圆的周长教学设计

时间:2024-09-11 13:49:34 教学设计 我要投稿

圆的周长教学设计【实用15篇】

  作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,借助教学设计可以让教学工作更加有效地进行。那么应当如何写教学设计呢?以下是小编帮大家整理的圆的周长教学设计,仅供参考,大家一起来看看吧。

圆的周长教学设计【实用15篇】

圆的周长教学设计1

  教学内容:小学数学实验教材十一册第107~108页“圆的周长”

  教学目标:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2、培养学生的观察、比较、分析、综合及动手操作能力;

  3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,

  以及直尺、绸带,测量结果记录表,计算器,投影资料等

  教学过程:

  一、创设情境,引起猜想:

  (一)激发兴趣

  播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1、回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2、认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  [评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

  (三)讨论正方形周长与其边长的关系

  1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2、怎样才能知道这个正方形的周长?说说你是怎么想的?

  3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  [评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

  (四)讨论圆周长的测量方法

  1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2、反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

  (4)初步明确运用各种方法进行测量时应该注意的问题。

  3、小结各种测量方法:(板书)转化

  曲直

  4、创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

  5、明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

  [评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。

  (五)合理猜想,强化主体:

  1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

  2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4、小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的.倍数吗

  [评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

  二、实际动手,发现规律:

  (一)分组合作测算

  1、明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

  (二)发现规律,初步认识圆周率

  1、看了几组同学的测算结果,你有什么发现?

  2、虽然倍数不大一样,但周长大多是直径的几倍?

  3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3、这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4、理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5、解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1、如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长=直径×圆周率

  C=πd

  2、如果知道圆的半径,又该怎样计算圆的周长呢

  板书:C=2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  [评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

  三、引导质疑,深入领会(略)

  四、巩固练习,形成能力

  1、判断并说明理由:π=3。14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  五、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  [评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

  六、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

  绕8字跑,谁跑的路程近

  [总评]

  纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

圆的周长教学设计2

  教学目的

  1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

  2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

  3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

  4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。

  教学重点、难点

  推导圆周长计算公式,理解圆周率的意义。

  教具准备

  圆片、铁圈、绳子、直尺。

  教学过程

  一、把准认知冲突,激发学习愿望。

  1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)

  2、化曲为直,测量周长。

  (1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

  (2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?

  讨论:

  方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

  方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

  (3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

  【反思】教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。

  二、经历探究全程,验证猜想发现。

  ㈠圆的周长与直径有关系。

  1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

  2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

  3、总结:圆的直径的长短,决定了圆周长的长短。

  ㈡圆的周长与直径的倍数关系。

  1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

  2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)

  【反思】合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。

  三、感受数学文化,激发情感体验。

  1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。

  2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的`大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

  3、介绍计算机计算圆周率的情况。

  4、教学圆周率:π≈3.14。

  【反思】数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。

  四、刷新应用能力,总结巩固新知。

  1、请你用自己的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

  2、尝试练习:一辆自行车车轮的直径是0.66米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)

  3、明辨是非:

  (1)圆的周长和直径的比的比值叫做圆周率。( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π的值等于3.14。( )

  (4)半径是10厘米的圆,它的周长是31.4厘米。( )

  4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。

  【反思】荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住3.14×1、3.14×2、……3.14×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。

圆的周长教学设计3

  教学内容:

  冀教版六年级上册第四单元

  教学目标:

  1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。

  2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。

  3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。

  4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。

  教学重点:

  在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。

  教学难点:

  能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。

  教学流程:

  一、炫我两分钟

  大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即

  同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。

  出示口算题目。

  随机评价。

  相信我们都是有智慧有思想的人,我要为你们点赞(动作)。

  二、组内交流,完善梳理

  教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。

  【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】

  三、小组合作交流。

  组内交流尝试小研究。

  出示小组合作交流建议:

  1、组长组织本组成员有序进行交流。

  2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。

  3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。

  4、再次确认发言顺序,准备全班交流。

  【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】

  四、班级交流,提升梳理

  1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。

  2、师结合学生的.汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。

  【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】

  3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。

  师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。

  【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】

  五、应用拓展

  结合练习做相应题目,巩固易错易混知识。

  (一)基础题

  1、判断下面各题是否正确,对的打“√”,错的打“×”。

  (1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )

  (2)半径为2厘米的圆的周长和面积相等。 ( )

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )

  2、一个圆的周长是25、12米,它的面积是多少?

  3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?

  (二)拓展提高

  1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?

  2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?

  3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?

  【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】

  六、个人整理

  经过本课时的学习,你有哪些收获呢?

  【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】

圆的周长教学设计4

  【微课简介】

  《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。

  【教学背景】

  数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的教学理念。而现代化技术的'运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。

  【教材分析】

  圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。

  【学情分析】

  本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。

  【教学目标】

  推导并总结出圆周长的计算公式。

  【教学重难点】

  推导出圆周长的计算公式。

  【教学方法】

  以引导探究为主的探究法。

  【学习环境与资源】

  1、学生分组,每一组至少有一台联网的计算机。

  2、探究工具软件《圆的工具》

  3、学生探究活动纸

  【教学过程】

  这一环节主要是进行实验探究,构建模型。

  一、出示实验任务,提出实验要求。

  1、把用来记录探究数据的学生活动纸分发给学生。

  2、介绍实验软件:圆的工具

  3、出示探究活动一的任务:

  二、学生应用软件开展数学实验

  1、同桌合作,轮流进行操作和记录;

  【软件使用说明】

  2、四人小组进一步协作整理数据,发现规律;

  学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。

  当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”

  这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。

  3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。

  三、建构数学模型

  1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。

  2、学会按顺利整理数据的实验方法。

  【教学总结】

  圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。

圆的周长教学设计5

  新课标人教版六年级上册第62~64页。

  【教学目标】

  1、通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

  2、能利用圆的周长的计算公式解决一些简单的数学问题。

  3、培养学生的观察、比较、分析、综合及动手操作能力。

  4、通过对圆周率的计算,渗透爱国主义的思想。

  【教学重、难点】

  重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

  难点:理解圆周率的意义。

  【教具、学具

  课件、软尺、直尺、绳子、圆形。

  【教学过程】

  课前交流:请同学们唱一首歌。

  (设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

  一、创设情景,生成问题

  国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

  (设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

  让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

  (设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

  二、探索交流,解决问题。

  师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

  师:同桌想一想圆的周长怎样测量?

