三角形内角和教案

时间:2025-11-08 10:07:45 教案 我要投稿

三角形内角和教案

  作为一名无私奉献的老师,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案应该怎么写才好呢?以下是小编收集整理的三角形内角和教案,欢迎阅读,希望大家能够喜欢。

三角形内角和教案

三角形内角和教案1

  一、教材与学生知识现状分析:

  三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。三角形内角和定理的内容,学生在小学已经熟悉,小学时学生通过观察、实验得到了结论,七年级时学生又通过“拼”“折”“画”等感知了三角形内角和为180°的结论,完成了第一、二学段的学习。而到了第三学段,八年级学生需要运用演绎推理的方式加以证明。同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添加辅助线是解决数学问题(尤其是几何问题)的重要思想方法。学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。

  从本节开始训练学生将命题翻译为几何符号语言,写出已知、求证,学会分析命题的证明思路,对培养学生的思维能力和推理能力将起到重要的作用。

  二、教学目标:

  知识与技能:三角形内角和定理的证明。

  能力训练要求:掌握三角形内角和定理,并初步学会利用辅助线证题,同时培养学生观察、猜想和论证能力。

  情感与价值观要求:通过新颖、有趣的实际问题,来激发学生的求知欲。

  三、教学重点:探索证明三角形内角和定理的不同方法。

  教学难点:三角形的内角和定理的证明方法的讨论。

  四、教法、学法和数学手段:

  采用“问题情景——建立模型——解释、应用与拓展”的模式展开教学。

  采用多媒体教学。

  五、教学过程

  第一环节:

  情境引入:学校教务处有一个折叠长梯(电脑显示图像),当打开时顶端的角是多少度?一名学生测出了两个梯腿

  活动内容:为了回答这个问题,先观察如下的实验:

  用橡皮筋构成△ABC,其中顶点B、C为定点,A为动点(如下图),放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形:△A1BC、△A2BC、△A3BC其内角会产生怎样的变化呢?

  请同学们猜一猜:三角形的内角和可能是多少?

  (1)用折纸的方法验证三角形内角和定理.

  实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(如下图(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

  试用自己的.语言说明这一结论的证明思路。想一想,还有其它折法吗?

  (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

  试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

  活动目的:

  对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

  第二环节:探索新知

  但观察与实验得到的结论,并不一定正确、可靠,这样就需要通过数学证明。那么怎样证明呢?请同学们再来看实验。

  这里有两个全等的三角形,我把它们重叠固定在黑板上,然后把△ABC的上层∠B剥下来,沿BC的方向平移到∠ECD处固定,再剥下上层的∠A,把它倒置于∠C与∠ECD之间的空隙∠ACE的上方。

  这时,∠A与∠ACE能重合吗?

  因为同位角∠ECD=∠B。所以CE∥BA,所以能重合。

  这样我们就可以证明了:三角形的内角和等于180°。接下来来证明:三角形的内角和等于180°这个真命题。

  活动内容:

  由实验可知,我们猜对了!三角形的内角和正好为一个平角。

  这是一个文字命题,证明时需要先干什么呢?

  需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证。

  已知,如图,△ABC,求证:∠A+∠B+∠C=180°

  方法一:证明:作BC的延长线CD,过点C作射线CE∥AB。

  ∵CE∥BA(已作)

  ∴∠ACE=∠A(两直线平行,内错角相等)

  ∠ECD=∠B(两直线平行,同位角相等)

  ∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)

  ∴∠A+∠B+∠ACB=180°(等量代换)

  即:∠A+∠B+∠C=180°。

  方法二:证明:过A点作DE∥BC

  ∵DE∥BC(已作)

  ∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)

  ∵∠DAB+∠BAC+∠EAC=180°(1平角=180°)

  ∴∠BAC+∠B+∠C=180°(等量代换)

  活动目的:

  用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。

  第三环节:反馈练习

  活动内容:

  (1)△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1个直角另外两角有什么特点?

  (2)△ABC中,∠C=90°,∠A=30°,∠B=?

  (3)∠A=50°,∠B=∠C,则△ABC中∠B=?

  (4)三角形的三个内角中,只能有____个直角或____个钝角.

  (5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

  (6)三角形中三角之比为1∶2∶3,则三个角各为多少度?

