数列教学反思

时间:2024-05-18 09:32:15 教学反思 我要投稿

数列教学反思

  身为一名刚到岗的教师,课堂教学是重要的任务之一,借助教学反思我们可以快速提升自己的教学能力,快来参考教学反思是怎么写的吧!下面是小编收集整理的数列教学反思,仅供参考,大家一起来看看吧。

数列教学反思

数列教学反思1

  一.教材分析及能力要求:

  数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。

  二.教学中的重点、难点教学

  数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。

  三.教学过程反思

  在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的'推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。

数列教学反思2

  一、本章的知识结构与学生的认知结构得到了较好的统一

  本章的知识结构是:数列的基本概念——特殊数列——数列的应用。首先在理解了数列的基本概念后,进一步认识两个特殊数列:等差、等比数列,通过对两个特殊数列的研究使学生对数列的认识得到深化,进而解决一些实际应用问题。同时,教材注重了通过实例分析引入新知识,这符合从感性认识到理性认识的认知规律,因此说,教材的这种设计符合学生的认知结构。

  二、教材设计突出了数学思想方法,符合这套教材的特色

  这一章在内容设计上突出了化归与转化思想、数学建模思想等,例如:一些实际应用问题(分期付款问题)需要建立数列模型,转化为等差、等比数列求和问题。教材在编写上注意了数学方法的层层递进,例如:在数列的概念这一节涉及到了观察法,归纳法;在求等差、等比数列通项公式时用到了“作差求和”“作商求积”的方法。这些方法在后面的知识学习中都有所体现。

  三、整章内容的设计精简实用,顺理成章

  本章例、习题的配置数量多,但没有重复性例题,习题知识点覆盖全,尤其是设置了十个研究性问题,穿插在整章内容中,而且没有给出解答,提高了学生兴趣,这一点于其它章不同,前面几章中有些研究性问题,在提出问题的同时,也给出了解答,这就失去了它的设计意义,

  本章第2节设置了“数列求和”,目的是让学生理解求和概念及求和符号,提前安排这一节,分散了难点,使得后面学习等差、等比数列前n项和及特殊数列求和线的难度适中,教学时感到很自然。在习题中实际应用问题不是很多,最后一节“数列应用举例”主要是研究数列求和及求通项公式,应增加几个实际应用问题,让学生对数列知识加以深化。

  四、这一章为教师的“教”与学生的“学”提供了广阔的天地

  本章的例、习题及十个研究性问题为教师的教学提供了很多素材,同时为培养学生的探究意识和探究能力提供了广阔的思维空间。这些研究性问题的设计体现了新大纲的要求:注重培养学生数学的提出问题、分析问题、解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力、数学建模能力和数学交流能力。另外,在教学实践中,这些研究性问题的设计可以激发学生的学习兴趣和求知欲,为培养学生的思维能力搭建了一个平台,给学生充分展现自我的机会,促进了学生学习方式的转变,同时,对教师的教学方式提出了挑战,如果教师还沿用传统的教学方式,就会造成资源浪费,这套教材就失去了它的价值,就会使教师陷入讲教材的困难境地。

  五、教学时要走出片面追求“严谨”、“系统”,忽视循环深化的误区

  受传统观念的`影响,课程和教学中一度曾过分强调知识的严谨和系统性,强调学习的一步到位,例如上面的案例中提到的两个例题,实际上是个难点,可能有的教师觉得不够系统,会增加一些利用递推关系,求通项公式的习题,甚至会将竞赛的一些内容加进来才觉得够难度,如果这样随意求“深”求“透”,不能理解教材和大纲的用意,势必会加重学生的学习负担,就可能产生消极影响,所以要真正发挥例题的功能,达到培养学生探究能力的目的。

数列教学反思3

  1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题。

  (1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念。

  (2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项。

  (3)通过通项公式认识等比数列的性质,能解决某些实际问题。

  2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质。

  3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度。

  教学建议

  (1)知识结构

  等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用。

  (2)重点、难点分析

  教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用。

  ①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点。

  ②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉。在推导过程中,需要学生有一定的观察分析猜想能力。第一项是否成立又须补充说明,所以通项公式的推导是难点。

  ③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点。

  教学建议

  (1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用。

  (2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义。也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义。

  (3)根据定义让学生分析等比数列的`公比不为0,以及每一项均不为0的特性,加深对概念的理解。

  (4)对比等差数列的表示法,由学生归纳等比数列的各种表示法。 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象。

  (5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现。

  (6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用。

  

数列教学反思4

  作为一名高中数学教师来说 , 上好每一堂课,要充分挖掘教材,要从 " 教 " 的角度去看数学 , 还要对教学过程以及教学的结果进行反思。高中数学不少教学内容适合于开展研究性学习;教学组织形式是教学设计关注的一个重要问题 , 提炼出本节课的研究主题。对学生来说 , 学习数学的一个重要目的是要学会数学的思想。他不仅要能 " 做 ", 还应当能够教会别人去 " 做 " 。以下是我对本次课教学的一些反思。

