《圆周长》教学设计15篇
作为一位杰出的老师,常常要根据教学需要编写教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。那么写教学设计需要注意哪些问题呢?下面是小编精心整理的《圆周长》教学设计,欢迎阅读与收藏。
《圆周长》教学设计1
教学过程
设计意图
课堂活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
这天,我们还来学习有关圆的知识。老师要先给大家讲一个故事。(边讲述边课件演示)小黄狗和小灰狗比赛跑,两只小狗都从同一点出发,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰狗得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
师:小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
师:那小灰狗所跑的路程呢?(师根据学生的回答板书课题:圆的周长)
师:圆的周长又指的是什么意思?
生:圆一周的长度,叫做圆的周长。(师板书:围成圆的曲线的长)
师:请同学们闭上眼晴:“想像”,圆的周长展开后,会怎样?
生:一条线段。
师:请同学们拿出老师发给你的圆形橡筋,并剪断,看看成什么?
学生齐答:也是一条线段。
3.动手体会:每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
课堂活动二:动手操作,引导探索
(一)讨论圆周长的测量方法
1、讨论方法:下面,老师要请各学习小组利用手中的测量工具,互相合作,动手测量圆的周长。测量完后,相互交流一下,有几种方法?(学生讨论,动手测量)
2、反馈:哪个小组派个代表来说说你们小组是怎样测量出圆的周长?
(学生说出三种方法:绳测法、滚动法、软皮尺测,老师进行演示)
3、小结各种测量方法:(板书)
转化
曲直
4.创设冲突,体会测量的局限性
在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是不是所有的圆都能用这种方法测量出它的周长的?同学们请看(老师甩动绳子系的小球,构成一个圆)小球的运动构成一个圆,又比如(老师演示摩天轮),你能用绳测、滚动的方法直接量出它的周长吗?
这说明用绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。研究圆的周长首先应思考圆周长跟什么有关系。
(二)讨论正方形周长与其边长的关系
要探讨圆的周长到底与什么关系?先探讨正方形周长与其边长的关系
(课件出示一个表格)
正方形
周长
边长
周长:边长
1、
1cm
2、
2cm
3、
3cm
我的发现:正方形的周长与它的边长的比值是()。即正方形的周长是它的边长的()倍。(多媒体显示)。
(三)探讨圆的周长与直径的关系
1、请同学们看屏幕,认真观察比较一下,想一想,圆的周长跟什么有关系?(多媒体教具演示:圆的周长与它的直径长短有关)
提问:你们是怎样看出圆的周长和直径有关系?
小结:圆的直径越长,它的周长就越长。这说明圆的周长和直径有关系。
2、学生测量出圆的周长,并计算周长和直径的比值
圆的周长跟直径有关系。有什么关系呢?圆的周长跟直径是否存在着倍数关系呢?下面我们来做个实验。小组分工合作,用你喜欢的方法测量出圆的周长和直径,并计算出周长和直径的比值,得数保留两位小数,填好报告单,第四栏可用计算器。
《圆的周长》实验报告单
实验目的:找出圆的周长与直径之间的关系。
实验材料:3张圆形纸片、直尺、三角板、棉线、剪刀、计算器。
测量的物品
周长(C)
厘米
直径(d)
厘米
周长与直径的
比值(C/d)
圆形纸片1
圆形纸片2
圆形纸片3
我们的发现:
(学生测量、计算、填表,在展示台出示结果)
请一组同学上台展示表格,师询问:从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
学生汇报结论:这些圆的周长都是直径的3倍多一些。(师板书)
师:那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看屏幕,仔细观察。(多媒体教具演示:圆的周长总是它的直径长度的3倍多一些。)
板书
师根据课件演示介绍圆的周长都是直径的3倍多一些圆周率
课堂活动三:认识圆周率、介绍祖冲之
师:表扬全班同学。圆的周长到底比它的直径的3倍多多少呢?那里,我给同学们讲一个古代数学家祖冲之测量圆周率的故事。
(1)多媒体课件介绍圆周率的知识及祖冲之对圆周率的贡献。早在20xx年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”的说法,意思是圆的周长是它的直径的3倍,约1500年前,我国伟大的数学和天文家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的.值精确到7位小数的人,比欧洲数学家要早1000年左右.此刻世界上最大的环形山,就是以祖冲之的名字命名的。我们确实就应为前人的聪明、智慧感到自豪和骄傲。之后瑞士的数学家欧拉用希腊字母∏代表圆周率。(板书::∏).圆周率是一个无限不循环小数。在计算时,如果用这个无限小数参加计算是不方便的,故通常将∏取两位小数。(板书π≈3.14)
(2)谈感想,理解误差。
看完这段资料,“读了这则故事,你有何感想?”
生1:我要向祖冲之爷爷一样努力学习,做一个对人类有贡献的人。
生2:我们组刚才测量时不够细心,今后我们要向祖冲之爷爷学习,做一个细心的人。
课堂活动四:总结圆的周长公式
1、刚才我们透过实验可知:圆周率是怎样得出来的呢?
根据小组学生回答教师板书:
圆周率=圆的周长÷直径==π是一个固定的值
2、由此我们可知,如果明白直径如何求周长呢?
教师板书:圆周长=直径×圆周率
如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
教师板书:C=πd
3、圆的周长还能够怎样求?
教师板书:C=2πr
4、圆的周长分别是直径与半径的几倍?
课堂活动五:课堂反馈
一、决定.
1.Π=3.14()
2.圆的周长是它的半径的∏倍。()
3.圆的直径越大,它的圆周率就越大。()
4.只要明白圆的半径或直径,就能够求圆的周长。()
5.大圆的圆周率比小圆的圆周率大。()
三、实践操作
2.电脑课件出示主题图。如果圆形花坛的直径是20米,它的周长是多少米?。(让学生独立完成,群众订正)
问题2:小自行车车轮的直径是50cm,绕花坛一周车轮大约转动多少周?
(学生完成后,让学生打开课本64页例1对照,反思自己的解答过程)
(注:评析问题2时,能够推荐学生用估算来解答。)
3.解答开始的问题
这天我们学习了圆的周长的计算方法,此刻我们来帮忙小黄狗和小灰狗算一下它们跑的路线,看看小灰狗为什么会赢,小黄狗为什么会输。
小黄狗跑的路线是正方形的周长,小灰狗跑的路线是圆的周长,动手算一算,谁跑的距离远?