  C D A E C D

  (7)已知:△ABC中,∠C=∠B=2∠A。

  (a)求∠B的度数;

  (b)若BD是AC边上的高,求∠DBC的度数?

  活动目的:

  通过学生的反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

  第四环节:课堂小结

  活动内容:

  我们证明了一个很有用的三角形内角和定理,证明思想是,运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。辅助线是联系命题的条件和结论的桥梁,今后我们还要学习它。活动目的:

  复习巩固本课知识,提高学生的掌握程度.

  六、课后作业:课本第241页习题6.6第1,2,3题

三角形内角和教案2

  一、教学内容:

  三角形内角和(教材85页的例五)

  二、教学目标:

  1、2、3、知道三角形的内角和是180°。正确计算三角形中某一个角的度数。培养学生分析、判断的能力,渗透知识间的内在联系和转化的数学思想。

  三、教学重难点

  理解并熟练运用三角形的内角和是180°。

  四、教具学具准备

  不同形状的三角形,量角器

  五、教学过程:

  (一)故事导入:

  三角形家里的兄弟们在家里吵个不停,钝角三角形说:“我有一个角最大,我的三个角之和也是最大”,直角三角形说:“我一个角都90°,更何况我长了三只脚,我肯定比你大”,等边三角形说:“我三条边都相等,我三个角的度数之和也不比你直角三角形,钝角三角形三角之和小呀。这家兄弟就这样,你一言,我一语的吵的不可开交,直角三角形和钝角三角刚要动手打起来时,妈妈回来了。三角形妈妈很奇怪,急忙就问:怎么了孩子们?锐角三角形低着头小声说:妈妈,他们都说:他三个角之和比我大,是这样的吗?三角形妈妈哈哈大笑,我以为你们在吵什么呢?原来是这个问题,好了孩子们,要想知道你们三个角之和到底是多少?今天我带你们去城区二小四年级那里的小朋友今天就在学习这节课,兄弟们跟着妈妈一起今天也来到我们的教室。同学们一会儿学会了,把正确答案告诉这几位兄弟,好吗?

  (二)教学实施

  (1)小组合作把准备的三角形折下来,在拼一拼,看能拼成一个什么角?

  (2)反馈结果。

  (3)学生总结结果。

  三角形的内角和是180°。(课件展示三角形的内角和是180度。)

  (4)(课件出示学过的.三角形)请几位同学告诉三角形家里的兄弟们,他们的内角和是多少?

  (三)设疑。

  根据三角形的内角和是180°如果知道两个角的度数,就可以求出第三个角的度数。(课件出示)

  在一个直角三角形中,∠C=30°,求∠A的度数?

  (1)学生读题,分析题意。

  (2)尝试做题。

  (3)教师订正书写。(课件出示)

  ∠A=180°-90°-30°=60°

  (四)做一做

  1、在一个三角形中∠1=140°,∠3=25°.求∠2的度数?

  2、我是小判官。(对的打√,错的打×)

  ①把一个等腰三角形分成两个完全一样的小

  三角形,每个小三角形的内角和都是90度。

  ②直角三角形的两个锐角和是90度。

  ③任何一个三角形的内角和都是180度。

  ④钝角三角形的两个锐角之和大于90度,直角三角形的两个锐角之和正好等于90度

  3、求下面各角的度数。(课件出示)

  (五)课堂作业:

  (1)三边相等,求三个角的度数。

  (2)等腰三角形,顶角是96°,求底角

  (3)在一个直角三角形中,有个锐角是40°,求另一个角。

  (2)我给我女儿买了一个等腰三角形的风筝,他的一个底角是70°,它的顶角是多少度?

  (六)智力大闯关

  我的一个内角是72°,是另一个内角的4倍,我是一个什么三角形?

  六、课堂小结。

  三角形的内角和是多少?

  三角形的内角和是180度。

  七、作业布置。

  P88页9、10

  附板书

  三角形的内角和是180°

三角形内角和教案3

  学习目标:

  (1) 知识与技能 :

  掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

  (2) 过程与方法 :

  通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

  通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

  (3)情感态度与价值观:

  通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

  一.自主预习

  二.回顾课本

  1、三角形的内角和是多少度?你是怎样知道的?