  本节课主要有两个方面的'内容,一是求等比数列前n项和的方法,即错位相减法;二是等比数列前n项和的公式。由于学生初次学习,以前没有接触过错位相减法方法,所以要想让学生自己总结出错位相减这一方法应该是比较困难的,所以我先从简单的多项式化简,构造两个类似的例子让学生自己比较它们的结构出发,给他们一个直观的感受。为拿出错位相减做铺垫。在教学中,学生也确实通过两个例子的比较,比较容易的总结出了这个方法。所以由学生自己来给出通项公式也就顺理成章了,拿出通项公式后,学生总习惯于直接套用公式而忽视对公式的分情况讨论,所以一定要反复强调。课后,在各位数学老师的帮助下,我认识到在强调公式的时候只是从公式本身出发是不够的,学生理解的也很模糊,如果在这里加上实际的例子效果应该会更好,这是以后需要加强的地方。后面在讲解例题的时候由于时间关系,没有在黑板上进行细致的演算,一带而过,高估了学生的计算能力。

  总之,结合新课程的教学理念进行相应的课后反思,努力上好每堂课,我相信可以不断提高业务能力和水平,从而更好地服务于学生。

数列教学反思5

  1、通过制作课件,发现自己很长时间没有用相关的计算机技术,生疏了。

  2、前面几个幻灯片闪的过快。学生可能还没有理解。

  3、对于探求数列的通项公式,自我感觉还有很多题可以和学生一起分享,但是时间及课容量都告诉我题量大了。

  4、概念课该如何上?特别是章节的起始课该如何上?通过同事和自我的观察,有四点感受值得推广

  (1)学生能通过阅读理解,应放手让学生去阅读,老师应该做的`是设置好问题,让学生带着问题阅读,再用问题推动课堂。

  (2)课件确实在概念课中起到了很好的作用,省去了大量的板书的时间,且一目了然。

  (3)最后的发展性练习,激发了学生的兴趣,让学生感到我们学的数学是有用的,能解决实际问题。

  (4)对概念的处理要细致,要把握实质。否则很可能在后面的习题中出现问题。

数列教学反思6

  一、教学内容以贴近学生生活实际的具体情境为载体,学习生活中的数学。

  如在棋盘中用数对表示棋子的位置、从学生非常熟悉的五子棋对弈情境引入;利用座位这一真实的情境学习排和列;应用知识解决实际问题时,拓展延伸,要求学生利用数对的相关知识解决,体现了数学来源于生活,又用于生活的教学理念,从而使学生体会到我们生活的周围存在着大量的`数学知识与问题,激发学生的学习兴趣、促进教学活动的生成。

  二、有效设计教学进程,引导学生经历数学化的过程。

  本节课中,注重了向学生充分展现知识形成的过程,无论是通过将“小红坐在从左数第4列从前数第3行”简化成用数对来表示,还是把人物图简化成点子图再到方格图,都力图让学生经历数学知识、数学思想的形成过程,从而加深学生对所学数学知识的理解;而且在这个充满探索和自主体验的过程中,使学生逐步学会数学的思想方法和如何用数学方法去解决问题,获得自我成功的体验,增强学好数学的信心。

  三、创设了良好的课堂学习氛围,活动形式多样有趣。

  课标中指出,数学学习的内容应当是现实的、有意义的、富有挑战性的,游戏的设置,向学生提供了充分的从事数学活动的机会,让学生感受学习的兴趣,树立学好数学的信心,大大调动了学生学习的积极性,达到了从玩中学的教学设想。

数列教学反思7

  根据上午说课后其他老师的建议,我做了修改:

  (一)引入部分简化,斐波那契数列的学习同样也运用了化难为易的思想,在刘**老师的授课《斐波那契数列》中多次提到难易的转化,我们的学生也认真地进行了这节《斐波那契数列》的学习,给我们的学生试课可以这样引入:

  孩子们,我们在学习《斐波那契数列》时是怎么发现小兔子数量的规律呢?对,化难为易,我们可以用化难为易的方法解决很多问题,那老师请你们来试试连线游戏,在平面上有100个点,这些点能连成多少条线段?