10米
四、拓展延伸
看,小黄狗和小灰狗又要比赛了,这一次小灰狗沿大圆跑一圈,小黄狗沿两个小圆“∞”跑一圈,谁跑的路程长呢?好好想一想。
课堂活动六:全课总结,反思评价
1、同学们,这天我们一齐研究了圆的周长,下面我们来谈一谈本节的收获。
2、评价自己小组合作学习的表现如何。
课外活动:家庭作业
1、基本练习:完成课本第64页做一做第1、2题。
2、提高练习:完成课本第65页练习十五第2、3题。
3、操作练习:画一个周长是12.56厘米的圆。
板书设计:
利用了生动的课件创设了教学情境,激发了学生参与的兴趣,为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举两得;而且,动画的演示过程,很好地展示了圆周长的概念,并透过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了周长的概念,为后面的学习奠定了基础。
感知动作同人的心理活动是密切联系的,动作记忆保留的时间更长久。小学生在其数学思维活动中,视觉映象起着相当重要的作用,如果透过活动强化问题解决前的感知动作思维,有利使记忆以动作效果来储存。透过让学生把圆形橡筋剪断,使学生感知化曲为直的概念。为下面探索圆的周长做好铺垫。
利用学生好奇、好动的特点,引导学生小组合作,测量归纳出圆的周长的方法,不失时机地表扬小组的合作精神,让学生初步感受到成功的喜悦。
教师抓住时机,甩动绳子系的小球,构成一个圆,演示摩天轮,让学生感受到用绳测、滚动的方法并不能测量出所有圆的周长,就应找到一种既简单有能准确计算圆的周长的方法,进而引导学生研究圆的周长与直径的关系。
透过填写正方形的周长与它的边长的关系,为下面的探讨圆的周长与它的直径的关系做了一个很好的铺垫。因为学生在记忆正方形的周长时,只是记正方形的周长是4个a相加的和,很少说是正方形的周长是边长的4倍。上表的填写对于中下生的小组合作起了一样板的作用。
透过直观的演示学生很快就找到了圆的周长和直径有关系。
《数学课程标准》提出:“动手实践、自主探索、合作交流是学生学习数学的重要方式。”这一环节,引导学生分工合作,用自己喜欢的方法测量出圆的周长,求出比值,对所收集的信息进行分析处理,在动手的过程中发现了圆的周长都是直径的3倍多一些,并透过课件演示验证了结果。使学生在探索新知的过程中,由知识的理解者转变为知识的发现者和创造者,不仅仅理解掌握了知识,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。
那里引出故事,在帮忙学生增长知识的同时,自然在对学生进行了爱国主义教育,使学生产生对数学知识一往情深的志趣。
本环节的设计,实现由具体到抽象,由物化到内化,理解计算公式。透过转化,从而完成新知的生成。
透过辨析让学生巩固圆周率是常数的认识,加深对圆周率的理解。
操作练习设计紧扣课题,从解决基本练习到解决主题图中实际问题,使学生认识到,数学来源于生活,也服务于生活,对新知识有了更深一层的认识,巩固新知,发展了潜力。
透过解答课前导入的问题,让学生体现多层次,多角度的练习,培养了学生的思维和解决问题的潜力,更能促进学生把知识和技能转化为智力、潜力。
在解决了开始的问题后,紧跟着变化题目的图,让学生能感知当大圆的直径等于另外两个小圆的直径和时,大圆的周长等于这两个小圆的周长和。是对圆周长公式的综合应用。
让学生谈收获,能够自我认识、总结课堂的表现与认识掌握程度,最后回忆新知、巩固新知,体验成功的喜悦。
课外作业题目体现层次性,注重基础知识的巩固和基本技能的运用。
围成圆的曲线的长
圆的周长
(实物测量方法)
转化
圆周率
字母表示π≈3.14
曲直
圆的周长总是它的直径的3倍多一些
圆周率=圆的周长÷直径==π是一个固定的值
圆的周长=直径×圆周率
字母表示:C=πd
C=2πr
《圆周长》教学设计2
各位领导、评委大家上午好!我今天说课的题目是《圆的周长》
一、教材分析
1、教学内容
这节课是人教版小学六年级数学第四单元《圆的周长》
第一课时
2、教材所处的地位
这节课是建立在求长方形、正方形的周长知识为学习基础的、是前面学习“认识圆的”进一步深化。为今后进一步学习圆的有关知识奠定基础,是相当重要的学习内容。
3、教学目标
(1)知识目标:让学生了解圆周率的定义。
(2)能力目标:让学生动手操作,利用绳测法、滚动法认识圆的周长并掌握圆周长的计算公式。
(3)德育目标:通过对学习向学生渗透爱国主义教育。
4、重点难点
重点:掌握圆周长的计算公式
难点:圆周长公式的推导
二、学情分析
这节课的授课对象是小学高年级的学生,作为小学高年级的学生,他们已经有了一些生活实践的经验积累了一些教学知识。基本具备了分析问题、归纳问题、概括问题的能力。因此让他们在自主快乐的情境中学习。是他们感受到学习不是枯燥乏味的,而是一件快乐有趣的事情,从而乐意去学。
三、说教法学法
现代教育是以人为本的教育,小学数学新课标规定应着重培养学生的探索意识、探索能力、探索思维,拓展探索思维的空间。改变以前机械说教,沉闷程式化的教学设计。
把课堂还给学生,充分发挥学生的主动性。因此,我采用的是洋思教学模式,即“先学后教、当堂训练”,在我的课堂上,学生结合自学指导,认真阅读教材,通过自主探究、合作交流、讨论来掌握新知。既培养了学生的探索意识,又让学生在课堂互动的快乐氛围接受新知。
四、说教学过程
我是按以下四个层次设计教学过程的:
1、复习旧知识、导入新课
(1)让学生找出图中直径和半径,并说出什么是圆的直径和圆的半径?直径和半径的长度有什么关系?
(2)什么是长方形的周长?什么是正方形的周长?
通过对就知识的复习为新授内容做了准备和铺垫。
2、出示自学指导、指导学生认真阅读教材,掌握本节课的知识。
自学提示:
(1)课本63页向我们介绍了两种测量圆周长的方法,一种是滚动测量法,另一种是绳测法,拿出个小组准备的直径是10cm、15cm、20cm的圆。完成下列表格:
周长直径周长/直径(保留两位小数)
(2)探究圆的定义?直径不同的圆,周长与直径的比值一样吗?这个比值叫做什么?用哪一个字母表示?读作什么?在通常计算时∏值取多少?圆周率是哪个国家的数学家谁最早提出的?
(3)根据被除数=除数X商,如果用字母C表示周长,d表示圆的直径,圆周长的计算公式怎样表示?
三、当堂训练、检查自学效果
1、求下面各圆的周长
2、一个喷水池直径是5m,他的.周长是多少米?
四、订正学生做题过程中出现的错误(后教)
学生在求圆的周长时,不能正确的应用公式,这时我会告诉学生,已知半径求圆的周长用C=2∏r,已知直径求圆的周长,用C=∏d。
五、本课小结
闭上眼睛想一想,通过本课的学习你有哪些收获?学生在回忆梳理的过程中再现了本课的知识点。
六、课堂作业、当堂批改(不少于10分钟)
1、用C表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长计算公式可写作()或()。
2、求下面各圆的周长
4
3、完成下列表格
半径rcm直径dcmCcm
4
1.2
12.56
4、已知圆的直径是20m求圆的面积?