  师:把你的好方法在小组内交流一下。

  (设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

  师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

  (设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

  师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

  师演示(线绕圆一周,然后量出线的长度。)

  师:还有其他的方法吗?

  生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

  师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

  生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

  师:这个办法也很妙!其他同学还有要补充的吗?

  生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

  师:你的想法可真不简单!

  师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

  师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

  生:能!

  师:正方形的周长和什么有关?

  生:周长是边长的4倍,师:那么圆的周长和什么有关系呢?

  生:圆的直径越长圆越大,所以周长就越长。

  师:那周长和直径有怎样的关系呢?

  (设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

  师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

  师:现在大家通过填写表格发现了什么?

  生:在测量中发现,大小不同的圆的周长是不同的。

  师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

  生:是由半径(或直径)唯一决定的。

  师:圆的周长与直径或半径之间到底存在着怎样的关系?

  生:每组算的结果不大一样,但都是3点多。

  师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

  生:一样。

  师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

  师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

  我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

  (设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

  师:你能通过分析表格得到圆的周长的计算公式了吗?

  学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

  师:从表中我们可以看出圆的周长÷直径=圆周率

  (板书:圆的周长=π×直径)。

  如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。

  生读:c=πd c=2πr

  师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

  生:圆的直径或半径。

  (设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的'难点。)

  三、回顾整理,反思提升。

  这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

  (1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。

  (2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。

  教师《圆的周长》教学设计 篇3【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”

  【教学目的

  1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。

  2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。

  3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。

  【教学重点】掌握圆周长的计算方法

  【教学难点】理解圆周率的意义

  【教具、学具准备】

  教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。

  学具:圆、直尺、小绳。

  【教学过程】

  1、导入新课。

  (1)认识圆的周长。

  教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?

  (师出示正方形的图形。)

  学生指着图形回答上述问题。

  生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。

  教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。

  师:通过手摸正方形周长和圆的周长,你发现了什么?

  生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。

  老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?

  老师一边显示图象一边讲述:

  以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。

  圆的周长展开后变成了一条线段。

  (2)揭示课题。

  师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。

  (板书课题:圆的周长计算)

  【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】

  2、学习新知。

  (1)学生动手实验,测量圆的周长。

  全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。

  (学生测量圆的周长,并板书测量的结果。)

  师:你们是怎么测量出圆的周长的呢?

  生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。

  师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?

  (老师边说边做手势,同学们笑了。)

  生1:不能。

  师:还有什么别的方法测量圆的周长吗?

  生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。

  教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。

  教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?

  生2:(不好意思地摇摇头)不能了。

  师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?

  【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】

  (2)根据实验结果,探索规律。

  教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。

  师:这两个圆有什么不同?

  生:两个圆的周长长短不同。

  师:圆的周长由什么决定的呢?

  生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。

  师:请认真观察,(教师再演示)这条绳子是这个圆的什么?

  生:是这个圆的半径。

  师:半径和什么有关系?圆的周长又和什么有关系呢?

  生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。

  师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。

  (学生测量圆的直径)

  随着学生报数,教师板书:

  圆的周长圆的直径

  9厘米多一些3厘米

  31厘米多一些 10厘米

  47厘米多一些 15厘米

  教师请同学们观察、计算、讨论圆的周长和直径的关系。

  (学生讨论,教师行间指导、集中发言)

  生1:我发现这个小圆的周长是它的直径的3倍。

  师:整3倍吗?

  生1:不,3倍多一些。

  生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。

  生3:我发现第三个圆的周长也是它的直径的3倍多一些

  (板书:3倍多一些)

  师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。

  滚动法验证:

  绳绕法验证:

  投影显示验证:

  直径:

  周长:

  师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?

  投影出示祖冲之的画像并配乐朗诵。

  “早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3.1415926---3.1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)

  同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”

  教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。

  (板书:圆周率)

  圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3.14。

  师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?

  (学生独立思考、讨论、看书)

  板书公式:C =πd

  C =2πr

  【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】

  3、反馈练习、加深理解。

  请同学们把开始测量的三个圆的周长用公式准确计算出来。

  (学生计算)

  师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?

  生:计算比测量要准确、方便、迅速。

  (1)根据条件,求下面各圆的周长(单位:分米)

  (学生计算,得出结果)

  师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?

  生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。

  【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】

  (2)判断正误。(出示反馈卡)

  ① 圆周长是它的直径的3.14倍()

  ② 圆周率就是圆周长除以它直径的商 ()

  ③ C =2π r =πd()

  ④ 圆周率与直径的长短无关 ()

  ⑤ π> 3.14()

  ⑥ 半圆的周长就是圆周长的一半()

  一部分同学认为第⑥题是错误的。

  教师举起了表示半圆的模型,(如图)

  请判断失误的同学们亲自指一指半圆的周长。

  在操作中,同学们恍然大悟,发现半圆的周长

  比圆的周长的一半多了一条直径的长度。

  (3)抢答。直接说出各题的结果。(单位:厘米)

  ① d =1 C =

  ② r =5 C =

  ③ C =6.28d =r =

  (同学们争先恐后地报出自己算出的答案)

  (4)运用新知识,解决实际问题。

  教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。

  同学们听了这个故事,摇摇头,表示不赞赏。

  一位同学站了起来:“张伟锯古树该罚款了。”

  教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”

  教室里热闹起来,同学们七嘴八舌地议论着……

  生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”

  (同学们笑了,鼓起掌来,表示赞赏。)

  (四)课堂小结:

  师:这节课学习了什么?请打开书----看书。

  教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”

  师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。

  (板书:变----不变)

  师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。

  画一个周长是12.56厘米的圆。怎样画?

  【简评:这节课的设计体现以下几个特点:

  1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。

  2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。

  3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。

  4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。

  5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】

圆的周长教学设计6

  一、教学内容:圆的周长计算方法与应用

  二、教学目的:

  1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算.

  2.培养学生的观察、比较、分析、综合及动手操作能力.

  3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法.

  4.结合圆周率的学习,对学生进行爱国主义教育.

  三、教学重点:

  1.理解圆周率的意义.

