梯形的面积教学反思

时间:2023-04-14 11:44:28 教学反思 我要投稿

梯形的面积教学反思

  身为一名到岗不久的人民教师,我们的工作之一就是课堂教学,教学反思能很好的记录下我们的课堂经验,那么教学反思应该怎么写才合适呢?以下是小编为大家整理的梯形的面积教学反思,仅供参考,欢迎大家阅读。

梯形的面积教学反思

梯形的面积教学反思1

  《新课标》中明确指出“数学教学应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”现就以五年级第九册教材中的《梯形的面积计算公式公式》的教学为例,谈谈自己的几点浅见。

  [片断]

  师:同学们已经掌握了推导平行四边形、三角形面积计算公式的方法,那你能把梯形转化成已学过的平面图形并推导出面积的计算公式吗?

  生1:可以转化成长方形吧。

  生2:也可能转化成平行四边形。

  生3:也许三角形呢?

  ……

  师:那好,就请你们利用准备好的学具,小组内先议一议,然后剪一剪、拼一拼,看看有什么发现?

  (学生合作讨论,然后动手操作)

  师:通过刚才的动手操作,大家有什么发现吗?

  生1:我们组发现用两个完全一样的梯形可以拼成一个平行四边形。

  S=(a+b)·h÷2

  生2:我们组还发现用两个完全一样的直角梯形可以拼成一个长方形。

  S=(a+b)·h÷2

  生3:我们是沿着一条对角线剪开,分割成两个三角形。

  S=a·b÷2+b·h÷2=(a+b)·h÷2

  生4:如果是等腰梯形,沿上下底的中点的连线剪开,可以拼成一个长方形。

  S=(a+b)·h÷2

  ……

  (学生想出了很多方法)

  师:同学们真了不起,想出了这么多的好办法来推导梯形的面积计算公式,希望在今后的学习中,继续发扬这种精神。

  [反思]

  一、还学习的主动权于学生

  苏霍姆林斯基曾说过“在热的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者,研究者。”而儿童的这种需要更为强烈。学生一旦在自己的活动中无意间发现了新的知识,就触动了他的.这种需要。他就会有一种探究的欲望,此时的教师应适时地创设一定的问题情景,给学生一个活动的时间和空间,教师真正做一个学习的引导者、组织者和合作者。有时教师要舍得“放”,说不定学生会给你更多的惊喜。

  二、让学生亲历知识的获取过程

  新课程的理念,要求教师把自主探索的机会、时空留给学生,让学生在探究过程中感受到问题的存在,从而引发学生探究问题、解决问题的欲望。不是说教者更重要的是“授之以渔”,而不是“授之以鱼”吗?这个案例中正是注重了这一点。在教学中,教师以一句“同学们已经掌握了推导平行四边形、三角形面积计算公式的方法,那你能把梯形转化成已学过的平面图形来推导面积的计算公式吗?”把学生的思维拉到“转化”的思想上来,又给予了多元的方法提示(可以议一议、剪一剪、拼一拼),让学生的思维有了更多的活动空间与形式,从而生成了更多的新知识,这才是真正的“授之以渔”啊!

梯形的面积教学反思2

  《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。

  一、复习旧知,引入新知

  本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。

  二、推导梯形的面积公式

  梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的.中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。

  三、在练习中巩固提高

  本节课的练习既有直接运用公式计算的简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。

梯形的面积教学反思3

  今天这节课是在学习了平行四边形和三角形面积的基础上进行教学的,课前让学生回顾了这两天学习这些图形的面积的计算的方法,了解是用了“转化”的思想得到的。重难点都在梯形面积的公式推导过程上。本节课为了让学生能够顺利的解决问题,在开始的时候先让学生回顾了梯形的各部分名称以及他们的特征。并且让学生再一次学习了画梯形的高,目的是想让学生在后面推导公式的.过程中无阻碍。

  首先,我提问学生,如果今天我们要来研究梯形的面积,你有没有什么好方法?动手画一画,把你的想法说给你的同桌听一听:此时学生开始畅所欲言,好多学生都想到了要把梯形分成一个平行四边形和一个三角形,然后把这两个图形的面积相加就得到了梯形的面积,此时如果我能赶紧及时的给学生一个高度评价的话,孩子们会真的感受到自己的成功,如果我能看到此时会思考的孩子们的美,才是这节课最大的收获不是吗?而我却没有那样做,还是因为担心教学进度的问题,只是稍作提示后就给赶紧追问,还有没有别的方法。