附板书设计:圆的周长
1、圆的周长的定义
2、圆周率的定义即表示方法
3、圆周长的计算公式C=∏d或C=2∏r
《圆周长》教学设计3
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆周长的计算公式。
教具准备:
多媒体课件三套、系绳的小球。
学具准备:
塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的.周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
学生推导圆周长计算公式:c=πd;c=2πr。
要求圆的周长,你必须知道什么?(直径或半径)
4.运用公式计算。
(1)求下面各圆的周长,只列式不计算。
课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)
(2)出示例1。
①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?
②学生尝试练习,反馈评价。
③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第112页“做一做”。
(4)看书质疑。
三、运用新知,解决问题
1.下面的说法对吗?并说明理由。
(1)圆的周长是它直径的π倍。()
(2)大圆的圆周率大于小圆的圆周率。()
(3)π=3.14()
2.测量一圆形实物直径,计算它的周长。
3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)
四、总结全课,储存新知。
这节课你自己运用了哪些学习方法,学到了哪些知识?
五、思考题。
课件演示:大圆的周长和两个小圆的周长之和同样长吗?
《圆周长》教学设计4
教学内容:圆的周长
教学重点:理解圆周率的意义。
教学难点:探究圆的周长的计算方法。
教学过程:
一、导入新课
故事导入,观看后提问:
1.谁获胜呢?
2.它们对自己跑的距离产生了怀疑,都说自己跑的远……
3.拿起一个圆用手模一摸感知什么是圆的周长。
二、新课
(一)介绍测量方法:
1.绳测法。
2.滚动法。
3.教师引导学生运用“化曲为直”的思想,知道绳测法和滚动法测量圆的周长,并让学生感知这两种方法的局限性
(二)猜想。(三)实验。
1.小组协作。
周长c (厘米)
直径d (厘米)
周长与直径的比值 (保留两位小数)
……
……
……
2.汇报测量和计算结果。
提问:通过这些实验和统计,你发现圆的周长和直径有没有关系?有怎样的关系?
学生:发现每个圆的周长总是直径的3倍多一些。
(四)验证结论。
(五)阅读理解有关圆周率的知识。
三、练习
计算方法:
1.能说出圆周长的计算方法吗?
c=∏d c=2∏r(板书)
2.根据条件,求下面各圆的周长。
d=10cm r=10cm
3.(略)
4.现在你明白小龟和小兔谁跑的路程长吗?谁跑得快?
5.拓展练习。
四、总结。
你学会了什么?请主动用你学会的知识去解决生活中有关圆的周长的问题。
附:教学设想
一、选择与新知识最佳关系的生长点,巧制课件,导入新课。
“周长”是已学过的概念,但以前讲的长、正方形的周长是指封闭折线的长度,而圆的周长是指封闭曲线的长度。一“直”一“曲”既有联系亦有区别。我抓住这一新知识的连接点导入新课。激发学生的求知欲。
二、调动学生积极主动参与,给学生充分的探索空间。
整个教学过程中,我设计灵活多样的教学方法。例:课件演示与实验相结合,个别实验和小组实验相结合,讲与练相结合,计算与测量相结合,谈话与板书相结合,讲与练相结合,计算与测量相结合。充分调动学生学习的主动性,给学生充分的探索时空,并且探究的题材对学生也具有一定的挑战性。学生的角色由知识的接受者转变为知识的构建者。
三、在研究性学习中培养学生合作意识和数学交流能力。
小组探索通过测、剪、量、算一系列操作认识圆的周长与直径有一定的倍数关系,巧用课件,概括出圆周长的计算公式。
附:教后感:
这次“三新一整合”的活动促使我重温《新教材标准》,改进自己教学观念,学习有关信息技术整合的新模式。本节课体现了我教学观念的一些改变。主要体现在:
一、把课堂的主动权交给了学生,给学生充分的探索时空。
课堂教学是“教”与“学”的统一,随着素质教育的不断深化,越来越偏重于“学”的研究(三新活动中的“新学法”)。教师不再是知识的提供者和传授者,而是数学学习的组织者、引导者、参与者;学生不再是知识的接受者,而是数学知识的建构者。师生角色的的变化,使学生在学习方式上有了质的飞跃。动手实践,自主探索、合作交流成为学生重要的学习方式。圆的周长计算方法的探索,这题材对学生有一定的挑战性,也就是和学生的现有认知状态有一个适度距离(潜在距离),学生在这种状态下的探究学习才是有意义的学习。本节课给予学生充分的时间探索出圆的周长总是直径的3倍多一些。
二、利用课件,激发探究兴趣、提高探究效率和培养探究能力。
课件动感的龟兔赛跑把全体学生引入课堂,理解了课题的含义、明确了学习的目的性,激发了探索的兴趣。课件的几次龟兔赛跑的介入,并逐级演示,再加上老师的启发引导和学生的观察思考有机结合,化抽象为具体,使学生进一步理解了圆周长的含义,明确学习目的性,激发了学生的探究兴趣。
运用课件设计自学内容,大大节省了板书所用的时间,使学生探究数学问题的效率得以提高。正方形周长和圆周长比较,大圆周长和几个内切小圆的周长和比较。通过课件的演示,对于引导学生说理,理解疑难问题,培养学生解决新问题的探究能力有着极为重要的作用。
三、巧妙设计练习,照顾全体,培养学生的创造能力。
本节课的练习全部是要利用课堂所学的内容解决生活中的问题。特别是通过小组学习形式让学生利用圆周长的知识举出能解决生活中哪些有关圆周长的知识这一开放性题型。激发了学生的兴趣,也照顾了不同层面的学生。学生所举的例子充分体现了学生的创造性和运用知识的能力。
运用了探究式课堂教学。上课后,也有许多地方值得我进一步深思。例如怎样设问、问题开放到什么程度、信息技术怎样完美地和课堂整合、教学理念的进一步改变……
探究式课堂是否取得实效,归根到底是以学生是否参与、怎样参与、参与多少来决定的`同时只有让学生主动参与教学,才能让课堂充满生机。
附:评析意见:
对于刘老师上的《圆的周长》一节课,我们可以用九个字来概括,“观念新,意识强,效果好”。从教学设计中和教学过程中,我们深切地感受到刘老师的教学理念很先进,对“新课程标准中的数学学习和数学教学”有深刻的认识,也体现出较好的效果。
一、教学观念上,刘老师的“个性教育意识”强
刘老师的“个性教育意识”强,可以从刘老师的课堂设计、课堂结构上都可以体现出来。课堂上学生的学习过程都是以小组的形式来开展的,学生之间通过协作、交流来共同实现学习目标。这种组织形式就能保证了每一个学生都能得到许多的学习机会,在这样的学习环境中,人人都能得到发展,不同的人得到了不同的发展。
二、教学关系上,刘老师的“学生的主体意识”强
刘老师的“学生的主体意识”强,这一点不仅可以从教师的角色的转变中可以看出来,还可以从教学时间的分配上得到体现。首先教师的角色在课堂上有很大的变化。教师不再一个人主导课堂,她把教学主阵地让位给学生,从而使学生真正成为学习的主体。在课堂上,老师是不仅一个引导者,通过“龟兔赛跑”的故事,配合课件动画的演示,一下子就把学生带到探究问题的学习环境之中来。老师还是一个组织者,给学生分工,给学生目标和任务,其余工作都让学生自己去完成。学生都很好地利用这些时间和空间,动手操作,通过操作去探究和发现圆的周长和直径的关系。老师不只是注重结论的学习,更是让学生去经历学习活动的全过程,从而使学生体验到探究问题的乐趣。老师更是一位与学生平等的合作者,老师适时的点拨与启发“正方形的周长与边长有关,大胆地让学生猜一猜圆的周长与什么有关”。再如,老师艺术地把自己的测量结果与学生平等地呈现在一起,没有一点强加给学生的味道。另外,为了真正体现以学生为主体,而不流于形式。刘老师给学生提供充分的学习时间和空间,如探究和发现圆的周长与直径的关系,学生用了12分钟。这就保证学生有充分的时间参与学习活动,尽可能地让全体学生参与学习活动,使学生人人动脑、动口、动手,从而真正确立学生学习的主体地位,还学生学习的主人地位。