  2.推导出圆的周长的计算公式并能够正确计算.

  四、教学难点:理解圆周率的意义.

  五、教学过程:

  一、 创设情境,引入新课

  1、用多媒体出示:龟兔赛跑路线图。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

  b.什么是圆的周长?请你摸一摸你手中圆的周长.

  3、师:今天我们就来研究圆的周长。并出示课题

  二、引导探究,学习新知

  (一)推导圆的周长公式

  1.学生讨论

  (1)正方形的周长跟谁有关系?有什么关系?

  (2)你认为圆的周长和谁有关系?

  2.猜测

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2—4倍,那到底是多少倍呢?你有什么好办法吗?

  3.动手操作

  (1)以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。

  师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

  师:看哪一组配合好,速度快,较精确。开始!

  (2)整理并填写表格。单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  (3)汇报小结。

  师:用实物投影展示整理的表格。

  师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些?

  (三)认识圆周率、介绍祖冲之

  1.我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示.

  π≈3.14

  2.介绍祖冲之

  (四)归纳圆的周长公式

  1.怎样求周的长?若我们用字母c代表圆的'周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  师板书:c=πd

  2.圆的周长还可以怎样求?由于d=2r 则:c=2πr

  师板书:c=2πr

  师问:圆的周长分别是直径与半径的几倍?

  三、巩固应用,强化新知

  (1)求下面各圆的周长.

  1.d=2米 2.d=1.5厘米

  (2)求下面各圆的周长.

  1.r=6分米 2.r=1.5厘米

  (二)判断题

  1.π=3.14 ( )

  2.计算圆的周长必须知道圆的直径. ( )

  3.只要知道圆的半径或直径,就可以求圆的周长. ( )

  (三)选择题

  1.较大的圆的圆周率( )较小的圆的圆周率.

  a 大于 b 小于 c 等于

  2.半圆的周长( )圆周长.

  a 大于 b 小于 c 等于

  (四)课堂反馈

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  (五)实践操作

  请同学们,画一个周长是12.56厘米的圆,

  先以小组为单位讨论:画多大?如何画?再操作。

  四、课堂总结,梳理知识

  师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

圆的周长教学设计7

  教学目的:

  1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:

  1、理解圆周率的意义。

  2、推导并总结出圆的周长的计算公式并能够正确计算。

  教学难点:

  深入理解圆周率的意义。

  教学过程:

  一、复习准备:

  (一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?

  (二)创设情境:龟兔赛跑。

  第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

  二、新授教学。

  (一)定义。

  1、小乌龟跑的路程就是正方形的什么?小白兔呢?

  2、什么是圆的周长?请你摸一摸你手中圆的周长。

  3、今天我们就来研究圆的周长。

  (二)推导圆的周长公式。

  1、学生讨论。

  (1)正方形的周长和谁有关系?有什么关系?

  (2)你认为圆的周长和谁有关系?

  2、猜测。

  看图后讨论:圆的周长大约是直径的几倍?为什么?

  小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?

  3、实践操作。

  (1)目的:用不完全归纳法得出圆的周长约是直径的几倍。

  (2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。

  (3)填写表格。

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  (4)汇报小结

  看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?

  (三)认识圆周率、介绍祖冲之。

  1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。

  2、介绍祖冲之。

  (四)总结圆的周长公式。

  1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的'直径,那圆的周长公式用字母怎样表示?

  教师板书:C=d

  2、圆的周长还可以怎样求?

  教师板书:C=2r

  3、圆的周长分别是直径与半径的几倍?

  (五)课堂反馈。

  你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

  三、巩固练习。

  (一)判断。

  1、=3.14()

  2、计算圆的周长必须知道圆的直径。()

  3、只要知道圆的半径或直径,就可以求圆的周长。()

  (二)选择。

  1、较大的圆的圆周率()较小的圆的圆周率。

  a大于b小于c等于

  2、半圆的周长()圆周长。

  a大于b小于c等于

  (三)实践操作。

  请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。

  四、课堂小结:

  通过这堂课的学习,你有什么收获?你还有什么问题吗?

  五、课后作业。

  (一)求下面各圆的周长。

  1、d=2米

  2、d=1.5厘米3.d=4分米

  (二)求下面各圆的周长.

  1、r=6分米

  2、r=1.5厘米

  3、r=3米

  六、板书设计。

  圆的周长

  C=dC=2r

  单位:厘米

  测量对象

  圆的周长

  圆的直径

  周长与直径的比值

  活动要求:

  1、各个组成部分面积分配合理,布局合理。

  2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。

  3、要有娱乐活动场所、休息场所、小路。

  4、算出各个部分的面积。

圆的周长教学设计8

  教学目标:

  1、通过教学使学生学会根据圆的周长求圆的直径、半径。

  2、培养学生逻辑推理能力。

  3、初步掌握变换和转化的方法。

  教学重点:求圆的直径和半径。

  教学难点:灵活运用公式求圆的直径和半径。

  教学过程:

  一、复习。

  1、口答。

  4π2π5π10π8π

  2、求出下面各圆的周长。

  4厘米

  0

  2厘米

  0

  C=πdc=2πr

  3.14×22×3.14×4

  =6.28(厘米)=8×3.14

  =25.12(厘米)

  二、新课。

  1、提出研究的问题。

  (1)你知道Π表示什么吗?

  (2)下面公式的每个字母各表示什么?这两个公式又表示什么?

  C=πdC=2πr

  (3)根据上两个公式,你能知道:

  直径=周长÷圆周率半径=周长÷(圆周率×2)

  2、学习练习十四第2题。

  (1)小红量得一个古代建筑中的`大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

  已知:c=3.77m求:d=?

  解:设直径是x米。

  3.77÷3.143.14x=3.77

  ≈1.2(米)x=3.77÷3.14

  x≈1.2

  (2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

  已知:c=1.2米R=c÷(2Π)求:r=?

  解:设半径为x米。

  3.14×2x=1.21.2÷2÷3.14

  6.28x=1.2=0.191

  x=0.191≈0.19(米)

  x≈0.19

  三、巩固练习。

  1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

  2、求下面半圆的周长,选择正确的算式。

  D=8厘米

  ⑴3.14×8

  ⑵3.14×8×2

  ⑶3.14×8÷2+8

  3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

  (1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

  (2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?