  之后,在学生一筹莫展的时候,我提示道:“想一想我们在探索三角形的面积的时候是怎么做的,有没有什么可以借鉴的地方?”聪明的学生立刻想到了要再拿一个完全一样的梯形,然后把他两拼起来就是一个大大的平行四边形,这样我们就把这个梯形的面积转化成了先求平行四边形的面积。由于引导到位,学生很快能将梯形的面积抽象出来,回答老师的问题也能够严谨且无懈可击。此时,如果我能够再一次给予学生真诚的欣赏,相信孩子们对数学的畏惧之感会消失殆尽。但吝啬的我依然是忙着赶进度,生怕因为一句表扬会耽误好多练习的时间。哎!

  还有,本节课在课前我仍然是准备了两个完全相同的梯形,在学生想到方法之后让孩子们自己动手上来拼拼看,然后找出拼出的平行四边形与梯形的关系,进而有平行四边形的面积=2个梯形的面积,则1个梯形的面积=(上底+下底)×高÷2。看样子,让学生亲自动手实践或者是用直观演示法更能够让学生明白“公式”的来龙去脉,记忆和运用起来也必定是得心应手。。根据平行四边形的面积公式,从而导出梯形的面积公式,给人一种水到渠成的感觉。归纳出公式后给学生三个梯形(有两个把梯形的各边都写上,另一个没有给高的条件。)进行公式运用练习,最后再让学生在实际生活动感觉梯形面积公式的作用,即计算梯形木堆的面积。

  但由于我课前准备做的不充分,在课堂上出现的问题何止一二,还有:

  1.在整个教学中又过于偏向推导过程和注重学生多种不同推导方法,时间占用了很多,导致后面的练习时间不够充足。

  2.由于推导出公式以后,学生在练习的时间很少,应该画出几个梯形图形,让学生应用公式求它们的面积,以巩固本节课的重点。

  3.以后的教学要在新授部分多下功夫、下大工夫,但是不能把一节课大部分的时间都放在了研究新知的过程中,尽量浓缩自己的教学语言,让我们的课堂更有效。

  可喜的是,发现学生有所收获,看到学生有了进步,看到学生探究学生的成果,在今后的教学中我会继续运用“探究性学习法”设计和组织课堂教学。希望探究式课堂之路在我们今后的教学中能够越走路越宽。

梯形的面积教学反思4

  梯形面积的计算是小学生学习多边形面积计算中的一节内容。它与平行四边形、三角形面积的计算一起作为结束直线型面积的计算,进一步学习圆面积和立体图形表面积计算的基础,成为本册教学内容一个重点。五年级的学生,正处于由中向高年级过渡时期,其认识水平和思维能力亦正处于进一步发展和日趋成熟的时期,通过这一部分内容的学习,可进一步发展学生的空间观念,加强学生对图形特征及各种图形之间内在联系的认识,同时可促使他们的.抽象概括等逻辑思维能力的发展。在本节的设计中主要突出了以下几点:

  1、加强学生动手操作,通过实际操作,既发展了空间观念,又培养了动手操作能力。

  2、放手让学生去发现、验证、推导、小结,得出梯形的面积计算公式。突出学生的主体地位,体现自主探索学习模式,有利于培养学生创造性思维能力。

  3、培养转化的数学方法,教学中引导学生主动探索所研究的图形与已学过的图形之间有什么样的联系,如何把要学的图形转化为已学的图形,从而使学生自己探索梯形的面积计算公式,理解更为深刻,思维能力亦得到发展。

  4、渗透数学中的变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。

  但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

梯形的面积教学反思5

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,明白要利用转化法将梯形转化成我们已经学过的图形来求面积。

  在学习推导梯形面积计算公式之初,先让学生做两个一样的梯形;在做的过程中,学生便明白了梯形的特征:只有一组对边平行的四边形。然后让学生回忆已学过的平行四边形和三角形面积的推导过程,说说可以把梯形转化成已经学过的什么图形?并让学生在练习本上画一画。在这个环节上,有不少学生画出来了,但不知道要怎么推导。这也反映出了学生水平的差异性。在梯形面积的.推导上,我让学生采用一个梯形和两个梯形来求。