三、教学模式上,刘老师的“创新意识”强
在教学活动中,刘老师很注重学生创造力的培养。其中练习的设计很有新意,对培养学生的创造力起着很大的作用。小组之间互相提出问题,或独立解答,或讨论交流。从学生提出的问题我们可以感觉到学生的创造力很强。如有的提钟的时针转一圈的长度、单车的车轮的周长、呼啦圈的周长等,还有地球的周长,大树干的周长等。这些问题都是我们生活当中所常见的现象。学生就可以利用今天所掌握的知识去解决这些问题。学生的收获真的很大。从而让学生体会到什么是有价值的数学,生活当中的数学就是有价值的数学,有趣的数学,有利于学生发展的数学就是有价值的数学。
四、建议
课件整合方面,为了让学生从更深层次上接触科学的真理,培养科学的态度和科学精神。可以在学生操作得到圆的周长是直径的3倍多一些的关系以后,设计一个较精确的计算圆周率的课件,让学生对圆周率有一个更加清楚的认识。
《圆周长》教学设计5
一、教学目标:
1. 让学生知道什么是圆的周长,《圆的周长》教学设计及反思。
2. 理解并掌握圆周率的意义和近似值。
3. 经历推导圆周长计算公式的过程,初步理解和掌握圆的周长计算公式,并能进行正确计算。
4. 培养学生的观察、分析、综合及动手操作能力;在探究中体验成功,增强信心。
5. 结合圆周率的学习,对学生进行爱国主义教育
二、教学重点:推导圆周长的计算公式,准确计算圆的周长。
三、教学难点:理解圆周率的意义。
四、教学准备:老师:课件、直尺、一元硬币、水桶、易拉罐、纸剪的圆、绳子等
学生:2个大小不同的硬纸圆片、直尺、彩带、学具。
五、教学过程:
(一)、认识圆的周长
1.情境导入。
师:同学们,看过《米老鼠和唐老鸭》吗?
师:今天黄老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?(生齐鼓掌!)
师:米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?
2.迁移类推
师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?
(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)
(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)
师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。
(3)师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)
师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?(板书课题:圆的周长)
每个同学的桌上都有一元硬币、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。
(完成板书:围成圆的曲线的长叫做圆的周长)
师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。
3.实际感知
师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。
(二).测量圆的周长
1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)
师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)
2.小组汇报:(预设)
(1)师:哪个小组愿意来汇报?
【方法一:用线绕
师:谁来与老师配合绕给同学们看看?
(师生合作用绕线的方法去测量圆周长)
师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)
师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么?(圆的周长)(2)师:除此以外,还有别的方法吗?
【方法二:把圆放在直尺上滚动一周,教学反思《《圆的周长》教学设计及反思》。
师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么?(圆的周长)
(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)
师:真的吗?谁敢来试试。
指名一生上台测量黑板上的圆。可能用线绕。
师:有什么感觉?(不方便!)
师:那你可以把它搬下来滚动呀!(生齐笑)
这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。
(三)、引导学生发现圆的周长和直径之间的关系
1.猜测
师:正方形的周长与它的边长有关,周长是边长的4倍,那么圆的周长跟它的什么有关呢?
2.验证
师:谁知道圆的大小是由什么来决定的吗?(半径或直径)
师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)
师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?
师:你感觉到了吗?
(圆的直径越长,周长越长;圆的直径越短,周长越短。)
师:这就说明圆的周长肯定与圆的什么有关系?(圆的周长与直径有关系。)师:圆的周长与直径到底有什么关系呢?
师:刚才,大家都对圆的周长与直径成什么关系进行猜测,下面,我们就通过动手实验来检验大家的猜测是否正确。
①测量计算。
让学生拿出课前准备的4个大小不同的圆,分别测量它们的直径和周长,并按要求填写下表。
②汇报、展示。
让学生汇报自己的'测量结果和计算结果,教师把不同的圆的有关数据通过表格的形式呈现出来。
③观察、发现。
让学生观察、比较表中的数据,想一想:通过观察和比较,你发现了什么?通过全班交流,引导学生初步发现:圆的周长总是直径的3倍多一些。(板书:圆的周长总是它的直径的3倍多一些。)
(3)介绍圆周率和祖冲之在圆周率研究方面作出的贡献。
①揭示圆周率的概念:表示这个3倍多一些的数是一个固定不变的数,我们称它为圆周率。能用式子来表示吗?请试一试。(板书:圆的周长÷直径=圆周率)
②介绍圆周率的表示字母π及其读写法。
③介绍祖冲之及圆周率的有关知识,激发民族自豪感,同时指出圆周率的数值及小学阶段计算时所取的近似值π≈3.14。
(四)总结圆周长的计算方法。
1、根据圆周长与直径的关系,
你能推导出圆的周长计算公式吗?指名回答,
引导学生归纳:圆的周长=直径×圆周率(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)师:如果已知圆的半径r,可以怎样计算圆的周长呢?板书:C=2πr)2、回应新课引入的情境,即时练习。
师:现在,你能求出谁的路程长吗?为什么?
(五)、应用圆周长计算公式,解决简单的实际问题.