  2、那么如何证明此命题是真命题呢?你能用学过的'知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

  3、回忆证明一个命题的步骤

  ①画图

  ②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

  ③分析、探究证明方法。

  4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

  ①平角,②两平行线间的同旁内角。

  5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

  ① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

  ② 如图1,延长BC,过C作CE∥AB

  ③ 如图2,过A作DE∥AB

  ④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

  三、巩固练习

  四、学习小结:

  (回顾一下这一节所学的,看看你学会了吗?)

  五、达标检测:

  略

  六、布置作业

三角形内角和教案4

  教学目标:

  1. 掌握三角形内角和定理及其推论;

  2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;

  3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。

  4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态

  5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。

  教学重点:

  三角形内角和定理及其推论。

  教学难点:

  三角形内角和定理的证明

  教学用具:

  直尺、微机

  教学方法:

  互动式,谈话法

  教学过程:

  1、创设情境,自然引入

  把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

  问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?

  问题2 你能用几何推理来论证得到的关系吗?

  对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)

  新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。

  2、设问质疑,探究尝试

  (1)求证:三角形三个内角的和等于

  让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。

  问题1 观察:三个内角拼成了一个

  什么角?问题2 此实验给我们一个什么启示?

  (把三角形的三个内角之和转化为一个平角)

  问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?

  其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。

  (2)通过类比“三角形按边分类”,三角形按角怎样分类呢?

  学生回答后,电脑显示图表。

  (3)三角形中三个内角之和为定值

  ,那么对三角形的其它角还有哪些特殊的`关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?

  问题2 三角形一个外角与它不相邻的两个内角有何关系?

  问题3 三角形一个外角与其中的一个不相邻内角有何关系?

  其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。

  这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。

  3、三角形三个内角关系的定理及推论

  引导学生分析并严格书写解题过程

三角形内角和教案5

  学科:数学

  年级/册:4年级下册

  教材版本:人教版

  课题名称:4年级下册第五单元《三角形的内角和》

  教学目标:

  掌握探究方法(猜想—验证—归纳总结),学会用“转化”的数学思想探究三角形内角和。

  重难点分析

  重点分析:教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

  难点分析:通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。但是围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,这些初步的数学交流能力还欠缺。

  教学方法:

  1、探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

  2、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

  教学过程

  导入:各位同学大家好,今天由我来和大家一起学习人教版四年级下册《三角形的内角和》,我们前面学习和了解了三角形的相关知识,请大家说说三角形按角分,可以分成哪几类?知识讲解(难点突破)

  例五:画出几个不同类型的三角形。量一量,算一算,三角形3个内角的和各是多少度?解决这个问题的时候,我们先来了解一下什么是三角形的'内角和?

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  (一)量一量:我们如何解决这个问题呢?

  同学们请看,这里有一个直角三角形,我们先分别量一量这个直角三角形三个内角的度数并标注。90°30°60°现在我们将这三个内角的度数加起来等于180度°通过测量计算发现这个直角三角形内角和都是180°,是不是所有直角三角形的内角和都是180°呢?同学们你们也来量一量你刚才画的直角三角形3个内角的度数,算一算是不是也和老师的结果一样呢?注意在测量要认真,力求准确。停顿数秒从刚才的测量和计算结果中,你发现了什么?你是不是发现直角三角形的内角和都是180°当然有些同学的测量结果不是等于180°,这是我们在测量时,由于在测量工具、测量方法等各方面的原因,使我们的测量结果存在一定的误差。实际上,直角三角形三角形内角和就等于180°。

  (二)

  1、提出猜想:刚才我们通过测量和计算发现了直角三角形内角和等于180,那你能不能大胆的猜测一下:锐角三角形内角和,钝角三角形的内角和是不是也是180°呢?

  2、动手操作,验证猜想这时每个同学的心中都有了猜测的答案,这个猜想是否成立呢?除了用量角器量一量,你还有其他办法来验证吗?聪明的你,是不是想到好办法了,那就快快动手吧!