  学生回答不上来时,教师指导:100个点连线有点多有点难,老子说:“天下难事做于易。”我们就从最简单的两个点开始研究,用数学的思考方法解决点连线的'问题。

  这样的引入斐波那契数列就不只是欣赏,而是数学思考方法的延续。

  可是,不知道其他学校的教师能否重视教材65页的阅读资料《斐波那契数列》,所以还是没底。

  (二)探究过程的连线过程又做了一遍,原来用了四张幻灯片而且一直一闪而过,感觉有点杂有点多,我修改用一个表格一张幻灯片呈现,这样就不觉得繁杂。这点怪我有点懒了,用别人现成的,所以今天又用了半个下午修改了一遍。

数列教学反思8

  问题是数学的心脏,问题意识是创造性思维能力的核心。怎样的问题才叫做“好”,罗强老师给出了精湛的描述:初始性、情境性、全息性、结构性。

  我想,一个好的问题如同一个生动活泼、引人入胜的故事,吸引着学生兴趣盎然的步入数学殿堂;一个好的问题犹如一颗优质的种子,让数学知识在此生根发芽,成为枝繁叶茂的参天大树;一个好的问题能让学生的思维插上翅膀,在数学的天空自由翱翔……

  数列整个中学数学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,尤其是加深了学生对函数概念的认识,并从函数的观点出发来研究数列问题,使对数列的认识更深入一步;而学习数列又为后面学习数学归纳法等内容作了铺垫。同时数列还有着非常广泛的实际应用,是反映自然规律的基本数学模型。有助于培养学生的建模能力,发展应用意识。数列还是培养学生数学思维能力的好题材,自始至终贯穿着观察、分析、归纳、类比、递推、运算、概括、猜想应用等能力的培养,不仅如此,数列还是对学生进行计算、推理等基本训练、综合训练的重要题材。因此学好数列有助于学生数学素养的提高。

  [方法简述]

  本节课是《数列》第一节,是一章的学习基础。但由于是入门的第一节,概念多,知识点多,学生常感到琐碎。教学中我主要采用“问题导引,自主探究”式教学方法:首先创设情景,抓住知识的切入点,学生情感和思维的兴奋点;再通过探究性问题的设置来启发学生思考,使非本质特征被一一地剥离,让本质特征更好地被揭示在学生一步步的探索过程中,并在思考中体会数学概念形成过程中所蕴涵的数学方法;继而通过层层深入的例题配置,巩固加深学生对知识的理解。

  高二学生已经具有了一定的观察、归纳能力和一定的学习能力,因此本节课一问题为载体,以学生活动为主线,有意识的留给学生适度的思考空间,让学生在观察中分析,在类比中发现,在思索中概括,在探究中获取新知,帮助学生逐步形成积极探索、合作交流的学习方式。

  [目标定位]

  学习是人对知识的内化过程,只有学生通过自己去发现、思考、揭示数学规律,才能更有效的促进素质和能力的提高。在教学中,通过学生的探索,形成并掌握数列的概念、表示法、分类;体会数列是一类特殊的函数,能用函数观点理解数列相关知识;理解数列的通项公式,会根据数列的前几项写出某些简单数列的通项公式;在探究过程中,培养学生的观察、类比、归纳、概括能力,提高学生直觉思维能力;渗透从特殊到一般、类比与转化的数学思想;培养学生积极参与、大胆探索、敢于创新的思维品质以及合作意识。通过让学生体验成功,培养学生学习数学的信心和热爱生活的情感。

  [教学设计]

  一、创设情境,引入概念

  法1:上课伊始,老师借助多媒体讲述故事:有一个叫杰米的人,有一天他碰到一件奇怪的事,一个叫韦伯的人对他说:我想和你订个合同,我将在整整一个月内每天给你十万元,而你第一天只需给我一分钱,以后每天给我的钱是前一天的两倍、杰米说:真的?你说话算术!合同生效了,第一天杰米支出1分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元,到了第十天,杰米共支出10元2角3分,收入100万元,到了第二十天,杰米共支出1048575元(1万多),收入200万元,杰米想要是合同定两个月,三个月该多好啊!可从第21天开始,情况发生了变化:第21天杰米支出1万多,收入10万元、到第28天,杰米支出134万多,收入10万元,结果杰米在31天得到310万元的同时,共付给韦伯2147483647分,也就是2000多万元,杰米破产了!

  为什么杰米会破产?很显然的原因:没有学好数学,尤其没有学好我们即将学习的在实际生活中有着广泛应用的这一章——《数列》

  法2:以草花扑克牌引发学生探讨兴趣,草花实际上就是三叶草,代表着祈求、希望、爱情,如果你能找到四叶草,相传你就找到了『幸福』。

  从而引出斐波那契数列,让学生再找出生活中常见的数列。

  设计意图:

  通过多媒体动态演示故事,使学生注意力迅速集中到所学内容上来,并设置悬念,激发学生学习数列的愿望。

  二、观察归纳,形成概念

  教师提出问题1:什么是数列?