1. 教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
2.练习题
板书设计
圆的周长测量:滚动法 绳测法
规律:圆的周长总是它的直径的3倍多一些。
圆的周长÷直径=圆周率
公式:圆的周长=直径×圆周率C=πdC=2πr
教学反思:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值“∏”是如何来的,都是值得学生研究的问题。因此,教学中,我着力与培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算公式。因为是自己操作的所得,再加上我在课堂中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对“∏”的含义就理解得特别透彻,也学得有兴趣。在测量过程中,学生量的数据可能误差有点大,应尽可能把误差减少,课堂应培养学生的动手能力,善于思考和发现。
《圆周长》教学设计6
【教学内容】
新课标人教版六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。
2.能利用圆的周长的计算公式解决一些简单的数学问题。
3.培养学生的观察、比较、分析、综合及动手操作能力。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。
难点:理解圆周率的意义。
【教具、学具】
课件、软尺、直尺、绳子、圆形。
【教学过程】
课前交流:请同学们唱一首歌。
(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)
一、创设情景,生成问题
国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。
(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。
(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)
二、探索交流,解决问题。
师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。
师:同桌想一想圆的.周长怎样测量?
师:把你的好方法在小组内交流一下。
(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?
(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。
师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。
师演示(线绕圆一周,然后量出线的长度。)
师:还有其他的方法吗?
生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。
师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。
生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。
师:这个办法也很妙!其他同学还有要补充的吗?
生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。
师:你的想法可真不简单!
师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。
师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?
生:能!
师:正方形的周长和什么有关?
生:周长是边长的4倍,
师:那么圆的周长和什么有关系呢?
生:圆的直径越长圆越大,所以周长就越长。
师:那周长和直径有怎样的关系呢?
(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)
师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。
师:现在大家通过填写表格发现了什么?
生:在测量中发现,大小不同的圆的周长是不同的。
师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?
生:是由半径(或直径)唯一决定的。
师:圆的周长与直径或半径之间到底存在着怎样的关系?
生:每组算的结果不大一样,但都是3点多。
师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?
生:一样。
师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。
师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?
我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)
师:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
师:从表中我们可以看出圆的周长÷直径=圆周率
(板书:圆的周长=π×直径)。
如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。
生读:c=πd c=2πr
师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?
生:圆的直径或半径。
(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)
三、回顾整理,反思提升。
这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?
(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。
(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。
《圆周长》教学设计7
一、教学目标
(一)知识与技能
理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。
(二)过程与方法
经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。
(三)情感态度和价值观
通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
二、教学重难点
教学重点:理解和掌握圆的周长的计算方法。
教学难点:圆周率的探究。
三、教学准备
多媒体课件。
四、教学过程
(一)创设情境,引发思考
1.情境导入,揭示课题。
教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)
学生:给它加一个箍。
教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?
教师:求铁皮的长度,就是求圆的什么?
学生:求铁皮的长度,也就是求圆的周长。
教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)
学生:圆一周的长度叫圆的周长。
教师:圆的周长与我们之前学习过的图形的周长有什么区别?
学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。
2.合理猜想,确定方向。
教师:圆的周长与圆的什么有关?
学生:直径、半径。
教师:圆的周长是直径的几倍?
学生:……
教师:怎么验证你的猜测呢?
学生:量一量,算一算。
【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。
(二)设计方案,展开探究
1.探讨设计方案。
(1)如何化曲为直?
教师:圆是曲线图形,尺子是直的,怎么办?
学生:滚一滚,绕一绕……
(2)如何减少误差?
教师:测量结果可能不准确,有什么办法尽量准确一点呢?
学生1:多量几次,选出现次数量多的数据。
学生2:用计算器计算,提高正确率。
教师:除不尽怎么办?
学生1:用分数表示。
学生2:取近似数。
教师:一般保留两位小数,比较方便。
【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的.问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。
2.操作获取数据。
小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。
物品名称
周长
直径
周长与直径的比值
(三)交流讨论,提升认识
1.交流质疑。
(1)小组汇报,教师直接将结果输入电脑。
【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。
(2)质疑不同数据。
教师:为什么测量计算的结果不相同?
学生1:测量有误差,绳子绕的松紧程度不同。
学生2:尺子不够精确,不到一毫米只能估计。
教师:是不是尺子再精确一点,测量结果就准确无误?
教师:有没有其他的方法?
教师:有没有唯一的得数?
【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。
2.概括小结。
(1)圆周率的意义及读写。(课件出示内容。)
任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。
(2)概括周长计算公式。
如果用C表示圆的周长,就有C=d或C=2r。
(四)联系实际,解决问题
1.例题教学。
(1)出示教材第64页例1。
一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?
(2)学生尝试解答。
(3)规范书写。
C=2r
2×3.14×33=207.24(cm)≈2(m)
1000÷2=500(圈)
答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。
2.巩固练习。
(1)求下面各圆的周长。
①2×3.14×3=18.84(cm);
②3.14×6=18.84(cm);
③2×3.14×5=31.4(cm)。
(2)解决问题。
①一个圆形喷水池的半径是5 m,它的周长是多少米?
2×3.14×5=31.4(米)
答:它的周长是31.4米。
②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)
3.77÷3.14≈1.2(米)
答:这个圆柱的直径大约是1.2米。
【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。
(五)课堂小结,拓展延伸
1.这节课你有什么收获?说一说圆的周长与直径的关系。
2.介绍中国古代对圆周率的研究及伟大成就。
【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。
《圆周长》教学设计8
教学内容:苏教版小学数学第十册第98—99页。
教学目标:1、理解圆周率的意义,掌握圆的周长的计算公式。
2、通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。
3、体验数学与日常生活的密切联系,了解圆周率的发展史,激发民族自豪感和探索精神。
教学重点:理解和掌握求圆的周长的计算公式,能计算圆的周长。
教学难点:动手操作,探索圆的周长与直径的关系。
教学具准备:教师准备多媒体课件、学生实验报告表。学生准备直尺、直角三角尺两把、一角、五角、一元硬币名一枚、绳子。
教学过程:
一、联系生活,激活内需
同学们,为了倡导低碳生活、共建绿色家园,重庆一支自行车队伍头戴钢盔,身穿印有“环保、低碳”字样的文化衫,人手一辆自行车,从奥体中心出发,驶向主城各个方向,庞大的阵容吸引了不少市民关注。(课件出示图片)但是,他们选择的自行车却是不一样的,请同学们看两张图片。(课件出示自行车的两张图片及议一议的内容)
议一议:(1)车轮转动一周,谁的车走得远呢?为什么?什么是车轮的周长?
(2)车轮的周长和什么有关系?圆的周长与什么有关系?圆的周长与直径有怎样的关系呢?
揭示课题:圆的周长
【评析:从现代生活理念出发,也是从学生已有的知识经验出发,感知车轮转动一周的远近与车轮的周长有关,车轮周长的大小就是圆的周长的大小,圆的周长与直径的长短有关。一方面让学生受到了环保教育,另一方面也让学生自我发现研究圆的周长要从研究周长与直径的关系入手,也产生了进一步探究的必要性。】
二、实验操作,探究新知
1、在情境中内化概念
同学们已经知道圆的周长指的那部分,那你们拿出自己准备的硬币,用手摸一摸这个圆的周长,并且指给你的同桌看一看。那你能不能用自己的话说一说什么是圆的周长?