  方法:

  A、拼一拼的方法

  B、折一折的方法把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,通过折叠的方法,三角形的三个内角折到一起正好组成一个平角,所以也能证明三角形的内角和是180°。

  同学们我们通过量一量拼一拼折一折,发现无论是直角三角形,锐角三角形钝角三角形,它们内角和都等于180度,我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  小结:通过剪拼的方法,把三个角剪下来,拼在一起,三角形的三个内角正好拼成一个平角,因为平角是180°,所以三角形的内角和是180°三角形的形状和大小虽然不同,但是三角形的内角和都是180度。说明三角形的内角和和他的形状大小无关

  课堂练习(难点巩固)

  总结:我们今天用量一量,折一折,拼一拼的方法得到了三角形的内角和等于180°这一结论,希望同学们在在以后的学习中大胆探索,去发现数学的奥秘吧!我们今天的课程就到这里了,同学们再见!

三角形内角和教案6

  一、教学目标:

  1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。

  2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。

  3、在探索和发现三角形内角和的过程中获得成功的体验。

  二、教学重、难点:

  重点:探索并发现三角形内角和等于180°。

  难点:运用三角形内角和等于180°的性质解决一些实际问题。

  教具:课件、三角形若干。

  学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。

  三、教学过程

  (一)创设情境,导入新课

  我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?

  教师放课件。

  课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”

  都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。

  (板书课题:三角形内角和)

  (二)自主探究,发现规律

  1、探究三角形内角和的特点。

  (1)检查作业,并提出要求:

  昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。

  小组活动记录表

  小组成员的姓名

  三角形的形状

  每个内角的度数

  三角形内角的和

  (要求:填完表后,请小组成员仔细观察你发现了什么?)

  ②小组合作。

  会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。

  各组长进行汇报。发现了三角形的内角和都是180°左右。

  师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。

  2、验证推测。

  那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。

  通过我们的'验证我们可以得出三角形的内角和是180°。

  板书:(三角形内角和等于180°。)

  3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

  4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)

  出示书28页,试一试第3题,并讲解。

  说明:在直角三角形中一个锐角等于30°,求另一个锐角。

  生独立做,再订正格式、以及强调不要忘记写度。

  小结:同学们有没有不明白的地方?如果没有我们来做练习。

  (三)巩固练习,拓展应用

  1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?

  完成,并填在书上。讲一讲直角三角形还有什么解法。

  2、出示29页第2题。

  说明:一个钝角三角形说:我的两个锐角之和大于90°。

  一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。

  3、画一画:

  出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?

  三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。

  (四)课堂总结

  让学生说说在这节课上的收获!

三角形内角和教案7

  【教学目标】

  1、利用电子白板,借助生活情景,通过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,推想归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

  2、经历猜测——验证——得出结论——解释与应用的过程,体验“归纳”、“转化”等数学思想方法。

  3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

  【教学重、难点】

  教学重点:引导学生发现三角形内角和是180°。 教学难点:用不同方法验证三角形的内角和是180°。 【教学过程】

  一、创设情景,提出问题

  小游戏:猜一猜藏在信封后面的是什么三角形。(出示)

  师:三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。

  【设计意图:运用电子白板,游戏引入,激起学生对于三角形已有知识的回忆,为下面探求新的知识作好铺垫。创设疑问,引出要探讨的问题,调动学生学习的兴趣。】

  二、动手实践、自主探究

  师:什么是内角?内角和是什么意思?三角形的内角和是多少度呢?

  1.从特殊入手——计算直角三角板的内角和。

  (1)师生拿出30度直角三角板

  师:这是什么?是什么三角形?这个角是多少度?它的内角和是多少度,请口算?

  (2)再拿出45度直角三角板。

  师:这是什么三角形?这个角是多少度?它的内角和是多少度?

  (3)师:通过刚才的计算,你有什么发现?

  生:这两个三角形内角和都是180°。

  【设计意图:这一环节先让学生在明确三角形内角和的概念基础上,先借助电子白板出示特殊三角形——“直角三角形”,让学生初步感知三角形的内角和,通过计算学生很容易发现直角三角形的内角和是180度,为学生作进一步猜想奠定理论基础。】

  2、由特殊到一般——猜想验证,发现规律。

  (1)提出猜想

  师:其他所有三角形的内角和是否也是180°?

  生:是、 不是……

  师:有的说是,有的说不是,我们的`猜想对不对呢,需要验证。

  (出示小组调查表。)

  (2)验证猜想(生测量计算,师巡视指导,收集回报的素材)

  师:哪个小组愿意将您们组的发现与大家分享一下?