  20×2×3.14=125.6(厘米)

  45分钟走了多少厘米?125.6×=94.2(厘米)

  5厘米

  4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

  一、作业。P65-66第3、6、7、9题

  教学追记:

  圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“π”是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“π”的含义就理解得特别透彻,也学得有兴趣。

圆的周长教学设计9

  教学目的

  1、理解圆周率的意义。

  2、理解周长的概念,并掌握圆周长的计算公式和推导过程。

  3、能运用公式求圆的周长或直径、半径。

  重点

  圆的周长计算公式的推导,能利用公式正确的计算。

  难点

  深入理解圆周率的意义及圆周长计算公式的推导。

  教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格

  一、复习导入(4分钟)

  (一)出示菜板和圆桌图

  师:

  1、这两个都是什么平面图形

  2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)

  3、还有什么不同?(圆的大小不同,圆的半径不同)

  4、也可以说是圆的直径不同。

  (二)出示图与对话框

  师:

  1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)

  2、问:铁皮的长度实际上就是圆的什么?

  预设:

  1、圆一周额长度(这个长度就是圆的周长)或

  2、圆的周长。

  二、新课教授

  (一)活动一:摸圆的周长(3分钟)

  师:

  1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。

  2、从哪里开始到哪里结束?

  预设:

  1、从这个地方开始,也在这里结束。

  2、小结:起点和终点是同一点。

  3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)

  4、围成圆的一周的曲线的长是圆的周长。

  (二)活动二:周长的测量(4分钟)

  师:

  1、曲线图形的周长你会测量吗?(不会)

  2、同方谈论一下,你想要怎样测量。

  3、1生说绕绳法。他的方法听懂的举手。

  预设:

  1、听懂人多,师演示一下。

  2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。

  师:

  1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。

  2、教师观察指导。

  (三)汇报演示(4分钟)

  师:

  1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。

  2、这个办法有什么缺点?(不精确会产生误差)

  3、除了这个方法还有没有其他办法?

  预设:

  1、生能主动说出。

  2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的'作用?不需要三角板固定,测量曲线长度)

  3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。

  师:

  1、生自己操作

  2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。

  3、测量中英注意什么?有误差吗?听懂的同学举手。

  4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)

  (四)动图播放绕绳法和滚动法

  1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。

  2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。

  3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)

  4、为什么?(圆的大小或圆的半径、直径不一样)

  三、猜想并探索(15分钟)

  (一)猜想(4分钟)

  1、直径不一样周长就不一样,那周长和直径有什么关系呢?

  2、你想把周长和直径怎样比?(周长除以直径、周长减直径)

  3、可以研究周长和直径吗?(不可以,每依据)

  4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)

  5、用你想用的方法研究一下周长与直径的关系。

  6、生在黑板上记录“周长÷直径”、或“周长减直径”。

  (二)探索(8分钟)

  1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。

  2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。

  3、它叫圆周率,读作π,通常计算式取3.14。

  (三)公式推导(3分钟)

  1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)

  2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?

  3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)

  四、巩固练习(10分钟)

  (一)基础题一道

  (二)能力提升两道

  (三)拓展题一道

  五、课后作业布置

圆的周长教学设计10

  一、说教材

  《圆的周长》选自冀教版小学数学六年级上册的第四节。本课教学是以长方形、正方形周长知识为认知基础的,是对前面所学"圆的认识"的深化,也是后面学习圆的面积等知识的基础。本课起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

  根据课程标准和教材编写意图,确立本节教学目标如下:

  1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义。

  2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。

  3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。

  教学重点:探究并发现圆的周长与直径的关系。

  教学难点:运用圆的周长知识解决一些简单的实际问题。

  二、说教法、学法

  根据教学内容和学生的认识规律,我首先采取课件演示的方法帮助学生认识圆的周长,渗透转化思想;然后利用实验法引导学生认识、理解圆周率,并推导出圆周长的计算公式,培养学生操作技能,提高学生分析、比较、推理、概括的能力;最后运用自学辅导法,引导学生自己去思考、测量、计算,最终发现圆的周长与它的直径和半径的关系,从而学生提高自学水平。在教学中,注重学生的独立思考及小组交流,交互运用各种学习形式,达到发展智力,培养能力的教学目标。

  教学准备:

  1、多媒体课件。

  2、每个学生都准备三个大小不同的、直径为整数的圆片,一根线条,一把直尺。

  三、说教学过程

  (一)创设情境,激情导入

  (二)自主合作,探究新知

  ⒈教具演示,直观感知,结合认知认识圆的周长。

  学生独立实验,用绕线法、滚动法量出圆的周长,教师指导操作要点,培养学生的动手实践能力。

  2.小组合作,完成实验。

  a.量一量、记一记:学生测量圆的周长、圆的直径,然后记下数据,培养学生的实践操作能力。

  b.比一比:比较数据,揭示关系。

  学生继续实验并算出每个圆周长除以它的直径的商,把商记录下来。通过计算学生发现:这三个圆中,每个圆的周长,都是它的直径长度的3倍多一些。得出结论:所测量的.其他圆的周长也是它的直径的3倍多一些。

  在实验操作过程中培养学生动手操作的技能、技巧,提高学生分析、比较、推理、概括的能力。

  3.介绍圆周率。

  ①先介绍表示这个3倍多一些的数,是一个固定不变的数,我们称它为圆周率。用式子表示:圆的周长÷直径=圆周率(π)

  ②介绍π的读写方法。

  ③最后结合画像介绍古代数学家祖冲之与圆周率的故事,激发学生作为中华儿女的自豪感。同时指出:圆周率是一个无限小数,小学阶段取它的近似值为3.14。

  ④学生总结归纳出圆的周长计算公式:

  圆的周长=圆的直径×圆周率,用字母表示为C=πd或C=2лr。

  (三)解决问题。

  通过练习,达到了巩固知识的目的。这个教学环节是归纳整理本节课学习的知识和解决问题的策略,使所学的知识系统化,整体化,便于学生对知识的掌握。

  (四)全课小结,归纳提升

  我是用谈话的方式进行小结的:

  ①你学到了什么?(引导学生进行总结、梳理所学知识)

  ②你是怎么学到的?(归纳解决问题的策略)

  ③以你的经验,生活中还有哪些类似圆的周长的实际问题?