  用一个梯形来求时,学生大部分能将其分割成一个平行四边形和一个三角形;但在推导过程中由于有些知识他们没学导致推不到底。当分割成两个三角形时学生都能理解。用一个梯形来推导公式理解之后,我又让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?(这一部分主要是通过设计导学提纲来实行的)通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  学生公式是推导出来了,但由于我没敢完全放手,在有些环节上是我领着学生做的,(比如说用两个梯形拼图形,应该让学生自己思考用两个什么样的梯形,学生自己动手做一做;在三角形的基础上,学生自己得出是两个完全一样的梯形)所以在后面的练习中,还是有些孩子总是忘除以2。虽然问他梯形的面积公式时可以答的很好,但做题时就出现了情况。这还需要让学生多练,多动手操作,从真正意义上明白多边形的面积公式是怎么推导出来的。

梯形的面积教学反思6

  作为一名高中数学教师来说 , 上好每一堂课,要对教材进行加工,还要对教学过程以及教学的结果进行反思。因为数学教育不仅仅关注学生的学习结果 , 更为关注结果是如何发生 , 发展的 . 我认为可以从两方面来看:一是从教学目标来看 , 每节课都有一个最为重要的 , 关键的 , 处于核心地位的目标 . 高中数学不少教学内容适合于开展研究性学习;二是从学习的角度来看 , 教学组织形式是教学设计关注的一个重要问题 . 如果能充分挖掘支撑这一核心目标的背景知识 , 通过选择 , 利用这些背景知识组成指向本节课知识核心的 , 极富穿透力和启发性的学习材料 , 提炼出本节课的研究主题 , 就会达到理想的效果。这也需要自己不断提高业务能力和水平 . 以下是我对本次课教学的一些反思 . 。

  一、对知识点教学的反思 —— 学会数学的思考

  对于学生来说 , 学习数学的一个重要目的是要学会数学的思考 , 用数学的眼光去看世界 . 而对于教师来说 , 他还要从 " 教 " 的角度去看数学 , 他不仅要能 " 做 ", 还应当能够教会别人去 " 做 ", 因此我觉得反思应当从逻辑的 , 历史的 , 关系的等方面去展开 . : 本节课内容较为单一,目标也比较明确,就是用“以直代曲,无限逼近”的思想求曲边梯形的面积。然而,这种思想方法给学生带来的理解上的难度却不小,因为要真正理解这种方法必须对极限的思想要有比较清晰的`认识。不过,新课程似乎为了避免增加学生的负担,而不要求深入介绍极限的概念,其旨在用最易于让学生接受的手段,使学生获得最有价值的数学知识。这节课亦是如此。基于以上原因,备课时我认为本节课有两大难点:一是如何使学生获得“无限分割,以直代曲”的思路;二是对“极限”“无限逼近”的理解,即理解为什么将近似值取极限正好是面积的精确值。

  二、对学数学的反思

  对于在数学课堂上的每一位学生来说,他们的头脑并不是一张白纸 —— 对数学有着自己的认识和感受。不应把他们看着 “ 空的容器 ” ,按照自己的意思往这些 “ 空的容器 ” 里 “ 灌输数学 ” 。这样常会进入误区,师生之间在数学知识、数学活动经验、兴趣爱好、社会生活阅历等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的。应该怎样对学生进行教学 , 常常说要因材施教 . 可实际教学中 , 又用一样的标准去衡量每一位学生 , 要求每一位学生都应该掌握所讲知识 . 这也许是自己一直以来教学的困惑与障碍。让学生多多思考 , 在本节课中未能达到预设目标 ,仍有“满堂灌”之嫌 。

梯形的面积教学反思7

  教材分析:

  本节课是在学生学会计算平行四边形、三角形的面积的基础上进行教学的,这部分知识是将来进一步学习组合图形面积计算的基础。学生学习了平行四边形、三角形的面积计算公式,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。本节课内容共分为两个层次。一是推导梯形面积的计算公式;二是应用梯形面积的计算公式计算梯形面积,解决实际问题。通过观察新旧图形的内在联系得出梯形面积的计算公式。