  为了方便学生的理解,再借助多媒体进行几项活动:

  切一刀可将一个比萨饼分成2部分;切两刀最多可将比萨饼分成4部分;切三刀最多可将比萨饼分成7部分;…继续切下去,比萨饼最多被分成的部分可得到一列数

  ③2,4,7,11,…

  ④从1984年到20xx年我国体育健儿参加6次按奥运会获得的金牌数:15,5,16,16,28,32、

  ⑤场地上堆放了一批钢管,从下往上数有4,5,6,7,8,9,10

  ⑥场地上堆放了一批钢管,从上往下数有10,9,8,7,6,5,4、

  ⑦写出精确到1,0、1,0、01,0、001,…的不足近似值排成一列数:3,3、1,3、14,3、141,…

  设计意图:

  培养学生观察、思考的能力。借助多媒体增强学生感性认识、

  教师提出:以上7列数有些什么特征?学生会很快发现:有一定的规律。紧接着教师提出:是有一定规律,这些规律具体的应该怎么说?引导学生发现:次序!

  教师指出:为研究方便,我们把数列中的每一个数叫做这个数列的项,各项依次叫做第1项(首项),第2项,第3项,…(总之,这一项拍在数列中第几位就叫做数列的第几项)

  再让学生每一个人举出一个数列的例子,写在草稿纸上,同桌交流。

  设计意图:

  概念是逻辑分析的对象,具有丰富意义和内涵,同时又具有直观生动的背景,因此概念课应让学生从概念的原型或实例出发,经历概念的抽象过程,领悟直观和严谨的关系。让学生的学习由感性升华到理性。

  三、问题导引,深化概念

  问题2:数列⑤和⑥是否为同一个数列?

  在问题2的解决过程中,强调了“次序”,即只有项和次序完全相同的数列才是同一数列。让学生发现:数列和数集的不同:数列中的数有序,而数集中的数无序;数列中的数可以相同,而集合数的数具备互异性。

  设计意图:

  在形成概念时,也许会有学生认为数列是有一定规律的数的集合,通过问题2的分析,加深对概念理解,为下面学习排除障碍。

  设计意图:

  数列与函数的关系是本节课的重点,在问题的导引下,让学生在思考交流中领悟知识,突出重点,并让学生注意到数列与函数的特殊与一般的关系。

  教师强调:用函数的观点看数列,其内容会更加丰富多彩。请一位学生回忆函数的研究内容——函数的定义及性质,而后学习了几个特殊的函数,以及函数的应用,

  类比函数,你能说出数列的研究历程?数列也是这样:在掌握了数列的概念之后,我们会去研究两个特殊数列,而后应用所学习的数列知识解决问题。

  设计意图:

  尝试着让学生运用类比,自己发现将要研究的内容,提高学生的问题意识。

  问题3:类比函数的'表示方法,你认为数列常见的表示方法有哪些?

  让学生思考、讨论后回答:

  1、列表法(有时也称为列举法):函数两行,数列一行即可、前面的数列,数列的一般形式给出的都是列举法;

  2、图象法;

  3、解析法。

  问题4:数列的图象是什么样子?

  让学生先在笔记本上画出数列④⑤⑥的图象,并在投影仪展示,让学生观察得出:

  怎样分类?即根据项数是有限的还是无限的分为:有穷数列和无穷数列,再对这7个数列进行判断。

  设计意图:

  自己画图,使学生对数列图象迅速理解,而且所选的三个图象恰好引出数列分类知识,使课堂前后连贯,知识过渡自然。)

  数列是特殊的函数,而函数最常见的表示方法是解析法,本节课先研究

  列的通项公式。需注意的是:通项公式是解析法表示数列中的一种,下节课还要学习其他的解析法。

  设计意图:

  通过设置问题2—6,使学生在思考、讨论、交流中深化了数列概念。

  四、典例剖析,应用概念

  在研究函数的时候,函数的很多性质常常是通过解析式来研究,那么数列的很多问题自然是通过通项公式来研究,也就是说通项公式在数列中有着非常重要的作用。

  有的题还要借助分子和分母之间的关系

  教师提出:已知数列的前几项,用观察法写出数列的一个通项公式应该怎样思考?让学生讨论回答:概括一下主要有2个方面:

  1、要注意观察数列中项与序号的关系;

  2、要注意观察数列中项的几大特征如:符号特征;相邻项之间的关系;分子分母的独立特征以及相互关系,然后在此基础上化归一下,联想一下转化为我们已知的,熟悉的数列,而后写出来。

  设计意图:

  为了使学生能熟练应用刚学知识,达到巩固提高的效果,设计以上两道例题,用议一议、试一试、做一做、变式训练的形式,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。并通过及时总结,使学生从会做一个题到会做一类题。

  五、归纳反思,提高认识

  让学生从知识和方法上总结一下本节课的收获:

  1、知识要点:数列的定义;数列的项;数列的通项公式;数列的三种表示方法;数列的分类。

  2、数学思想:从特殊到一般以及分类、转化的思想。

  3、写出一个通项公式的常用技巧:

  设计意图:

  对教学内容归纳、疏理,小结本节课渗透的数学思想方法,便于学生课后复习。使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。

  六、布置作业,延伸课堂

  设计意图;学生已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高。

  [教学反思]

  本堂课的教学,在提出问题与解决问题、独立思考与合作交流等的有机结合中,有序和谐、民主平等地展开。在教学设计中通过丰富的实例引入概念,鼓励学生动脑、动手、动口,经历观察归纳、探索交流、分析问题解决问题的过程,收获新知和方法,提高数学素养。教学过程中通过环环相扣、设置得当的问题链,激活学生的思维、唤起学生的热情、完善学生的知识结构,使学生整堂课始终处在一种积极的学习状态中:看得专心、听得认真、做得投入、说得流畅、合作得愉快。

  另外,本节课在指导学生进行反思上也做了一定工作,反思可以说是学生认知水平从低级到高级发展的一个主要环节,所谓反思也是解决问题后自问几个为什么,为下次解决问题获得有用的经验和教训,从而引导学生不断总结经验教训,真正领悟到数学思想方法,以达到优化学生认知结构,促使学生思维升华,由此达到提高学生学习数学能力之目的。

  本节课设计在实施过程中要避免用问题牵着学生走,而是设置情境,让问题呼之欲出,让学生自己发现问题,提出问题进而解决问题。这一点在采用“问题导引,自主探究”这一方式的教学中都应注意。

数列教学反思9

  本节课是高三总复习冲刺阶段的复习课,为了更好地将知识点连贯起来,对数列及其求和问题有一个更深的认识,首先展示了20xx年的高考大纲中对数列问题的基本要求,也就是本节课的教学目标,要让学生知道数列问题在高考中考什么,怎么考。它规范了教师的教学行为和学生的学习行为,克服教学中的随意性,教学目标的出示有助于引导学生明确本课时的学习任务和要求。

  同时将历年高考中出现的典型问题作为例题进行展示,为的是让学生充分把握好数列问题的'难易度,做到心里有底。学生在自主探索和合作交流中理解并掌握本节课的内容。在整个探究学习的过程中充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。例1中运用的分组求和法和例2中的裂项法,从学生课堂反馈来看掌握较好,这也是本节课的重点。例3所涉及到的错位相减法显然难度有点太,学生完成起来有点困难。

  梳理归纳环节上,总结反思了每道例题的出题意图,意在培养学生归纳、总结的习惯,让学生自主构建知识体系,清楚高考中每一道题都有它自己的考察方向。激励学生以更大的热情投入到最后的冲刺复习中去。

  目标检测部分,意在将本节课的重点做一个重温,两道练习与例1和例2是相对应的。目的就是要让学生一定要掌握本节课的重点。

  本节课的优点:

  1、整体的思路比较清晰:展示目标,组内讨论,小组展示并释疑解惑,然后通过练习进行辨析,学生自己归纳求和方法,再接下去是方法的应用和巩固,即目标检测,知识梳理、布置作业。整个流程比较流畅、自然。

  2、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;能准确的指出学生在处理问题中的不足并帮助及时改正。

  本节课的遗憾:

  1、在做时例3这张幻灯片没有设计好,导致字有重叠看不清。

  2、还应更注重细节,讲究规范,强调反思;

  总体来讲,在教授中始终把以学生为本的教学理念贯穿本课。采用将上课的主动权交给学生,而学生的学习积极性有很大的提高,学习效果好。通过对本节课系统的回顾,梳理,发现部分学生在知识点的运用上还存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。

  本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

数列教学反思10

  探究式教学走进课堂为学生的学习提供了多样化的活动方式,这里我充分利用多媒体手段,并采用了学生朗读,小组讨论合作交流并汇报成果,个别做答,集体做答,学生演板,学生说教师写等方法,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求利用等差数列的通项公式知三求一,体会方程的思想。在推导等差数列的通项公式时选用了不完全归纳法与叠加法,培养了学生的推理论证能力,强调了思维的严谨性。 不过在教学中还是存在一些不足:

  1、在回答等差数列的特点时,有的`同学会说“前一项与后一项的差为常数”,那么我们讲数列从函数的观点来看是当自变量从小到大的依次取值时,所对应的一列函数值,所以我们以从前往后发展的眼光来看用“后一项与前一项的差为常数”更为妥当。

  2、“如果a,A,b三个数成等差数列,这时我们称A为a与b的等差中项”。其实A也是b与a的等差中项,即b,A, a三个数成等差数列。

  静下心来思考,在今后的教学中其实还应该注意:

  1、在证明等差数列时,学生往往用有限的几个连续两项的差为常数就得到此数列为等差数列的结论,其实这是一种不完全的归纳,是由特殊到一般,这种方法是不严密的。应该用等差数列的

