- 二次根式教学设计 推荐度:
- 相关推荐
二次根式教学设计
作为一名专为他人授业解惑的人民教师,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编整理的二次根式教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、教学目标
1、掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;
2、会进行简单的运算;
3、使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;
4、培养学生利用公式进行化简与计算的能力;
5、通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;
6、通过分母有理化的教学,渗透数学的简洁性。
二、教学重点和难点
1、重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的运算,还要使学生掌握采用分母有理化的方法进行.
2、难点:与商的算术平方根的关系及应用.
三、教学方法
从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节
内容可引导学生自学,进行总结对比.
四、教学手段
利用投影仪.
五、教学过程
(一)引入新课
学生回忆及得算数平方根和性质:(a≥0,b≥0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)
学生观察下面的例子,并计算:
由学生总结上面两个式的关系得:
类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:
(二)新课
商的算术平方根.
一般地,有(a≥0,b>0)
商的算术平方根等于被除式的算术平方根除以除式的算术平方根.
让学生讨论这个式子成立的条件是什么?a≥0,b>0,对于为什么b>0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.
引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.
例1化简:
说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数。
例2化简:
让学生观察例题中分母的特点,然后提出,的问题怎样解决?
再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况,的问题,我们将在今后的学习中解决。
学生讨论本节课所学内容,并进行小结.
(三)小结
1、商的算术平方根的性质.(注意公式成立的条件)
2、会利用商的算术平方根的性质进行简单的二次根式的化简.
(四)练习
1、化简:
2、化简:
六、作业
【二次根式教学设计】相关文章:
二次根式教学设计08-03
二次根式教学反思04-07
二次根式的乘除教学反思04-20
二次根式的乘法说课稿 11-05
精选二次根式教案三篇07-17
精选二次根式教案4篇08-24
【必备】二次根式教案三篇05-30
【精华】二次根式教案三篇10-23
实用的二次根式教案四篇04-10