  教学目标:

  1、探索并掌握梯形的面积计算公式,能应用公式正确计算梯形的面积;

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:理解并运用梯形的面积计算公式。

  教学难点:梯形面积公式的推导过程。

  教学关键:怎样把梯形转化为学过的图形来推导出梯形的面积公式,找到转化后图形与梯形各要素之间的关系。

  教学过程:

  一、课前复习

  同学们,前几天我们学习了平行四边形和三角形的面积的计算方法,回忆一下,平行四边形的面积公式是怎样推导出来的?三角形的呢?

  (这样是为学习梯形的面积计算做好了铺垫。因为三角形面积公式及其推导过程与梯形有许多相似之处,有了前几节课的基础,学生推导出梯形面积公式就并不困难。)

  请同学们看这幅图片,汽车玻璃是什么形状的 (课件出示课本88页汽车图) ?你会计算这块玻璃形的面积吗?(大多数学生会否定)今天我们就来学习梯形的面积,相信学习完这节课你就能解决这个问题了。板书课题:梯形的面积

  (在实际情景中,认识计算梯形面积的必要性。这样导入,使学生感受到数学与实际生活的密切联系,恰到好处地激发学生求知的欲望,使学生产生一种探求知识的动力。)

  二、探索转化:

  1、引导学生提出解决问题方向:

  我们在学习平行四边形和三角形面积时,采用了割补的方法、拼摆的方法,把要研究的新图形转化为已经会计算面积的图形,再利用已学过的图形推导出新图形的面积计算方法。现在我们又要计算梯形面积,怎么办呢?(转化)你准备用什么方法把梯形转化为我们学过的图形?

  (运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现温故知新的教学思想。)

  2、动手转化:

  (老师为每组同学都准备好一些梯形,其中有一组是两个完全相同的梯形)

  小组活动一:

  (1)梯形可以合理转化为什么图形?怎样转化?(2)转化后的图形与梯形有什么联系?

  小组合作交流,老师巡视指导。

  全班汇报。

  学生可能出现的情况:

  (新课程标准的基本理念就是要让学生人人学有价值的数学,强调教学要从学生已有的经验出发,让学生亲身经历知识的'学习过程。所以,在教学中,我留给学生充分的时间,小组合作,鼓励做法多样。)

  3、公式推导:

  同学可真聪明,想出了这么多的转化方法,我们先根据第一种转化方法来推导梯形的面积公式。

  小组活动二:

  现在请同学们思考一下,拼成的平行四边形的各部分与梯形的各部分有什么关系?它们的面积又有什么关系?梯形的面积计算方法又是怎样的呢?

  小组交流一下,把你们组的发现或结论写下来。

  全班交流自己的发现或结论。

  归纳总结梯形的面积计算方法。

  梯形面积 =(上底+下底)x高2 为什么要除以2呢?

  (在操作探究的基础上,我引导学生自己来总结梯形面积的计算公式,通过这样的设计,体现了让学生自主探究、自主学习的教学理念,满足了学生希望自己是一个发现者、研究者、探索者的需要,进一步的促进了学生的学习兴趣。让学生把他想到的推导方法展示出来,既达到突出重点,又化解难点的目的。)

  4、用字母表示梯形面积公式

  同学们,如用a表示梯形上底,b表示下底, h表示高,s表示面积, 谁能用字母表示出梯形的面积公式?指名说,老师板书。

  其实利用这几种转化方法(指前面画的图)也可以推出梯形的面积公式,小组合作推导一下。然后全班交流推导过程。

  (鼓励学生采用多种方法进行推理,让学生各抒已见,进一步体会转化方法的价值。)

  三、应用公式解决问题

  1、我们已推导出了梯形的面积公式,那么我们就用梯形的面积公式解决一些实际问题吧!

  您现在正在阅读的《梯形的面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《梯形的面积》教学设计及反思课件出示例3主题图

  同学们知道这是哪儿吗?(三峡水电站)三峡水电站是我国最大的水电站,

  它的的横截面的一部分是梯形,现在我们要求这个横截面的面积。谁知道横截面是什么意思?