  通过以上四个教学环节的处理,我想能够完全达到所预设的教学目标,完成教学任务。

  四、说板书设计

  圆的周长

  绕线法滚动法化曲为直

  圆的周长总是直径的三倍多一些。

  圆周率:圆的周长和直径的比值叫做圆周率π

  л=3.1415926…… л≈3.14

  C=лd或C=2лr

圆的周长教学设计11

  一、教学目标

1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2. 培养学生的观察、比较、分析、综合及动手操作能力;

  3. 结合圆周率的学习,对学生进行爱国主义教育。

  二、教学准备

  一元硬币、圆形纸片等实物以及直尺,测量结果记录表

  三、教学过程:

  <一>、创设情境,引起猜想:

  (一)激发兴趣

  小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1.回忆正方形周长:

  小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:

  那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

  每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

  (三)讨论正方形周长与其边长的关系

  1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

  2. 怎样才能知道这个正方形的周长?说说你是怎么想的?

  3. 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

  (四)讨论圆周长的测量方法

  1.讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?

  如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

  2.反馈:(基本情况)

  (1)“滚动”——把实物圆沿直尺滚动一周;

  (2)“缠绕”——用绸带缠绕实物圆一周并打开;

  (3)初步明确运用各种方法进行测量时应该注意的问题。

  3.小结各种测量方法:(板书)

  化曲为直

  4.创设冲突,体会测量的局限性

  刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

  5.明确课题:

  今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)

  (五)合理猜想,强化主体:

  1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答

  2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

  向大家说一说你是怎么想的。

  3.正方形的周长总是边长的'4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

  4.小结并继续设疑:

  通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

  <二>、实际动手,发现规律:

  (一)分组合作测算

  1.明确要求:

  圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

  提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

  测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系

  2.生利用学具动手操作,师巡视指导、收集信息。

  3.集体反馈数据(选取3~4组实验结果,黑板板书展示)

  (二)发现规律,初步认识圆周率

  1.看了几组同学的测算结果,你有什么发现?

  2.虽然倍数不大一样,但周长大多是直径的几倍?

  板书:圆的周长总是直径的三倍多一些。

  (三)介绍祖冲之,认识圆周率

  1.这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  2.早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

  3.这个倍数究竟是多少呢?我们来看一段资料。

  (祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  5.解答开始的问题

  现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

  (四)总结圆周长的计算公式

  1. 如果知道圆的直径,你能计算圆的周长吗?

  板书:圆的周长 = 直径× 圆周率

  C =πd

  2. 如果知道圆的半径,又该怎样计算圆的周长呢

  板书:C =2πr

  追问:那也就是说,圆的周长总是半径的多少倍

  <三>、巩固练习,形成能力

  1.判断并说明理由:π = 3.14 ( )

  2.选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米.那么,下列说法正确是:()

  a.大圆的圆周率大于小圆的圆周率;

  b.大圆的圆周率小于小圆的圆周率;

  c.大圆的圆周率等于小圆的圆周率。

  3.实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

  <四>、课外引申,拓展思维

  如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

  绕8字跑,谁跑的路程近

圆的周长教学设计12

  教学目标:

  1、在观察,测量,讨论等活动中经历探索圆的周长公式的过程。

  2、理解并掌握圆的周长公式,会用字母表示,能运用周长公式进行计算。

  3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。

  教学难点:

  理解圆周率的意义。

  教具准备:

  根据教学任务和学生学习的需要,我所准备的教具有直尺、圆形硬纸板、绳子、剪刀、圆周长演示器。多媒体课件。

  学具准备:

  学生准备的学具有直尺、圆形硬纸板(大中小各一个)、绳子、剪刀。

  教学过程:

  一、创设情境

  1、出示情境图,让学生观察情境图,了解图中的事情,提出谁的车轮转动一周走的远,为什么?

  师:那车轮转动一周,谁的车走得远呢?为什么?

  学生自由回答

  3、揭示车轮周长概念。

  4、讨论:车轮的周长和什么有关,有什么关系?

  师引入并板书课题:圆的周长。下面我们继续研究,看看圆的周长和直径还有什么关系?

  二、自主探索

  (一)测量硬币

  1、让学生用准备好的材料测量1元硬币和直径和周长。

  师:同桌合作,利用手中的材料测量出1元硬币的周长和直径。

  学生活动,教师巡视并参与。

  2、交流测量结果和方法,注意测量的过程要交流清楚。

  3、计算并观察测量的数据,推测硬币的周长与直径之间有什么关系。

  我估的硬币的周长大约是直径的3倍。

  大胆推算硬币周长与直径的关系。

  (二)测量圆片

  1、提出做一做的要求,让学生用教师准备好的圆片测量并计算。

  2、交流各组测量和计算结果,然后让学生说一说发现了什么?

  三个圆的周长都是它直径的三倍多一些

  (三)总结圆的周长公式

  1、教师介绍圆周率的发展历程,然后交流感受和启发,进行思想教育。

  师:看来,任何圆的周长都是它直径的三倍多一些,其实这个倍数是固定不变的数,我们把它叫作圆周率。板书:圆的周长÷直径=圆周率。

  师:由于我们在测量时有误差,所以得不到一个固定值。

  师:圆周率可用字母π来表示。板书:π

  教师范读,学生齐读,并在桌子上试着写一写。

  师:我们今天课上研究的圆周率,早在几千年前,我们古人就开始研究了。

  板书:π3.14

  2、引导学生根据周长÷直径=圆周率,推导出圆的周长公式并用字母表示。

  师:根据圆的周长÷直径=圆周率,如何求圆的`周长呢?

  生:直径×圆周率=圆的周长

  师:如果周长用字母“c”表示,直径用“d”表示,谁来总结求圆周长的公式?

  生:c=πd师:板书

  师:那如果把直径d换成半径r呢?