师生共同小结:围成圆的曲线的长是圆的周长。
2、测量圆的周长
(1)既然圆的周长是曲线那能不能用直尺直接测量呢?怎么测量呢?(让学生独立思考10秒左右)
(2)四人一小组讨论、交流测量方法。并把结果记录下来。(滚动法、绕绳法)
(3)小组汇报:哪个组愿意第一个到前面来把你们的方法介绍给大家?(结合学生的方法配以课件演示)
课件演示的时候让学生观察两种测量方法的相同点是什么?(都是把圆周长这条曲线转化成了线段,然后通过测量这条线段的长度就得到了圆的周长)
(板书:化曲为直)这种转化的方法在数学学习中很常见,同学们利用的很好。
3、探索规律
圆的周长与直径到底有怎样的关系呢?利用你手中的硬币及工具来测量一下圆的周长与直径。下面请同学们选用自己喜欢的方式以小组为单位进行测量,记录测量数据,并通过计算寻找周长与直径的关系,看看你们组发现了什么。把结论填在表的下面。(课件出示实验报告表,并让每组拿出课前发的表格。)
物品名称
周长
直径
周长与直径的关系(计算)
一角硬币
五角硬币
一元硬币
我们发现的规律是:
小组合作完成,全班交流实验结论。预设:圆的周长是直径的3倍多一些。
4、老师操作,即课件演示测量圆的直径和周长的过程。
师:老师也测量了圆的周长与直径,你们想看一看吗?演示课件。
总结:圆的周长总是直径的3倍多一些。
5、认识圆周率
(1)实验证明:圆的周长确实是直径的三倍多一点,我们把它叫做圆周率,很早以前我国的数学家就发现了这个规律,下面请同学们听有关圆周率的故事。请同学们在听的过程中把你认为重要的记在脑子里。
(2)听了这个故事,你有哪些感受?师:是啊,中国人真了不起!从古到今,一直如此,我希望同学们也能成为一个了不起的人。
(3)师说明:刚才同学们算到的结果都不是3.14,那是因为做实验时的误差所致。“圆的周长总是直径的三倍多一些”写成关系式,(板书:圆的周长÷直径=圆周率)圆周率用字母π表示。
“圆的周长总是直径的三倍多一些”还可以说成“圆的周长总是直径的π倍。
根据这个结论,你能说出计算圆周长的公式吗?如果用字母C表示圆的周长,d表示直径,它的字母公式你会表示吗?(板书:圆的周长=直径×圆周率)能用字母表示吗?(板书:C=πd)还可以知道圆的什么条件求周长?(半径)知道半径怎样求呢?字母公式怎样表示?(C=2πr)
【评析:以小组学习的形式,放手让学生去探求圆的周长,目的'是体现让学生进行自主探索的教学思想,同时也培养学生的合作意识与能力。这里提供三种不同的圆让学生求周长,向学生渗透“化曲为直”的数学思想及方法。通过介绍圆周率,在头脑中完善对圆的周长计算方法的认知,促进学生的自我建构,激发一定的民族自豪感和探索精神。】
三、巩固应用,内化知识
1、独立完成。
(1)“试一试”。
计算例4中三个自行车车轮的周长大约各是多少厘米。
(2)“练一练”。
有一种汽车车轮的半径是0.3米。它在路面上前进一周,前进了多少米?
3、小组合作完成。
(1)你知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程吗?要解决这个问题你想得到什么样的数据?
(2)(出示图片)圆形花坛的直径是20米,小自行车车轮的直径是50厘米,绕花坛一周车轮大约滚动多少周?
【评析:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程,体会到学以致用。实例计算可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为课后实践题打下很好的伏笔。】
四、回顾反思,评价小结
通过这节课的学习,评价一下自己学得怎样?你有什么收获?这些知识是怎样学到的?
师:同学们,生活中的数学问题还有很多,希望你们善于发现,善于探索,善于总结,相信你们一定会拥有更多的智慧,收回更多的快乐!
五、课后拓展,走进生活
小组合作完成,应用这节课学到的知识,想办法测量一下,从学校大门口到影剧院门口的距离大约是多少米。
【评析:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力。】
板书设计:
圆的周长
圆的周长是直径的3倍多一些
圆的周长=直径×圆周率
C=πd
C=2πr
《圆周长》教学设计9
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
5、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、问题导入
同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。
二、探究新知
看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的周长和什么有关?)
同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。
请看大屏幕,这里有一个圆,那位同学能上台指一指它的周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的周长。请同学们把圆的周长的概念默记两遍吧。
请同学们拿出你手边的圆,同桌互相指一指它的周长吧。
三、合作探究
老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!
好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。
老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。
四、找出关联
同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。
我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?
五、合作解疑
请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。
好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)
好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的'数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。
请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。
六、知识渗透
说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。
七、公式推导
既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。
请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。
八、解决问题
1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。
2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)
这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。
3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?
《圆周长》教学设计10
一、教材分析
“圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。
教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。
笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的介绍,渗透了爱国主义教育。
二、学生分析
学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。
三、学习目标
知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。
过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的`周长。
情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育
其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。
四、教学过程:
(一)复习铺垫
1.复习圆的认识。
2.出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。
以上两步同时进行,为理解圆周长的含义做好铺垫。
(二)教学新知
1.在情境中内化概念
(1)具体感知圆周长的概念。
出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?
说明,小蚂蚁走过的路程实际上就是圆的的周长。
师生共同小结:围成圆的曲线的长是圆的周长。
(2)板书课题。
2.在探究中理解公式
(1)设疑激思
鼓励学生用不同的方式测量圆的周长。
用绳测和滚动测量法,测量自己的学具圆获圆形实物的周长。
学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。
学生猜想圆的周长是否也有计算公式时?
激思:圆的周长与什么有关?与直径到底有什么关系?
(2)操作填表
同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。
再次操作:修正自己的测量结果。
(3)比较发现
分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。
(4)归纳总结
介绍圆周率和祖冲之的故事。
推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。
几下字母公式。
3.在运用中强化公式
教学例1独立解题。
练习:口头列式并讲算理,巩固公式。
(三)巩固练习(图略)
基本练习。判断题,直接求周长。
变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。
综合练习。求阴影部分的周长。
五教学反思
1课前预设的学生活动太少,数学上没有从活动中探究新知;
2课前对学生原有任职的单位太简单,没有具体到学生。
《圆周长》教学设计11
教学目标:
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点:推导圆的周长的计算公式,准确计算圆的周长。
教学难点:理解圆周率的意义。
教具准备:圆片、铁圈、绳子、直尺。
教学方法:观察、演示、小组合作交流
教学过程:
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:花花和亮亮进行赛跑比赛,花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的.,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
二、经历探究全程,验证猜想发现。
一圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
二圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)
三、感受数学文化,激发情感教育。
1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
2、介绍计算机计算圆周率的情况。
3、教学圆周率:π≈3.14。
四、归纳圆的周长的计算公式。
学生讨论:(1)求圆的周长必须知道哪些条件?