  同学们请看图,你能求出这个梯形的面积吗?学生试做,二生板书。

  订正时,让学生评价,重在理顺学生的解题思路。

  (通过动手操作,自主探究,学生获得梯形面积的计算公式后,出示了课本的例题,求梯形大坝的横截面面积。通过实际问题的解决,将学生探究发现的数学知识转化为自身的能力, 学以致用,来解决生活的实际问题。)

  2、现在请同学们再来看这幅汽车图片,现在你能计算这汽车的玻璃面积了吗? 课件出示玻璃的数据,学生试做,二生板书。集体评价。

  (解决了前面导课提出的的问题,回应引入,使学生更加深刻地感受到数学与实际生活的密切联系。)

  四、练习检测:

  1、填空:

  两个完全一样的梯形可以拼成一个平行四边形,拼成的平行四边形的底等于(), 拼成的平行四边形的高等于( ) 、梯形的面积等于拼成的平行四边形面积的( )。梯形的面积等于( )。

  (理清学生思路,规范学生的数学语言,培养学生思维的逻辑性)

  2、是判断题,判断出对错并且说出原因,提高学生对新课的理解。

  (1)两个面积相等的梯形可以拼成一个平行四边形。 ( )

  (2)梯形的上底扩大2倍,下底也扩大2倍,面积扩大4倍。( )

  (3)梯形的面积等于平行四边形面积的一半。( )

  (4)两个梯形面积相等,但形状不一定相同。( )

  五、反思总结,拓展延伸

  1、学生谈收获,谈学习方法。

  2、组内互评:这节课你最想表扬谁,为什么?

  【教学反思】

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,猜想、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过拼、剪、割的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到知其然,必知其所以然,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的闸门,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过拼、剪、说的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

梯形的面积教学反思8

  一、加强探索方法的指导,避免假操作。

  在今天学生进行操作时,我要求学生先想好操作的顺序。特别是在计算梯形面积的时候,用数一数或分一分,移一移的方式算出梯形的面积,避免在操作过程中使用梯形的面积公式来计算。这样一来,学生得出的操作结果是真实的,对于用两个完全一样的梯形拼成一个平行四边形,每个梯形的面积是平行四边形面积的一半这一知识点有了一个直观的感受。尽管学生在交流时有个别学生数梯形的面积出现了一点的小错误,但是这是个过程是真实的,有效的。

  二、规范学生的语言。

  因为在完成三角形练习时有这么一道判断题:三角形的面积是平行四边形面积的'一半,我们班居然有大部分学生毫不犹豫地认为这是正确的。所以我就在想,是不是我在上三角形的面积一课时出现了一点问题。所以,本节课我特别注意他们的表述语言,的确,是有很多学生的语言并不完备,常常会出现:梯形的面积是平行四边形面积的一半这种并不完备的语言。当学生出现这种语言时,及时地予以修正和改正,当即引起学生的注意。这样的效果比后面纠正要好很多。

梯形的面积教学反思9

  我在上这节课的时候,首先让学生回顾平行四边形和三角形的面积公式是如何推导的。

  提出问题:梯形是不是也可以像它们一样可以转化成已学过的几何图形呢?在学生讨论后发现有几种方法。进而让学生思考讨论:转化成的平面图形的面积与原来梯形的面积有什么联系,底和高又有什么联系?在集体汇报时对它几种方法的处理上出也不一样,重点分析了学生发现的第一种方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。第二种方法与第一种方法是一样的道理,只不过迸出的特殊的平行四边形。第三、第四种方法,由于推导的`过程较复杂,在课堂上让选择这种方法的同学也交流了,但没有展示其推导过程。教师用一句话,把这几种方法都肯定了,不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)*高/2。

  这节课存在的不足之处:

  首先,对学生的关注还不够。几次学生的板演都出现了问题,浪费了课堂的时间。如果能够在课前将所涉及到的例题都算一遍,找同学板演时就不会出现这样的问题了。

  第二,在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深刻。

  第三,由于时间关系,第三、四种方法没有展示公式推导过程,只是用语言描述了。从学生的反映可以看出,学生听不明白。如果能在课件中展示出来就更好了。

  反思教学,在推导公式的过程中,先汇报计算方法和结果,再展示思考方法,接着讨论这种方法的合理性,是否能用这种方法解决全部梯形的面积计算,进而得出梯形的面积公式。从教学效果看,大部分学生能运用初步形成的转化的思想将两个完全一样的梯形转化为已经尝过的平行四边形来推导梯形的面积计算公式。学生在汇报时还有一种方法是将梯形运用割补法将梯形转化为平行四边形,然后推导出梯形的面积计算公式。整体来看不如前几节课效果好。仔细分析原因如下:

  一是学生的准备不充分(部分学生没有准备梯形图形),导致参与面小,效果不理想。

  二是学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也欠数学教师长期要培养学生的一种数学学习的品质。

  三是学生的个性没得到张扬,受教学时间限制,有的学生没有完成推导梯形面积的过程。

梯形的面积教学反思10

  教学时我首先让学生回忆平行四边形和三角形的面积公式的推导过程,都用到了哪种解决问题的方法,然后提出问题:梯形是不是也可以像它们一样可以转化成已学过几何图形呢?在学生操作前,课件显示以下几个问题引导学生探究:

  1、转化成的平面图形的面积与原来梯形的面积有什么联系?

  2、梯形的底和高和转化后的图形的各部分又有什么联系?

  学生操作后发现方法不止一种。我引导学生重点分析和课本上一致的推导方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。其它方法有的拼出的.是特殊的平行四边形,有的推导的过程较复杂,在课堂上让选择这样的同学简单交流,没有展示推导过程。最后小结不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)×高÷2。

  第一、在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深入。在以后的教学中,教师应及时筛选有用的信息,并对其分类和引导,有序展示。

  第二、其它方法没有展示推导过程,想到此方法的学生的个性没得到张扬,也没有给其它学生充分的思考余地,导致最后小结不管用哪种方法来推,都能推出一样的面积计算公式时,部分学生有疑惑。

  第三、学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也是我们数学教师长期要培养学生的一种数学学习的品质。

  第四、有的学生没有完成推导梯形面积的过程,在以后的合作探究中,应让小组内再分为一帮一,以帮助学困生。

梯形的面积教学反思11

  备课时大刀拓斧

  备课的过程是对教学内容挖掘,对学生探索,以及两者之间的融合过程。针对青岛版四年级下册34-35页梯形的特征和面积这一部分内容,备课时我反复思考是分两课时还是一课时呢?学生能否在一节课35分钟的时间既能真正理解梯形的特征又能推导出梯形的面积公式呢?由于学生已经掌握了四边形、长方形、正方形和平行四边形的基本特征,学会了用数格子的方法学习长方形、正方形和平行四边形的面积,在三角形面积计算公式的学习中掌握了通过图形转化来推导的方法,形成了一定的解决问题的能力。所以,我大胆的设计为一节课的教学内容。

  上课时大胆放手

  《新课程标准》指出:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的`主体,教师是学习的组织者、引导者与合作者。因此,我上课时大胆放手。

  1、设计了一系列的探究活动、让学生在想、说、练、议、评等过程中复习旧知,学习新知。掌握梯形的基本特征。这些都有利于拓宽学生的思维空间,提高学生的合作探究能力和知识迁移能力。

  2、尊重学生的个性发展,允许学生在学具中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。

  在操作、观察、分析、讨论、概括、归纳这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。

  课后细细推敲,努力提升

  具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。

  1、对学生的评价形式单一,重点关注了学生数学学习的水平,没有足够重视学生在数学活动中所表现出来的情感与态度。

  2、教学语言不够简练,特别是指导学生探究时总是担心学生不会,反复强调;缺乏感染力,特别是面对陌生的学生没能及时进入角色。

梯形的面积教学反思12

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。在推导梯形面积计算公式时,我安排学生在自学课本内容,合作学习,放手让学生自己利用前面学习经验,动手把梯形转化成已学过的图行,并让学生通过找图形之间的联系,自主从不同的'途径探索出梯形的面积的计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼、剪、割”的动手操作活动,看一看能不能转化成什么图形,然后让学生思考讨论:想想转化的图形与梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力,空间感受力,动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解基础上总结出梯形面积计算方法,达成了教学的目的。作业反馈中,利用梯形的面积的求高求底,有部分学生比较困难。