  生:c=2πr师板书

  三、简单应用

  让学生试着用公式求圆的周长

  课件出示(书中例题和镜子实物图。目的:是让学生能够通过看着实物镜子,去理解金属条的长就是镜子的周长。)

  学生自己完成,指名板演

  集体订正。

  四、交流收获

  五、布置作业:83页第一题

  板书设计:

  圆的周长

  圆的周长÷直径=圆周率(π≈3.14)

  C=πd或c=2πr

  3.14×40=125.6(厘米)

  答:这根金属条的长至少是125.6厘米。

圆的周长教学设计13

  教学过程

  设计意图

  课堂活动一:创设情境,引起猜想:认识圆的周长

  (一)激发兴趣

  这天,我们还来学习有关圆的知识。老师要先给大家讲一个故事。(边讲述边课件演示)小黄狗和小灰狗比赛跑,两只小狗都从同一点出发,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰狗得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周长

  1.回忆正方形周长:

  师:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:

  师:那小灰狗所跑的路程呢?(师根据学生的回答板书课题:圆的周长)

  师:圆的周长又指的是什么意思?

  生:圆一周的长度,叫做圆的周长。(师板书:围成圆的曲线的长)

  师:请同学们闭上眼晴:“想像”,圆的周长展开后,会怎样?

  生:一条线段。

  师:请同学们拿出老师发给你的圆形橡筋,并剪断,看看成什么?

  学生齐答:也是一条线段。

  3.动手体会:每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

  课堂活动二:动手操作,引导探索

  (一)讨论圆周长的测量方法

  1、讨论方法:下面,老师要请各学习小组利用手中的测量工具,互相合作,动手测量圆的周长。测量完后,相互交流一下,有几种方法?(学生讨论,动手测量)

  2、反馈:哪个小组派个代表来说说你们小组是怎样测量出圆的周长?

  (学生说出三种方法:绳测法、滚动法、软皮尺测,老师进行演示)

  3、小结各种测量方法:(板书)

  转化

  曲直

  4.创设冲突,体会测量的局限性

  在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是不是所有的圆都能用这种方法测量出它的周长的?同学们请看(老师甩动绳子系的小球,构成一个圆)小球的运动构成一个圆,又比如(老师演示摩天轮),你能用绳测、滚动的方法直接量出它的周长吗?

  这说明用绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应思考圆周长跟什么有关系。

  (二)讨论正方形周长与其边长的关系

  要探讨圆的周长到底与什么关系?先探讨正方形周长与其边长的关系

  (课件出示一个表格)

  正方形

  周长

  边长

  周长:边长

  1、

  1cm

  2、

  2cm

  3、

  3cm

  我的发现:正方形的周长与它的边长的比值是()。即正方形的周长是它的边长的()倍。(多媒体显示)。

  (三)探讨圆的周长与直径的关系

  1、请同学们看屏幕,认真观察比较一下,想一想,圆的周长跟什么有关系?(多媒体教具演示:圆的周长与它的直径长短有关)

  提问:你们是怎样看出圆的周长和直径有关系?

  小结:圆的直径越长,它的周长就越长。这说明圆的周长和直径有关系。

  2、学生测量出圆的周长,并计算周长和直径的比值

  圆的周长跟直径有关系。有什么关系呢?圆的周长跟直径是否存在着倍数关系呢?下面我们来做个实验。小组分工合作,用你喜欢的方法测量出圆的周长和直径,并计算出周长和直径的比值,得数保留两位小数,填好报告单,第四栏可用计算器。

  《圆的周长》实验报告单

  实验目的:找出圆的周长与直径之间的关系。

  实验材料:3张圆形纸片、直尺、三角板、棉线、剪刀、计算器。

  测量的物品

  周长(C)

  厘米

  直径(d)

  厘米

  周长与直径的

  比值(C/d)

  圆形纸片1

  圆形纸片2

  圆形纸片3

  我们的发现:

  (学生测量、计算、填表,在展示台出示结果)

  请一组同学上台展示表格,师询问:从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?

  学生汇报结论:这些圆的周长都是直径的3倍多一些。(师板书)

  师:那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看屏幕,仔细观察。(多媒体教具演示:圆的周长总是它的直径长度的3倍多一些。)

  板书

  师根据课件演示介绍圆的周长都是直径的3倍多一些圆周率

  课堂活动三:认识圆周率、介绍祖冲之

  师:表扬全班同学。圆的周长到底比它的直径的3倍多多少呢?那里,我给同学们讲一个古代数学家祖冲之测量圆周率的故事。

  (1)多媒体课件介绍圆周率的知识及祖冲之对圆周率的贡献。早在20xx年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”的说法,意思是圆的周长是它的直径的3倍,约1500年前,我国伟大的数学和天文家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲数学家要早1000年左右.此刻世界上最大的环形山,就是以祖冲之的`名字命名的。我们确实就应为前人的聪明、智慧感到自豪和骄傲。之后瑞士的数学家欧拉用希腊字母∏代表圆周率。(板书::∏).圆周率是一个无限不循环小数。在计算时,如果用这个无限小数参加计算是不方便的,故通常将∏取两位小数。(板书π≈3.14)

  (2)谈感想,理解误差。

  看完这段资料,“读了这则故事,你有何感想?”

  生1:我要向祖冲之爷爷一样努力学习,做一个对人类有贡献的人。

  生2:我们组刚才测量时不够细心,今后我们要向祖冲之爷爷学习,做一个细心的人。

  课堂活动四:总结圆的周长公式

  1、刚才我们透过实验可知:圆周率是怎样得出来的呢?

  根据小组学生回答教师板书:

  圆周率=圆的周长÷直径==π是一个固定的值

  2、由此我们可知,如果明白直径如何求周长呢?

  教师板书:圆周长=直径×圆周率

  如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

  教师板书:C=πd

  3、圆的周长还能够怎样求?

  教师板书:C=2πr

  4、圆的周长分别是直径与半径的几倍?

  课堂活动五:课堂反馈

  一、决定.

  1.Π=3.14()

  2.圆的周长是它的半径的∏倍。()

  3.圆的直径越大,它的圆周率就越大。()

  4.只要明白圆的半径或直径,就能够求圆的周长。()

  5.大圆的圆周率比小圆的圆周率大。()

  三、实践操作

  2.电脑课件出示主题图。如果圆形花坛的直径是20米,它的周长是多少米?。(让学生独立完成,群众订正)

  问题2:小自行车车轮的直径是50cm,绕花坛一周车轮大约转动多少周?