  生上台展示:我们小组研究的是直角三角形(锐角三角形、钝角三角形),我们测量它的三个角分别是 度 度 度,内角和是180°,我们发现直角三角形(锐角三角形、钝角三角形)的内角和是180°)

  师:研究锐角三角形(锐角三角形、钝角三角形)的小组请举手,你们的结论和他们一样吗?请你们小组来谈谈你们的发现!

  【设计意图:实物投影仪在这个环节发挥了重要的作用,学生充分展示自己的想法。在初步感知的基础上,教师让学生猜测是否所有的三角形的内角和都一样呢?这个问题为后面的猜测和验证进行铺垫,引发思考,激发学习兴趣。然后再通过算出特殊的三角形的内角和推广到猜测所有三角形的内角和,引导学生从特殊三角形过渡到一般三角形的验证规律。】

  (3)揭示规律

  师:通过计算我们发现直角三角形的内角和是180°,锐角三角形的内角和是——180度,钝角三角形的内角和也是——180度,这就验证了我们的猜想。现在我们可以说所有的三角形的内角和是(完善课题180°)。

  注:学生的汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。(板书)(分别对这几个数进行统计)

  师:观察这些测量结果你能发现什么?(三角形内角和大约是180°左右)

  (4)方法提升。

  师:我们从直角三角形——锐角三角形——钝角三角形——推出所有三角形的内角和,这种由个别到一般的推理方法,在数学上叫归纳推理(板书)归纳推理是重要的推理方法。

  【设计意图:通过度量、比较这一活动,让学生在实践中充分感知三角形的内角和大小。但由于测量本身有差异,教师并没有直接告知三角形内角和的结论,而是让学生去另辟蹊径想办法验证前面的猜想,想一想有没有别的方法来求三角形的内角和,让思维真正“展翅高飞”,充分调动学生学习的积极性、自主性。】

  3、剪拼法再次验证——转化思想的运用。

  师:刚才我们通过测量发现了三角形的内角和是180°,现在我们不用量角器测量了,你能想办法证明三角形的内角和是180°吗?先思考再动手做。

  生探究,师巡视指导,收集汇报素材。(呈现作品——说方法——统计点评)

  班内交流,汇报撕拼法、折叠法。

  师:将三角形的内角通过剪拼、折叠,转化成平角,你们应用了一种重要的数学思想——转化(板书),转化就是将我们不会直接解决的新问题,变成已会的旧知识,进而解决。

  【设计意图:孩子的智慧来自于动手,电子白板适时演示,让学生通过“剪一剪,拼一拼,折一折”等操作方法,猜想、验证得出结论:三角形的内角和是180°,并利用语言概括出结论,提高语言表达能力。】

  4.展示——再次强化。

  师:现在大家知道这几个三角形的内角和是多少度吗?

  师:我们可以请电脑来给我们验证一下。

  (引入白板,通过拖动演示三角形从小到大度数的不断变化)

  结论:不论三角形的大小、形状怎样变化,任何三角形的内角和都是180°。

  【设计意图:让学生在白板上亲眼观看到拖拉出类别不同的三角形,让学生在拖动的过程中观察、体验。学生兴趣盎然,学习气氛热烈,学生不仅感受到这3个三角形的内角和是180°,还随着电子白板上这个三角形的任意拖动,发现三角形的3个角的度数在不断的变化,而三角形的内角和则始终没有变化,仍然是180°,深刻地理解了任意三角形的内角和都是180°。而这,恰恰就是本课的教学重点和难点。传统课中不容易突破的教学重难点轻而易举的攻破。抽象的知识变得直观、具体,促进学生知识内化的过程。】

  三、巩固应用,内化提高

  1.介绍科学家帕斯卡(白板出示帕斯卡的资料)

  2.练习

  (1). 做一做:在一个三角形中,∠1=140度, ∠3=25度,求∠2的度数。

  (2). 求出下列三角形中各个角的度数。(书88页第9题)

  (3). 算一算(书88页第10题):爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

  【设计意图:练习中使用白板的交互性,学生更愿意参与,得出结果也更有成就感。素质教育要求我们要面向全体学生。为此,根据问题的不同难度,教学时兼顾到不同层次的学生,使每位学生都有所收获,都有机会体会到成功的喜悦。设计练习有新意,同时也注意了坡度。既有基本练习,也有发展性练习,尽最大努力体现因材施教。】

  四、课后思考、拓展延伸

  同学们,数学奥妙无穷,三角形是边数最少的封闭平面图形,那么,四边形五边形六边形(出图示)……的内角和是多少度,他们又有什么规律呢?有兴趣的同学下课之后可继续研究,下课。

三角形内角和教案8

  一、学生知识状况分析

  学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

  活动经验基础: 本节课主要采取的 活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.