梯形的面积教学反思13

  梯形面积公式的推导教学是在平行四边形、三角形面积的计算基础上进行的。由于有前两种图形面积公式的推导过程的基础,我想如果今天的课堂上采用学生独立学习的方式来自主推导梯形面积计算公式,不会有太大的`问题。

  授课伊始引导学生回顾前两种图形面积的推导过程,为学生下一步独立学习做好准备。接着交代本节课的学习任务:研究梯形的面积的计算方法。这时我发给学生每组两张完全相同的两个梯形,让学生自己运用学习过的方法探讨研究梯形面积的计算方法。学生在探讨的过程中我深入学生的各小组,观察学生的研究情况。学生没用五分钟已经将梯形面积的计算公式推导出来了,并能比较熟练地叙述出来。反思以上的教学,能够相信学生,给学生独立学习的机会,让学生在合作交流中,自主探究,体会学习的快乐,从而增强了学习自信心。同时学生的参与度高,积极性强,学生理解的更深入。

  从另一个角度分析,教师对学生还是不能充分信任,教学前的铺设,实际上就是给学生搭好了桥,修好了路。给学生准备了两个完全一样的梯形,看似教师为学生着想,殊不知这样剥夺了学生尝试失败的权利。这样的设计能让我感到一丝丝的欣慰,毕竟我放手了,毕竟学生主动了,毕竟学生参与了。这种欣慰只是表层的愉悦,对学生来说,是不够的。有人说:教学是师生共享人类的崇高,这种崇高,对于知识来说,应当有更多的智慧活动,我这样想。

梯形的面积教学反思14

  今天我上了已经在网上研讨了数日的《梯形的面积》一课,反思整堂课的教学,主要有以下几个特点:

  1、体现了知识的迁移

  在回顾旧知,分析问题的环节,我用课件出示平行四边形、三角形面积公式推导的过程,带领学生回顾旧知,再一次体会转化的思想。接着问学生,那么要想求梯形的面积我们该怎么做呢?因为刚刚复习了转化的思想,所以学生很容易想到,将梯形转化成我们学过的图形,为接下来的解决问题指明了方向。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造了条件。

  2、体现了数学与生活的联系

  首先,在课的开始,我从车窗玻璃是什么形状,这一生活中的情境,导入新课,让学生感受到数学来源于生活。其次,推导出梯形面积公式后,学生应用探索出来的方法解决实际生活中的问题。比如,求水渠横截面的面积,求机翼平面图的面积等。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。

  3、体现了探究性学习的特点

  本节课充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,让学生利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法。在这一环节中,学生出现了多种操作方法,如:有的学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;有的学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;有的学生将梯形沿对角线剪开变成两个三角形,推导出面积公式等等。充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了“学生是学习的主人,教师是组织者、引导者和参与者”的思想。

  4、体现了练习的层次性

  练习的设计体现由简到难的`梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。第一道题,直接代入公式就可以算出结果。第二道题,求机翼平面图,需要先求出一个梯形的面积,然后乘以2,才能得到整个机翼平面图的面积。第三道题,则需要先根据各种图形的特点,求出梯形的上底或下底,再去代入公式,求面积。第四题,是通过计算和观察,发现,等底等高的梯形,面积相等。

  反思整个课堂教学过程,还是存在着许多需要改进的地方。

  1、先复习旧知,再情境导入会更好。

  在我设计的教案中是先情境导入,引出求梯形面积公式,问学生,应该怎样求?引导学生回顾推导平行四边形、三角形面积公式的过程,然后知识迁移,进而小组合作推导梯形面积公式。但在实际教学的过程中发现,先思考怎样求梯形面积,再回顾旧知,这样容易打断学生思考怎样求梯形面积的思路。因此,教学环节可以做这样的调整:先回顾旧知,然后再情境导入,求梯形的面积。这样,学生在复习了转化的思想,推导的方法后,可更好地将其运用到梯形面积公式的推导中去。