(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?
生回答,教师板书:C=πd或C=2πr
《圆周长》教学设计12
教学内容:
义教六年制小学数学第十一册第110-112页例1。
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:
圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
教学具准备:
多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。
教学过程:
一、创设情境,提出问题
1、创设情境。
这节课,老师要和同学一起探讨一个有趣的数学问题。
媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。
2、迁移类推。
引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。
(1)要求唐老鸭所跑的路程实际就是求什么?
(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)
(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)
3、提出问题。
看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。
梳理筛选形成学习目标:①什么叫做圆的`周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?
二、自主参与,探究新知。
1、实际感知圆的周长。
让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。
2、明确圆周长的意义。
引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)
(1)圆的周长是一条什么线?
(2)这条曲线的长就是什么的长?
(3)什么叫做圆的周长?
学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)
3、测量圆的周长。
让学生讨论如何利用桌上的工具,探究圆周长的测量方法。
小组内讨论、合作测量,然后一生向全班演示测量方法。
(1)绳测法:用卷尺绕圆一周测量。
(2)滚动法:媒体显示滚圆的动态。
(3)设疑激趣:师甩动手中系线的小球转成圆,让学生测量此圆的周长。
师:这就需要探讨一种求圆的周长的科学方法。
4、引导学生探求圆的周长与直径的关系。
(1)让学生观察、猜测圆的周长与什么有关系。
媒体显示:大小不同的两个圆同时的滚动一周留下的轨迹。
让学生观察这两个圆的周长与直径的长短。
(2)圆的周长与直径有什么有关系。
我们知道正方形周长是边长的4倍,那么圆的周长与直径是否也存在一定的倍数关系呢?这个问题让同学们自己去发现,请分组测量圆片,填好实验报告单。
学生操作实验,小组分工合作,测量圆片的周长和直径,并用计算器计算出它们的比值,填好实验报告单。
(3)小组汇报实验结果。投影学生报告单,引导观察数据,发现规律:无论大圆或小圆,圆的周长总是直径的3倍多一些。
(4)媒体验证。屏幕上两个圆的直径分别去度量它们的周长。
(5)概括结论。任何一个圆的周长都是它直径的3倍多一些。即圆的周长总是直径的3倍多一些。
5、理解圆周率的意义。
(1)让学生自学课本第111页第1、2自然段。
(2)思考讨论:任何圆的周长和直径的比是一个什么数?它叫什么?用什么字母表示。
(3)π的读写
(4)介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。
(5)认识圆周率数字特征和它的近似值。
6、推导圆周长的计算公式
(1)由圆周率的概念得到: 圆的周长÷直径=圆周率
圆的周长=圆周率×直径
c=πd或c=2πr
(2)解疑,再现系线小球转成圆。现在会求它的周长吗?只要已知什么?
三、应用新知,解决问题。
1、尝试解答例1,点拔讲解规范书写格式。
2、让学生提问,你对例1的解答有什么疑问。
3、练习反馈,完成例1下面的做一做。
四、实践应用,拓展创新。
1、判断: ①π=3.14。( )
②圆的周长是它的直径的π倍。( )
③圆的直径越长,圆周率越大。( )
2、求下圆的周长。
3、应用公式解决实际问题
(1)生试做
(2)反馈
(3)生完成P112做一做
4、看平面图计算。(媒体显示课始呈现的唐老鸭与米老鼠跑步的画面):如果这个正方形的边长与圆的直径都是5米,你能判断出谁跑的路程多吗?怎样判断?
五、总结评价,体验成功。
1、你学到什么?(引导学生进行总结)
2、怎么学到的?(评价总结,指出这些方法还可以用到今后的学习中去)。
3、还有什么问题?(回顾本课想学到的知识都学到了没有)。
六、作业
1、独立作业:练习二十六第4、5、6题
2、实践作业:
3、课后思考题:(媒体显示)米老鼠沿着外圈跑,唐老鸭沿着“∞”字形跑,谁跑的路程多一些?
《圆周长》教学设计13
【教学资料】
圆周长计算公式的推导,周长计算。(人教版《义务教育课程标准实验教科书·数学》六年级第62~64页的教学资料。)
【教学目标】
1.理解圆周率的好处,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作潜力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
【教学重点与难点】
重点:圆的周长计算公式的推导,能利用公式正确计算圆的周长。
难点:深入理解圆周率的好处。
【教材分析】
“圆的周长”概念的教学,是以长方形,正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,“圆的周长”计算方法的教学,是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。
【学情分析】
学生在学习圆的周长前已经理解了周长的好处,掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,明白半径,直径的关系并且会画圆,能测量出圆的直径。这节课是在这样的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。同时学生对各项动手操作的实践活动十分感兴趣,并且本班大部分学生思维活跃,善于动脑思考,有必须的自主学习潜力,相互探讨学习的风气较浓,对新事物比较感兴趣,平时教学中,经常开展小组合作式的探究学习活动,学生有较强的合作意识。老师只要充分发挥、调动他们的用心性,他们是乐意做课堂的主人的!
【教学用具准备】
教师准备:PPT课件、细绳、直尺、绳子系的小球。
学生准备:圆形物品、圆形橡筋、直径为2、3、5厘米的圆形纸片、直尺、三角板、棉线、软皮尺、剪刀、实验报告单、计算器。
【设计理念】
我们的课堂是生活的课堂,生命的课堂。但是,在现实的课堂中“为讨论而讨论”、“为合作而合作”、“为活动而活动”等华而不实虚有其表的`教学现象频频出现。细细反思,教学观念与教学行为之间的距离主要涉及到课堂教学的有效性问题。如我在本课设计上力求为学生创设“探究──发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华,从而使小组交流、师生交流、生生交流得以有效进行。我在教学中采取的策略如下:
1、利用现代教育技术,发挥强大的演示作用。
《圆的周长》从激趣引入、演示操作、指导探究、练习的出示都充分应用现代教育技术将文字、图形、动画、声音等多种信息加工组成在一齐来呈现知识信息的特点,使学生在学习的过程中,充分调动他们的感官,激发他们的学习兴趣,调动他们学习的用心性,同时把知识的构成过程有效的呈现给学生。
2、在操作中感悟。
教学过程是教师引导学生把人类的知识成果转为个体认识的过程,是一处“再创造”的过程。在这个过程中,实践操作是最基本、最重要的手段和方法之一。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。
3、在探究中发现与拓展。
儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,透过测量圆的周长、探讨圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。
总之,课堂应是师生互动、心灵对话的舞台;课堂应是师生共同创造奇迹、唤醒各自沉睡的潜能的时空;课堂应是向在场的每一颗心灵都敞开温情双手的怀抱,平等、民主、安全、愉悦是她最显眼的标志。
【设计思路】
从本课教学资料整体看,我的设计思路是下面的图:
圆周长认识
圆周长获取
测量
圆周率
圆周长应用
公式
计算
《圆周长》教学设计14
教学目的
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。
教学重点、难点
推导圆周长计算公式,理解圆周率的意义。
教具准备
圆片、铁圈、绳子、直尺。
教学过程
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
【反思】教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。
二、经历探究全程,验证猜想发现。
㈠圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
㈡圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)
【反思】合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的.。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。
三、感受数学文化,激发情感体验。
1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。
2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
3、介绍计算机计算圆周率的情况。
4、教学圆周率:π≈3.14。
【反思】数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。
四、刷新应用能力,总结巩固新知。
1、请你用自已的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?