  数学表达式来证明。怎样用等差数列的数学表达式来证明等差数列还需要利用课堂时间进行专门训练,因为在高考有关数列的考题中往往第一问就是用定义证明等差数列。

  2、用数学建模解决实际问题时绝不是单纯的几个计算而已,一定要强调格式,解应用题,数学模型一定要交代,而且要交代清楚,平时的训练中不能忽略这个问题,在对答案时要把文字部分反复几遍要学生用笔记在解答过程中,这样他们才能引起重视,以后学习解概率题时不会丢掉必要的文字叙述。

数列教学反思11

  今天讲授《等比数列前n项和公式》。引导学生探究等比数列前n项和公式是重要内容。在探究公式的计算方法时,让学生通过观察、分析、类比、联想解决问题。有意识地使学生在推导过程中,忽略公比q=1和q≠1的情形,从而突破了公比的q=1和q≠1难点,学生在推导公式中通过自己探究解决了“错位相减”的重要数学思想。高中新课程正强调对数学本质的认识,强调返璞归真,努力揭示数学概念、法则、结论的发展过程和本质。

  本节课后还有以下体会:

  (1)以学生为主体

  爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此数学学习的核心是思考,离开思考就没有真正的数学。这节课,通过创设了一系列的问题情景,边展示,边提问,让学生边观察,边思考,边讨论。鼓励学生积极参与教学活动,包括思维参与和行为参与,鼓励学生发现数学的规律和问题解决的途径,使他们经历知识形成的过程。在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,让学生做课堂的主人,充分发表自己的意见。激励的语言、轻松愉悦的.氛围、民主的教学方式,使学生品尝到类比成功的欢愉。

  (2)巧设情景,倡导自主探索、合作交流的学习方式

  学生的数学学习活动不应只限于接受、记忆、模仿和练习,还应倡导自主探索、合作交流等学习方式,这些方式有助于发挥学生学习的主动性,使学生的学习过程成为在教师引导下,不断经历感知、观察发现、归纳类比、抽象概括、演绎证明、反思与建构等思维过程,体验等比数列前n项和公式的“在创造”过程,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力。

  苏霍姆林说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”本节课正是抓住学生的这一心理需求,从新课引入到课后作业,创设了一系列“数学探究”活动,为学生开展积极主动的、多样的学习方式,创设有利条件,激发了学生学习数学的兴趣,并鼓励学生在学习过程中,养成独立思考,积极探索的习惯。

数列教学反思12

  数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

  利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。

  给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

  为了提高学生的反应能力,我从最简单的数列——正整数数列——开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

  ( 1 )数列 1 , 2 , 3 , 4 , 5 ,……是一个正整数数列,每一项与项数相等,其通项公式为 。

  ( 2 )数列 2 , 4 , 6 , 8 , 10 ,……是一个由正偶数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

  ( 3 )数列 1 , 3 , 5 , 7 , 9 ,……是一个由正奇数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

  ( 4 )数列 1 , 4 , 9 , 16 , 25 ,……是一个由正整数的平方数组成的数列,()观察每一项与项数之间的关系,最后总结归纳出通项公式

  ( 5 )数列 1 , , , , ,……是一个由正整数的开方组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

  然后参照以上 5 个数列,由同学们归纳出下列数列的通项公式:

  ( 1 )数列 3 , 5 , 7 , 9 , 11 ,……的通项公式为 。

  ( 2 )数列 0 , 3 , 8 , 15 , 24 ,……的通项公式为 。

  ( 3 )数列 , , , , ……的通项公式为 。

  ( 4 )数列 , , , ,……的`通项公式为 。

  通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

  学生对数列通项公式的归纳获取思路明确,理解比较深刻,较好地完成了课前预设的目标。

数列教学反思13

  在高一(5)班上好“等差数列求和公式”这一堂课后,通过和学生的互动,我对求和公式上课时遇到的几点问题提出了一点思考.

  一、对内容的理解及相应的教学设计

  1.“数列前n项的和”是针对一般数列而提出的一个概念,教材在这里提出这个概念只是因为本节内容首次研究数列前n项和的问题.因此,教学设计时应注意“从等差数列中跳出来”学习这个概念,以免学生误认为这只是等差数列的一个概念.

  2.等差数列求和公式的教学重点是公式的推导过程,从“掌握公式”来解释,应该使学生会推导公式、理解公式和运用公式解决问题.其实还不止这些,让学生体验推导过程中所包含的数学思想方法才是更高境界的教学追求,这一点后面再作展开.本节课在这方面有设计、有突破,但教师组织学生讨论与交流的环节似乎还不够充分,因为这个层面上的学习更侧重于让学生“悟”.

  3.用公式解决问题的内容很丰富.本节课只考虑“已知等差数列,求前n项”的问题,使课堂不被大量的变式问题所困扰,而能专心将教学的重点放在公式的推导过程.这样的处理比较恰当.