  (学生完成后,让学生打开课本64页例1对照,反思自己的解答过程)

  (注:评析问题2时,能够推荐学生用估算来解答。)

  3.解答开始的问题

  这天我们学习了圆的周长的计算方法,此刻我们来帮忙小黄狗和小灰狗算一下它们跑的路线,看看小灰狗为什么会赢,小黄狗为什么会输。

  小黄狗跑的路线是正方形的周长,小灰狗跑的路线是圆的周长,动手算一算,谁跑的距离远?

  10米

  四、拓展延伸

  看,小黄狗和小灰狗又要比赛了,这一次小灰狗沿大圆跑一圈,小黄狗沿两个小圆“∞”跑一圈,谁跑的路程长呢?好好想一想。

  课堂活动六:全课总结,反思评价

  1、同学们,这天我们一齐研究了圆的周长,下面我们来谈一谈本节的收获。

  2、评价自己小组合作学习的表现如何。

  课外活动:家庭作业

  1、基本练习:完成课本第64页做一做第1、2题。

  2、提高练习:完成课本第65页练习十五第2、3题。

  3、操作练习:画一个周长是12.56厘米的圆。

  板书设计:

  利用了生动的课件创设了教学情境,激发了学生参与的兴趣,为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举两得;而且,动画的演示过程,很好地展示了圆周长的概念,并透过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了周长的概念,为后面的学习奠定了基础。

  感知动作同人的心理活动是密切联系的,动作记忆保留的时间更长久。小学生在其数学思维活动中,视觉映象起着相当重要的作用,如果透过活动强化问题解决前的感知动作思维,有利使记忆以动作效果来储存。透过让学生把圆形橡筋剪断,使学生感知化曲为直的概念。为下面探索圆的周长做好铺垫。

  利用学生好奇、好动的特点,引导学生小组合作,测量归纳出圆的周长的方法,不失时机地表扬小组的合作精神,让学生初步感受到成功的喜悦。

  教师抓住时机,甩动绳子系的小球,构成一个圆,演示摩天轮,让学生感受到用绳测、滚动的方法并不能测量出所有圆的周长,就应找到一种既简单有能准确计算圆的周长的方法,进而引导学生研究圆的周长与直径的关系。

  透过填写正方形的周长与它的边长的关系,为下面的探讨圆的周长与它的直径的关系做了一个很好的铺垫。因为学生在记忆正方形的周长时,只是记正方形的周长是4个a相加的和,很少说是正方形的周长是边长的4倍。上表的填写对于中下生的小组合作起了一样板的作用。

  透过直观的演示学生很快就找到了圆的周长和直径有关系。

  《数学课程标准》提出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”这一环节,引导学生分工合作,用自己喜欢的方法测量出圆的周长,求出比值,对所收集的信息进行分析处理,在动手的过程中发现了圆的周长都是直径的3倍多一些,并透过课件演示验证了结果。使学生在探索新知的过程中,由知识的理解者转变为知识的发现者和创造者,不仅仅理解掌握了知识,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。

  那里引出故事,在帮忙学生增长知识的同时,自然在对学生进行了爱国主义教育,使学生产生对数学知识一往情深的志趣。

  本环节的设计,实现由具体到抽象,由物化到内化,理解计算公式。透过转化,从而完成新知的生成。

  透过辨析让学生巩固圆周率是常数的认识,加深对圆周率的理解。

  操作练习设计紧扣课题,从解决基本练习到解决主题图中实际问题,使学生认识到,数学来源于生活,也服务于生活,对新知识有了更深一层的认识,巩固新知,发展了潜力。

  透过解答课前导入的问题,让学生体现多层次,多角度的练习,培养了学生的思维和解决问题的潜力,更能促进学生把知识和技能转化为智力、潜力。

  在解决了开始的问题后,紧跟着变化题目的图,让学生能感知当大圆的直径等于另外两个小圆的直径和时,大圆的周长等于这两个小圆的周长和。是对圆周长公式的综合应用。

  让学生谈收获,能够自我认识、总结课堂的表现与认识掌握程度,最后回忆新知、巩固新知,体验成功的喜悦。

  课外作业题目体现层次性,注重基础知识的巩固和基本技能的运用。

  围成圆的曲线的长

  圆的周长

  (实物测量方法)

  转化

  圆周率

  字母表示π≈3.14

  曲直

  圆的周长总是它的直径的3倍多一些

  圆周率=圆的周长÷直径==π是一个固定的值

  圆的周长=直径×圆周率

  字母表示:C=πd

  C=2πr

圆的周长教学设计14

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第11——12页“圆的周长”。

  【教学目标】

  1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。

  2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。

  3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。

  【教学重、难点】

  1、探索发现圆的周长与直径的关系;

  2、运用圆周长的知识解决一些简单的实际问题。

  【教具、学具准备】

  1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。

  2、课件1:阿凡提与国王比赛A、B。

  课件2:圆的周长与直径的商的关系。

  课件3:祖冲之有关资料。

  【教学设计】

  一、创设情境

  师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)

  50米

  师:同学们看,比赛开始了——紧张的比赛结束了。今天的比赛谁获胜了?

  生:国王的小花驴获得了胜利

  师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?

  师:说说你是怎么想的?

  生:他们的小毛驴跑的路程不是一样长。

  师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?

  生:量一量就知道了,

  师:谁能说说正方形的周长和什么有关系,有怎样的关系?

  生:正方形的周长和边长有关系,周长是边长的4倍,

  师:也就是说只要测出正方形的一条边长就可以知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢?

  师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。

  得出:围成圆的曲线的长叫圆的周长。

  二、自主合作,探究新知

  (1)发现测量圆的周长的不同方法

  师:下面请同学们把准备的圆拿出来,那“圆的周长指的.是哪一部分的长”,同桌互相比画一下。

  师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)

  师:把你的好方法在小组内交流一下。

  (上台交流测量的方法)

  生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,

  生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。

  生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,

  生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以

  2、就可以求出圆的周长。

  师板:线绕、滚动、拉直化曲为直

  (2)探究发现圆周率和圆的计算公式

  师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?

  生:不行,圆太大了,测量不出来!

  师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的周长?

  生:有些圆的周长没办法用绕线和滚动的方法测量出来

  师:那咱们能找到一种更简便、更科学的办法来解决这个问题吗?

  师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?

  生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,

  师:有道理!那大家来猜一猜,周长和直径有怎样的关系?