  二、教学任务分析

  上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的`证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是:

  知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

  (2)灵活运用三角形内角和定理解决相关问题。

  数学能力:用多种方法证明三角形定理,培养一题多解的能力。

  情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化 的理性作用.

  三、教学过程分析

  本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结

  第一环节:情境引入

  活动内容:(1)用折纸的方法验证三角形内角和定理.

  实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果

  (1) (2) (3) (4)

  试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?

  (2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

  试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?

  活动目的:

  对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.

  教学效果:

  说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

  第二环节:探索新知

  活动内容:

  ① 用严谨的证明来论证三角形内 角和定理.

  ② 看哪个同学想的方法最多?

  方法一:过A点作DE∥BC

  ∵DE∥BC

  DAB=B,EAC=C(两直线平行,内错角相等)

  ∵DAB+BAC+EAC=180

  BAC+ C=180(等量代换)

  方法二:作BC的延长线CD,过点C作射线CE∥BA.

  ∵CE∥BA

  ECD(两直线平行,同位角相等)

  ACE(两直线平行,内错角相等)

  ∵BCA+ACE+ECD=180

  B+ACB=180(等量代换)

  活动目的:

  用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养 学生的逻辑推理能力。

  教学效果:

  添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到 证明的目的

  第三环节:反馈练习

  活动内容:

  (1)△ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?

  (2)△ABC中 ,C=90,A=30,B=?

  (3)A=50,C,则△ABC中B=?

  (4)三角形的三个内角中,只能有____个直角或____个钝角.

  (5)任何一个三角形中,至少有____个锐角;至多有____个锐角.

  (6)三角形中三角之比 为1∶2∶3,则三个角各为多少度?

  (7)已知:△ABC中,B=2A。

  (a)求B的度数;

  (b)若BD是AC边上的高,求 DBC的度数?

  活动目的:

  通过学生的 反馈练习,使教师能全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏.

  教学效果:

  学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。

  第四环节:课堂小结

  活动内容:

  ① 证明三角形内角和定理有哪几种方法?

  ② 辅助线的作法技巧.

  ③ 三 角形内角和定理的简单应用.

  活动目的:

  复习巩固本课知识,提高学生的掌握程度.

  教学效果:

  学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.

  课后练习:课本第239页随堂练习;第241页习题6.6第1,2,3题

  四、教学反思

  三角形的有关知识是空间与图形中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

  (1) 通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。

  (2) 充分展示学生的个性,体现学生是学习的主人这一主题。

  (3) 添加辅助线是教学中的一个难点, 如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

三角形内角和教案9

  【教学内容】:

  人教版九年义务教育小学数学四年级下册第95页内容。

  【教学目标】:

  1、掌握三角形内角和定理,并能进行简单的运用。

  2、在探讨三角形内角和的过程中,培养学生转化的数学思想。

  3、通过让学生积极参与数学学习活动,培养学生对数学的好奇心和求知欲。让学生切实感受到从动手操作中,引发猜想,最后验证猜想得出结论。发展学生动手操作、观察比较和抽象概括的能力。

  4、培养学生善于思考,勤于动手、勇于探索并发现结论的学习方法,使他们经历数学知识的形成过程。

  【教学重难点】:

  1、引导学生探索规律是否具有一般性,用不同的三角形验证猜想,从而得出三角形内角和为1800。通过做一做,应用三角形内角和求未知角的度数。

  2、在研究内角和时,培养学生转化的思想,把未知的知识转化为已知的知识来研究。

  【教学流程】:

  一、复习导入:

  1、上一节课我们把三角形按角和边进行了分类,谁来说一说按角可分成哪几类?