  二、求和公式中的数学思想方法

  在推导等差数列求和公式的过程中,有两种极其重要的数学思想方法.一种是从特殊到一般的探究思想方法,另一种是从一般到特殊的化归思想方法.

  从特殊到一般的探究思想方法大家都很熟悉,本节课基本按教材的设计,依次解决几个问题。

  从一般到特殊的化归思想方法的揭示是本节课的最大成功之处.以往人们常常只注意到“倒序相加”是推导等差数列求和公式的关键,而忽视了对为什么要这样做的思考.同样是求和,与的本质区别是什么?事实上,前者是100个不相同的数求和,后者是50个相同数的求和,求和的'本质区别并不在于是100个还是50个,而在于“相同的数”与“不相同的数”.相同的数求和是一个极其简单并且在乘法中早已解决了的问题,将不“相同的数求和”(一般)化归为“相同数的求和”(特殊),这就是推导等差数列求和公式的思想精髓.不仅如此,将一般的求和问题化归为我们会求(特殊)的求和问题这种思想还将在以后的求和问题中反复体现.

  在等差数列求和公式的推导过程中,其实有这样一个问题链:

  为什么要对和式分组配对?(因为想转化为相同数求和)

  为什么要“倒序相加”?(因为可以避免项数奇偶性讨论)

  为什么“倒序相加”能转化为相同数求和?(因为等差数列性质)

  由此可见,“倒序相加”只是一种手段和技巧,转化为相同数求和是解决问题的思想,等差数列自身的性质是所采取的手段能达到目的的根本原因.

  三、几点看法

  1.注意挖掘基础知识的教学内涵

  对待概念、公式等内容,如果只停留在知识自身层面,那么教学常常会落入死记硬背境地.其实越是基础的东西其所包含的思想方法往往越深刻,值得大家带领学生去认真体验,当然这样的课不好上.

  2.用好教材

  现在的教材有不少好的教学设计,需要教师认真对待,反复领会教材的意图.当然,由于教材的客观局限性,还需要教师去处理教材.譬如本节课,课堂所呈现的基本上是教材的内容顺序和教学设计,但面对教材所给的全部内容时,课堂能否在某个环节上停下来,能否合理地选取教材的一部分内容作为这一节课的内容,而将其他的内容留到后面的课,这就体现教师的认识和处理教材的水平.

  3.无止境

  一堂课所要追求的教学价值当然是尽量能多一些更好,但应分清主次.譬如本节课还用了几个“实际生活问题”,意图是明显的,教师的提问和处理也比较恰当.课没有最好只有更好!

数列教学反思14

  教学内容:

  课本第116页例2

  教学目标:

  1、 让学生发现、探究图形和数字的排列规律,通过比较,从而理解并掌握找规律的方法,培养学生的观察、操作和推理能力。

  2、 培养学生的推理能力,并能合理、清楚地阐述自己的观点。

  3、 培养学生发现和欣赏数学美的意识。

  教学重、难点:

  引导学生理解图形和数字的对应关系,并结合图形的变化规律,发现相应的数字变化规律,很好地实现从图形变化规律的认识过渡到数字变化规律的认识上来。

  教学准备:

  情境挂图、正方形卡片

  教学过程:

  一、复习旧知,引出课题

  1、找规律。

  第1题,接着再画出5个珠子。

  第2题,按规律在括号里填上合适的图形。

  第3题,在横线里填数。

  471013

  200180160 120

  2、游戏:接规律画几个图形,让你的同桌接着画下去。

  3、导入:今天我们就来继续研究图形和数列的变化规律。

  二、自主探究,学习新知:

  1、 教学例2

  a、仔细观察我们刚才找到的规律,你发现它们有什么相同的地方?

  b、出示例2的小正方形,你能看出这些图形的排列规律吗?拿出学具试一试。

  (1)让学生边摆边算,找出规律。

  (2)小组合作交流想法。

  c、谁来告诉大家这些图形的规律是什么?

  d 、括号里应填几?再往后你会摆吗?应摆几个?为什么?

  (1) 括号里应填16,再摆16个正方形

  (2) 我们根据正方形的个数的特点:1+1=2,2+2=4,4+3=7,7+4=11,11+( )=( ),肯定是11+5=16

  学生汇报后,师进行小结。重点说明:例2数列相邻两项的差组成一个新的数列,这个数列是一个等差数列。

  2、 你可以仿照例2的规律自己创造出一些拥有这些规律的图形吗?

  3、 展示你创造出来的规律,并汇报你的规律是什么?

  三、深入探究,应用规律:

  1、四人小组讨论,你能找到其中隐藏着的秘密规律吗?

  出示课件:请你接着往下画一组。

  2、你找到规律了吗?请告诉大家应该填几?为什么?

  (出示课件)巩固练习题

  (1)括号里的数字是什么?