  生:周长是直径的2倍,生:他们一样长,生:我觉得这个圆的周长是直径的3倍,(4倍)(3。5倍)

  师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?

  生:动手量一量,算一算,

  师:说的真好,这可是解决问题的好办法——动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。

  3、可以用科学计算器帮忙算一算周长和直径的商。

  师:好,现在我们来交流一下你们的实验结果。

  生:实物展台交流。

  师:大家仔细观察分析,看能发现什么?

  圆的周长

  (厘米)

  圆的直径

  (厘米)

  周长与直径的商

  (保留两位小数)

  生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。

  生:所有圆的周长都是直径的3倍多一些,

  师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)

  生:圆不论大小,它的周长都是直径的三倍多一些。

  师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,

  师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母∏表示。(板书:圆的周长÷直径=圆周率)

  师:关于圆周率,大家都知道什么?你说,

  生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,

  师:老师也收集了一些有关的资料,大家想看吗?

  看屏幕,这就是祖冲之,(课件介绍祖冲之)

  师:我们通过圆的周长除以直径得到了“π”也就是圆周率(板书:C÷d=π)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?

  生回答、师板书:C÷d=π→C=πd→C÷π=d

  d=2r→C=2πr→C÷2π=r

  三、拓展练习,实践应用

  (1)计算跑道的周长。

  师:(课件显示比赛跑道的有关数据正方形的边长(即圆的直径)50米)现在我们知道了这个圆形跑道的直径,请同学们利用公式快速算一算,这两个跑道的周长是多少?看看国王和阿凡提的比赛到底是不是公平?(学生开始计算,知道比赛不公平)

  (2)判断。

  (3)巩固练习:

  A、1、判断并说明理由:π=3.14()

  2、选择正确的答案:

  大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确的是:()

  a、大圆的圆周率大于小圆的圆周率;

  b、大圆的圆周率小于小圆的圆周率;

  c、大圆的圆周率等于小圆的圆周率。

  B、做P12下面T1:填表

  T2:教师指名读题后,可以让学生说一说题中要求的问题实际上是求什么?注意算式与单位。

  四、拓展练习课后延伸

  师:阿凡提看到同学们帮他解决了这个大难题,非常高兴。可是,可恶的国王阴谋没有得逞,心里很不服气,他又冥思苦想出了个新花招,设计出了新型跑道,要和阿凡提再展开一场比赛

  同学们想不想看看新跑道是什么样子

  师:(课件出示新跑道)国王看到阿凡提毫不犹豫的答应了,心里真是乐开了花,心想,阿凡提呀,聪明人也有犯糊涂栽跟头的时候,我绕里面的小圈跑8字,不知要比你外面的大圈近多少路程,这个第一肯定是我的了。

  师:请同学们课后去研究。

圆的周长教学设计15

  教学目标:

  1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。

  2、培养学生的观察、比较、分析、综合及动手操作能力。

  3、初步学会透过现象看本质的辨证思维方法。

  4、结合圆周率的学习,对学生进行爱国主义教育。

  教学重点:推导并总结出圆周长的计算公式。

  教学难点:深入理解圆周率的意义。

  教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。

  教学过程

  一、情景导入:

  师:老师这里有一张图片,同学们想看吗?

  师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?

  师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?

  师:这节课我一起研究圆的周长。

  板书课题:圆的周长

  二、探究新知:

  1、圆的周长含义

  师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。

  师:围成圆的曲线的长叫做圆的的周长。

  2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。

  师:谁愿意说说你是怎么测量的?

  师:还有不同测量的方法吗?

  师多媒体演示。

  我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。

  我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。

  师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。

  生:用绳子量出水池的周长。

  师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。

  师:有没有比测量更科学、更简便的方法呢?

  生:计算

  3、探究圆的周长计算方法

  ①探究圆的周长与直径的倍数关系

  师:如何计算圆的周长呢?

  师:我们可以回想一下,计算长方形的周长需要什么条件,怎么计算?

  师:计算正方形的周长需要什么条件,怎么计算?

  师 :同学们看,计算长方形、正方形的周长都需要一定的条

  件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。

  师:如果圆的周长与直径有关,又有什么关系呢?

  师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。

  师:正方形的周长与它的条件边长之间有什么关系。

  你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。

  这个倍数会是几呢?同学们来猜测一下,这个倍数大于几

  生1:大于2;

  生2:大于3;

  生3:大于4;

  师:能说说你是怎样想的?

  师:你从图上来看,圆的周长与直径之间的倍数会大于几。

  生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。

  师: 有理有据。我们再来看,圆的周长和直径之间的`倍数会小于几呢?

  生猜并说理由。

  师:这个问题有点难,老师来作个辅助图形,请看大屏幕。

  (师多媒体演示圆外切正方形)

  师:你发现了什么?

  生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。

  师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?

  生:计算。

  师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。

  下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)

  师:一定注意要测量准确,减少误差。

  (集体汇报交流)

  师:哪个小组愿意把你们的计算结果给大家展示一下。

  (生说并展示结果)

  师:请同学们来观察这些圆的周长除以直径的商,有什么特点。

  生:都比3大一点。

  师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。

  师:会读吗?(板书pài)

  师:一起读,用手在桌子上写几遍。

  师:会写了吗?

  师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?

  生:测量不准确。

  师:很会分析问题,我们计算出的这些商都不一样,是因为测量有

  误差造成的。

  师:老师这里有关于圆周率的历史资料,同学们想看吗?

  师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)

  师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?

  师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。

  生:圆的周长等于圆周率乘直径。

  师:如果用字母C表示,那么C=?

  (板书C=πd)

  师:如果知道了圆的半径,我们还可以怎样计算圆的周长?

  (板书:C=2πd)

  师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。

  由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)

  三、实践应用:

  师:现在我们来解决几个问题好吗?

  1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。

  2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)

  3、判断题

  4、思考题

  四、小结。

【圆的周长教学设计】相关文章:

【精选】圆的周长教学设计09-05

圆的周长教学设计05-19

圆的周长教学设计04-09

《圆的周长》教学设计06-21

人教版《圆的周长》教学设计06-10

圆的周长教学设计(精选15篇)04-27

《圆的周长》教学设计15篇06-25

圆的周长教学设计(15篇)01-25

【实用】圆的周长教学设计15篇09-06

圆的周长教学设计集合[15篇]05-19