  抽答,教师板书

  2、前边我们还学习了三角形的高,谁来画一画他们的高。

  抽答:

  3、锐角、钝角三角形的高把他们分成了两个直角三角形。一个三角形中可以有三个锐角,为什么只能有一个直角呢?你能画出含有两个直角的三角形吗?画一画。

  4、想一想为什么不能画出含有两个直角的三角形呢?你有什么猜想?

  二、教授新知

  1、三角形三个角含有某种关系,今天我们就一起来研究三角形的角,由于三角形的角都在其内部,所以也叫内角。

  教师板书:三角形内角。

  (一)初次探索:

  1、我们先选一类出来研究,你们想先选哪一类呢?(直角三角形,因为其中一个角已知为900,只需研究另外两个角就行了。)

  2、你们手上有熟悉的三角形吗?(教师出示三角板)看,这是不是大家最熟悉的直角三角形,谁来说一说它们另外两个角的度数?

  抽答:教师板书

  3、同学们,请仔细观察这两组数据,你有什么发现?

  抽答:

  4、一个多150,一个少150,他们的和怎样?再加上它们都有一个900角,它们内角和都为1800。大家想一想,是不是所有的直角三角形三内角和都为1800?验证一下,你手里的直角三角形,是这样吗?

  5、你是怎样验证的?结果怎样?(量的)抽答:教师并板书

  6、你也是量的?量出的结果是?

  抽答:

  7、这么多小朋友都是量的,可是量出的结果不全是1800,为什么和我们的猜想不一样呢?因为量有一定的误差,如果抛开误差,你觉得它的内角和是多少?1800是一个什么样角?你能把这三个角组成一个平角吗?怎么做?

  抽答:

  8、怎么拼的?给大家展示展示。

  9、这说明直角三角形内角和为1800。(板书:三内角和=1800)

  (二)再次探索

  1、接下来该研究锐角和钝角三角形了,请大家自行选择一类来进行研究。待会和大家分享你的研究成果。

  2、你研究的哪一类三角形?用了什么方法?结果怎样?(让学生上黑板演示:量和拼的'方法。)

  抽答:

  3、把你手里的锐角三角形向大家展示展示,形状大小一样吗?(不一样)你能得出什么结论?(锐角三角形内角和=1800)教师板书。

  (三)运用转化的方法:

  1、还有其他的方法吗?老师给大家介绍另一种方法,转化的方法。锐角三角形的一条高把它分为两个直角三角形,一个直角三角形内角和为1800,两个直角三角形内角和就是3600,这个结论是不是错了呀?

  2、你发现问题了,你来说说。

  抽答:

  3、谁研究的钝角三角形?说说你是怎么研究的?结果怎样?

  抽答:

  4、把你的钝角三角形向大家展示展示,形状大小一样吗?(不一样)你能得出什么结论?(钝角三角形内角和为1800)教师板书。

  5、研究了直角、锐角、钝角三角形,它们内角和都为1800,你能得出什么结论?(所有三角形内角和都为1800)

  齐答:教师并板书。

  (四)设疑,自行研究

  1、看看这个课题,你还有什么疑问吗?老师有一个疑问,你能解答吗?这里有一个这么大的三角形,还有一个这么小的三角形,相差这么大,内角和能一样吗?

  抽答:

  2、说明角的大小和边长是没有关系的。所有的三角形的内角和都为1800。

  三、课堂练习

  1、学习了三角形内角和,如果已知其中两个角,你能求出第三个角的度数吗?请做一做练习一。(在一个三角形中,∠1=1400,∠2=250,求∠3的度数。)

  2、一个直角三角形已知其中一个非直角,你能求出另一个角的度数吗?做一做练习二。(在一个直角三角形中,其中一个角为400,求另一个角的度数。)

  3、一个等腰三角形已知其中一个底角,其他角的度数你还能求吗?看看练习三。(一个等腰三角形,已知底角为420,求另外两个角的度数。)

  四、课堂小结

  1、这节课你学了什么新知识?

  2、我们是怎么研究的?(从大家熟悉的开始研究,从特殊到一般并运用了转化的思想。)

  五、知识拓展

  1、研究了三角形内角和,四边形呢?你还能求吗?你想怎么做?能用转化的方法吗?怎么做?