2、尝试练习:一辆自行车车轮的直径是0.66米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)
3、明辨是非:
(1)圆的周长和直径的比的比值叫做圆周率。( )
(2)大圆的圆周率大于小圆的圆周率。( )
(3)π的值等于3.14。( )
(4)半径是10厘米的圆,它的周长是31.4厘米。( )
4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。
【反思】荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住3.14×1、3.14×2、……3.14×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。
《圆周长》教学设计15
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级上册第三单元《圆》62-64页的内容。
教学目标
1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。
2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。
3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。
教材分析:
《圆的周长》是六年级数学上册第三单元62至64页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。
学情分析:
因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆的周长的计算公式。
教学准备:一套多媒体课件、若干大小不同的圆片、一把直尺、一根绳子、一个计算器
教学过程:
(一)创设情境,提出问题。
师:同学们,20xx年是中国人扬眉吐气的一年,因为上海世博会的成功举办让我们有足够的理由为之骄傲和自豪。虽然世博会已经于10月31日完美落幕,但是,这场规模空前的盛会却创造了7308万人次参观的新纪录。其中,中国馆是众多展馆中的一朵奇葩,深受游客们的喜爱,它的外观好像古代的一顶帽子,因此又被称为“东方之冠”。此外,城市地球馆也得到了中小学生的青睐。同学们,瞧,这是地球馆中的地球模型,它叫“蓝色星球”。如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?(板书课题:圆的周长)
【设计意图:上海世博会这个情境的创设是为了突破教材,以学生的兴趣作为出发点,使学生对新知识的学习充满了热情和渴望,激发学生的探索欲望,为后面的学习做好铺垫。】
(二)自主学习,探究新知。
1、自主探究
(1)熟悉圆的周长的概念。
师:既然求大圆的周长没有好办法,那么我们就把小圆片做为研究对象。同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。
(找个别学生示范)
生:圆的周长是指圆一周的长度。
(2)测量圆的周长。
要求学生先独立思考有几种方法,再尝试用自己喜欢的办法去测量圆的周长。
【设计意图:培养学生养成独立思考的思维习惯,提高学生的动手操作能力。】
2、合作交流
在四人小组内交流方法。
【设计意图:小组合作旨在增强学生的合作意识,在此过程中,通过不断的交流、质疑,实现思想的碰撞与思维方式的互补,也使学生逐渐养成学会倾听的好习惯,并在聆听的过程中学会“取”和“舍”,即学会分析。】
3、汇报展示
学生汇报展示滚动法和绳绕法,教师点评:同学们,刚才有的同学用绳子绕圆片一周,这种方法属于绳绕法。还有的学生把圆片沿直尺滚动一周,这种方法我们称之为滚动法。无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)同学们展示的方法里面一定有你最欣赏的,那么就请大家用你们最欣赏最喜欢的方法同桌合作测量圆的周长,并把测得的数据直接写到圆上。
【设计意图:通过个别学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。】
教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么“蓝色星球”最大横截面的周长,再比如赤道的长度,还能用以上这些方法吗?
生:不能。
【设计意图:再次把学生带回课堂伊始的情境中,在质疑中激发学生的学习兴趣,并促使他们产生探究一般方法的迫切愿望。】
4、猜想验证
师:圆的周长与什么有关呢?
生1:与直径有关。
生2:圆的周长与半径有关。
师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。
(2)探讨圆的周长与直径的关系
①小组合作
要求学生以四人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,一人用计算器计算圆的周长与直径的比值,第四个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。
周长直径周长与直径的比值(保留两位小数)
1号圆片
2号圆片
3号圆片
4号圆片
②学习“圆周率”
师:同学们,由于各种原因,不同的圆计算出的.周长与直径的比值可能不完全相同,但实际上,这个比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)
(3)渗透数学文化
师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?
【设计意图:数学文化的渗透是为了激发学生的爱国情怀,从小培养学生的民族自豪感。】
5、推导公式
师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?
生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)
师:你能用字母表示圆的周长计算公式吗?
生:C=πd。(板书公式:C=πd)
师:如果已知半径呢?
生:C=2πr。(板书公式: C=2πr)
师:为什么呢?
生:因为直径是半径的2倍。
师:孩子们,就让我们带着满满的收获,再次看看“蓝色星球”吧!已知“蓝色星球”最大的横截面的直径是32米,如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。
【设计意图:再次回到蓝色星球的情境中,运用新的知识解决问题,首尾呼应,使整节课完整而有序。】
(三)巩固新知,解决问题
1、世博会不仅汇聚了各具特色的展馆,还有一些纪念品也给游客留下了深刻的印象,比如这款金镶玉挂件,其中玉的半径是1.5厘米,如果在玉的一周镶一层金边,那么需要多长的金边?
2、菲利斯大转盘每节车厢旋转一周大约是251.2米,那么它的直径是多少米?
3、课件上所展示的是世博会众多花圃中的一个,如果给这个花圃加上栅栏,需要几米长的栅栏?
【设计意图:这三道习题是从基础练到拓展练的跨越,让学生在掌握了新内容的基础上,用所学的知识来解决生活当中的实际问题,培养学生的应用意识。】
结束语:同学们,虽然我们没有以设计者的身份参与到世博会的建设中,但是我们可以做自己人生的设计师,去建设属于你们的美丽新世界。
板书设计:
圆的周长
化曲为直
圆的周长=直径×圆周率 π≈3.14
C=πd或C=2πr
课后反思:
本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体现在以下四个方面:首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。第三,学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新内容的基础上,解决实际问题,培养学生的应用意识。最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的能力。
【《圆周长》教学设计】相关文章:
《圆的周长》教学设计10-22
【精选】圆的周长教学设计09-05
圆的周长教学设计11-16
圆的周长教学设计05-19
《圆的周长》教学设计07-16
人教版《圆的周长》教学设计11-24
数学《圆的周长》教学设计11-22
数学《圆的周长》教学设计09-18
圆的周长教学设计(精选15篇)08-25
《圆的周长》教学设计15篇08-12