  2、关于推导方法的汇报、学习,可以更有条理

  学生小组合作结束后,汇报成果。在课上我是这样做的,先找3个同学汇报了这3种不同的方法,然后,因为第一种方法(将两个一样的梯形拼成一个平行四边形)是重点掌握的,而其他2种方法,因为较难,可视学生接受程度,不做统一要求。所以,我又指名再次找人,汇报第一种推导的方法,最后,同桌之间互相说一说。这样的过程,虽然突出了重点。但是,感觉,有些混乱,学生对第一种方法掌握得也不是很扎实。因此,做如下调整。在学生汇报第一种方法的同时,板书推导过程,帮助学生理解,然后,请其他也用这种方法的学生再次说推导过程,接着,同桌之间说一说,最后,再指名回答。这样,对于第一种方法的研究就比较透彻了。学生汇报第二种方法(将梯形沿对角线剪开,变成2个三角形),因为只需理解“转化”思想即可,推导过程不作为必须掌握的内容,所以,找一名学生汇报即可。学生汇报第三种方法(将梯形分为一个三角形和一个梯形),这种方法更难了,如果学生说不清楚,老师可以帮助学生把这种方法说清楚。

  3、小组合作探究的时间再充足些

  今天很多小组的学生,虽知道怎样推导梯形的面积公式了,但因时间不够,推导过程写得不完整,因此,在汇报时,不够流畅。应该给予学生更充足的探究的时间,让每个孩子都经历完整的探究过程。

梯形的面积教学反思15

  我上了《梯形面积计算》一课,下面结合自己上课的感受以及学生作业的反馈情况,谈谈对这节课的认识。

  在这节课中我主要运用了合作探究、自主学习的学习方法,让学生运用已有的知识和学习经验来探索、研究新知识,并让学生进一步感受数学魅力。

  第一、注重知识间的紧密联系

  。在学习《梯形面积》之前,学生已经系统地学习了《平行四边形面积》和《三角形面积》两节课的内容,并掌握了平行四边形、三角形面积公式的推导过程。因此,梯形面积的学习虽然是一个新的内容,但是在方法上是有法可依的,在教学时我们可以据此为学生搭建学习的`脚手架,密切联系之前的学习内容;而在研究过程中,又可以放手让学生自己开展研究,表述结论,从而经历比较完整的研究过程。

  为了更好地让学生自主探索,在本节课上也设计了相应的复习,主要是对平行四边形、三角形面积计算公式的复习。但是如果我们能够在复习公式的同时,将推导的有关过程进行一些整理,那么对学生研究梯形的面积计算无疑具有较强的正确迁移。

  第二、强化对知识形成过程的体验

  从这部分内容的教材编排来看,突出体现了重研究过程的特点,但这并不意味着结论不重要。在上课前,我让每个学生准备好两个完全一样的梯形。在研究过程中,我有意引导学生由三角形面积计算公式的推导过程去探索梯形面积公式,学生很容易想到这一点

  。当学生把两个完全一样的梯形拼成一个平行四边形时,再进一步启发学生观察拼成的平行四边形的底和高与梯形的底、高有什么关系,面积有什么关系,为了更好的让学生观察,我对教材上提供的实验素材和内容进行了处理和利用,让学生以小组为单位进行合作探究。

  在学生自主学习的基础上出示了教材中的讨论题,帮助学生进一步分析实验数据,并进行实验结论的总结性概括。最后在探索平行四边形和梯形关系的基础上,再进行公式的推导和相关计算练习。

  第三、从练习反馈中全面反思本节课的有效性

  从练习题反馈上看,学生对本节课知识的掌握比较扎实,能够运用梯形面积公式计算面积。但是在练习第2题时,同学们读题后都是通过计算出面积判断哪些梯形的面积是相等的,从表面上看这道题的作用仅限于此。

  但是如果我能进一步引导观察,学生还会发现这些梯形的高都是相等的,得出了在高相等的情况下,如果梯形的上下底的和也相等,那面积也是相等的结论。另外通过这道题学生还领悟到了面积相等的两个梯形,形状是不一定相同的。

【梯形的面积教学反思】相关文章:

《梯形的面积》教学反思04-13

梯形的面积教学设计04-21

梯形面积的计算教学设计08-17

梯形面积计算教学设计06-18

《梯形的面积》说课稿11-20

《梯形面积》说课稿12-02

梯形面积的计算说课稿07-10

上梯形的面积教案07-20

《梯形的面积计算》说课稿07-23