学生思维从“实物操作”过渡到“表象操作”并优化思路;给予学生充分的思考机会;善于抓住学生思维的弱势因势利导.

  预计困难:①学生直观思维理解“共跑了80米”就是在离出发点80米远的地方.这是一个距离与位移的概念混淆并且教学中不宜新增概念. ②条件中的“两段”和“80米”分别对应加法中的什么量?有的学生不理解题意,可能放弃.

  处理方法:①教学中学生思维上的`弱点也可能会成为他这堂课思维的亮点,让学生在练习纸上尝试“实物操作”思维方式,自己突破思维瓶颈.②在学生正确理解80米的条件使用方法后,再让学生比较80与加数的绝对值、和的绝对值的关系,在理解能力上更上一层楼 .③区别不同程度的学生,可以从“列式子”,“列等式”,问“为什么”逐步递进,让尽可能多的学生尝试最近发展区.

  教学注意点:要明确本堂课的教学重点和目标,对开放题的探索浅尝止,不深究问题的所有可能性,剪辑学生答案尽快引出课题.

  4.3探究规律,让学生的思维“跳”起来

  用分类讨论的方法进行有理数的加法规律的归纳是本节课的重点和难点,教师要依据学生现有得出的学习发现组织语言,减少指示或命令性语言,争取把课堂静止或学生不理解时间减至最少.

  在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.

  预先设想学生思路,可能从以下方面分类归纳,探索规律:

  ① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)

  ② 从加数的不同数值情况(加数为整数;加数为小数)

  ③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)

  ④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)

  ⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)

  教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.

  4.4注重反思,让学生的思维“深”下去

  [反思应用1] 例1:计算 (-3)+(-9) ; (-4.7)+3.9;

  [反思应用2] 例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数?

  设计意图:当数学知识转化为表象知识时,一定要让学生从形式化过渡到符号化与数字化.这两例都是课本例题,教学过程中现在要减少学生的表象思维,让他们尽可能习惯用法则做题.培养学生的“数学化”意识.

  4.5拓展应用相结合,让学生的思维得以升华

  [练习1]计算 15+(-22); (-13)+(-8);

  ;

  [练习2]用算式表示下列结果:

  ⑴ 温度由-4C上升7 C ⑵收入7元,又支出5元

  [练习3]火眼金睛找错误:

  +

  =-1.7

  ②文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米又接着向西走了60米,此时小明的位置在( )

  A.文具店 B.玩具店 C. 文具店西边40米处 D. 玩具店西边60米处

  C组: ①找规律:从表1中找规律,并按规律在表2的空格里填上合适的数

  ② 为了体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的马路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17

  ⑴如果最后一名老师送到目的地时,小王距出车地点的距离是多少?

  ⑵若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?

  设计意图:分层设计练习,满足不同基础水平和不同思维层次的同学的需要.A类题训练学生的定向思维,培养基本技能;B类题主要训练学生的发散思维,培养学生的灵活性;C类题具有一定的挑战性,培养学生思维的深刻性,同时在挑战的过程中,培养学生的意志力.

  [板书设计]

  有理数的加法(一)

  2 + 3 = 5

  (-2)+(-3)=-5

  2 + (-3)=-1

  (-2) + 3 =1

  (-2) + 2 = 0

  0 + 3 = 3

  0 + (-3)= -3

  同号两数相加

  绝对值不相等的异号两数

  异号两数相加

  绝对值相等的异号两数

  一个数同0相加

  (法则归纳)

  先定符号,再算绝对值

  教学设计的说明

  布鲁纳的认知理论认为:人的认知过程要经历一个从“实物操作”到“表象操作”再到“符号操作”的过程,这时知识才真正内化到人的认知结构.我觉得,这种认知规律是我在这堂课的教学的设计过程中应该遵循并且努力实现的

  《有理数的加法》是一堂纯粹的运算技能课,如何在这种我们认为理所当然而学生茫然无知的课上让学生感觉自己是知识的主人,有主动探索发现的权利是我备课时反复琢磨的一个主题,怎么才能把一堂传统的“教、记、练”的课有效地发挥教师的引导作用从而使课堂富有生命力真正培养学生的各方面能力更是我所追求的我想,数学就应该是这样一种在具体、半具体、半抽象、抽象中间的铺排,是穿梭于实物与算式之间的一种形式化过渡.

  弗兰德对师生语言互动进行分类时认为,课堂上教师的讲与学生的讲有三种交流方式:回应、中立、自发,在这堂课上,我希望学生能自发地运用语言表述他们的需要与探索,我充分设想学生的可能困难同时又充分相信学生、充分调动学生的积极性与参与意识,让他们的思维动起来、跳起来再沉下去,让学生思维从形式化过渡到符号化、数字化,让学生真正成为课堂的主人.

【《有理数》说课稿】相关文章:

《有理数》说课稿12-20

有理数说课稿06-25

有理数说课稿01-09

有理数说课稿11-15

有理数加法说课稿10-09

有理数的加法说课稿06-25

《有理数加法》说课稿07-02

《有理数的乘法》说课稿05-27

《有理数的加法》说课稿05-28

《有理数的加法》说课稿07-08