  1、1、2、3、5、8、13、21、()、55

  (2)96、()、24、12、6、3

  四、教学效果测评:

  1、独立完成例2下面的“做一做”你找到了什么规律?

  2、引导学生完成课本p117——p118页(完成练习二十三)3—7题

  第3题,先让学生说一说相邻的计数单位之间有什么关系。(10个一是十,10个十是百……)再让学生独立完成。

  第4题,让学生先观察数轴上的数排列有什么规律,然后指名交流,再在书上填写。

  第5、6、7题让学生独立完成,集体订正。

  要求学生说出规律和找规律的方法,并同时渗透数轴的知识和数位的知识。

  五、课堂小结:

  今天我们不但找出了图形的变化规律,还找出了数字的`变化规律。每组图形的个数是怎么变化的,就有了相应的数字变化规律。

  六、拓展提高 ( 出示课件 )

  按规律填数:

  (1)1248( )( )( )

  (2)1347 11 ( )( )( )

  (3)1 4 9 ( )( )( )

  (4)你能判断出动画挡住几个圆吗?

  反思:

  充分发挥了多媒体的作用,直观形象、动静结合、既节省教学时间,又大大提高了课堂效率,使学生有兴趣地投入到学习过程中。对突破重、难点起到了很好的作用。如课堂开始用了三题情境图,分别引导孩子从颜色、形状、数量、去观察,提高了学生学习的兴趣,有效地吸引学生。接下来P.116页一个正方形、两个正方形、4个正方形,7个正方形、11个正方形-------引导学生自己“找”规律,学生很快根据图形这些规律,接着我马上引导还有数字规律,其它规律找等等。从中得出结论。我还能能让学生从观察规律、发现规律,引导“联系生活”。这样思维的训练,有层次性、递进性。在情境教学中,激发学生学习兴趣,为学生营造一种轻松、愉快、民主、和谐的空间,让学生在主动参与中,获取知识,得到发展。

  总之,整节课对学生有提示性、启发性,调动学生参与的积极性。教师教的常规与学生学的常规都严谨有序。学生参与的面要广,从教学形式到教学内容都吸引着学生津津有味地参与学习。

数列教学反思15

  新课程理念倡导的数学课堂教学设计必须“以学生的学为本”,“以学生的发展为本”,即数学课堂教学设计应当是人的发展的“学程”设计,而不单纯以学科为中心的“教程”的设计。

  一、教学目标的反思

  本节课的教学设计意图:

  1。进一步促进学生数学学习方式的改善

  这是等比数列的前n项和公式的第一课时,是实践二期课改中研究型学习问题的很好材料,可以落实新课程标准倡导的“提倡积极主动,勇于探索的学习方式;强调本质,注意适度形式化”的理念,教与学的重心不只是获取知识,而是转到学会思考、学会学习上,教师注意培养学生以研究的态度和方式去认真观察、分析数学现象,提出新的问题,发现事物的`内在规律,引导学生自觉探索,进一步培养学生的自主学习能力。

  2。落实二期课改中的三维目标,强调探究的过程和方法

  “知识与技能、过程与方法、情感,态度与价值”这三维目标是“以学生的发展为本”的教育理念在二期课改中的具体体现,本节课是数学公式教学课,所以强调学生对认知过程的经历和体验,重视对实际问题的理解和应用推广,强调学生对探究过程和方法的掌握,探究过程包括发现和提出问题,通过观察、抽象、概括、类比、归纳等探究方法进行实践。

  在此基础上,根据本班学生是区重点学校学生,学习勤恳,平时好提问,敢于交流与表达自己想法,故本节课制定了如下教学目标:

  (l)、通过历史典故引出等比数列求和问题,并在问题解决的过程中自主探索等比数列的前n项和公式的求法。

  (2)、经历等比数列的前n项和公式的推导过程,了解推导公式所用的方法,掌握等比数列的前n项和公式,并能进行简单应用。

  二、教材的分析和反思:

  本节课是《等比数列的前n项和公式》的第一课时,之前学生已经掌握了数列的基本概念、等差与等比数列的通项公式及等差数列的前n项和公式,对于本节课所需的知识点和探究方法都有了一定的储备,新教材内容是给出了情景问题:印度国王奖赏国际象棋发明者的故事,通过求棋盘上的麦粒总数这个问题的解决,体会由多到少的错位相减法的数学思想,并将其类比推广到一般的等比数列的前n项和的求法,最后通过一些例题帮助学生巩固与掌

【数列教学反思】相关文章:

数列求和教学反思04-14

等比数列教学设计03-03

《等比数列》教学设计04-06

数学数列教案07-18

《等差数列》说课稿11-03

等差数列的说课稿12-05

《等比数列》说课稿12-15

数学等差数列教案07-12

《等差数列》说课稿12篇12-10

《等差数列》说课稿11篇12-29