  抽答:

  六、总结:

  这节课我们学习新知识时,用了很多方法,希望大家在以后的学习中

  想出更多的方法。在学了课本知识的基础上还拓展了相关知识,希望大家在以后的学习中再接再厉。

  以下附上教材封面及教材内容:

三角形内角和教案10

  设计理念:

  本教学活动通过创设情境,让学生从情境中出发经历猜测、验证、交流等数学活动,培养学生动手实践、自主探究与合作交流的能力。同时,让学生充分感受到:数学源于生活,生活离不开数学,数学就在我们身边。遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一,并在这一系列教学活动中潜移默化地向学生渗透了“转化”数学思想,为后续学习奠定必要的基础。

  教学内容:

  《义务教育课程标准实验教科书·数学》(人教版)四年级下册第85页例5及相应练习。

  学情与教材分析:

  该内容是本册教材第五单元关于三角形内角和的教学。它安排在三角形的分类之后,组织学生对不同形状和不同大小三角形度量内角的度数。通过度量,各种三角形内角和之和都接近180°,引发学生对三角形内角和探究的欲望,应用折叠、拼凑等方法验证。教材重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生进行自主探索和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  教学目标:

  1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

  2、在操作活动中,培养学生的合作能力、动手操作能力,发展学生的空间观念,并应用新知识解决问题。

  3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

  教学重点:

引导学生发现三角形内角和是180°。

  教学难点:

用不同方法验证三角形的内角和是180°。

  教学用具:

三种不同类型三角形,多媒体课件。

  教学过程:

  一、创设情境,揭示课题。

  与学生交流。(同学们,星期天你们喜欢玩什么? )

  小明打破一块三角形玻璃的.情景。(课件出示)

  (学生猜一猜,他会带哪一块到玻璃店配玻璃)

  ③介绍三角形内角及三角形内角和的含义。

  ④设疑揭题。

  从刚才的情境中,我们知道,破掉的三角形玻璃,只要知道其中的两内角,就能配出和原来一样的玻璃。究竟有什么奥妙?这节课我们就一起来研究有关三角形内角和的知识。

  【设计意图:以小明打破玻璃为载体,引入本课的学习,增强了学生的好奇心与探究欲,使学生全身心地投入到学习活动中来。拉近了数学课堂与现实生活的距离,激起学生浓厚的学习兴趣。】

  二、自主探索、验证猜想。

  1、猜一猜。

  猜一猜,它们的内角和到底是谁的大呢?(板贴三种不同类型三角形)

  2、量一量。

  用量角器来量一量,算一算。

  合作要求:

  三种三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?

  温馨提示:

  测量的同学:量出每个角的度数,把它写在三角形里面。三个角的度数都量好后,再汇报给记录的同学登记。

  记录的同学:监督小组其他同学量得是不是很准确、真实。不能改掉小组成员度量出来的数据。(开始)

  量一量、算一算不同类型三角形内角和各是多少度?

  ⑵小组合作探究

  ⑶汇报交流

  【学生汇报中可能会出现答案不是唯一的情况,如:180°、179°、181°等。】

  (4)说一说。

  师:观察这些测量结果你能发现什么(三角形内角和大约是180°左右)?

  3、验证。

  (1)剪拼、撕拼

  用度量的方法验证,得到的结果不统一。有没有比度量更精确的验证方法?也就是不用度量你能用别的方法验证吗?

  【学情预设:生:把三角形的三个角剪下来,再拼成一个角。】

  (2)折拼

  用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了。有没有更好验证方法?(用折的方法—课件演示)

  (3)观察小结。

  现在大家知道这几个三角形的内角和是多少度吗?

  任何三角形的内角和都是180°。

  4、揭疑解惑。

  小明为什么带只剩两个角的三角形玻璃到玻璃店配玻璃?

  【设计意图:探索是数学的生命线。本环节以学生探索活动为主,让学生在“量一量”、“折一折、拼一拼”中充分的探索活动中发现问题、提出问题、举例验证、建立模型,让学生在“做数学”过程中理解和掌握新知识,为学生建立良好的学习空间。】

  四、巩固深化。

  师:学会了知识,我们就要懂得去运用。下面,我们就根据三角形的内角和的知识来解决一些相关数学问题。

  1、选一选。哪三个角能组成一个三角形的三个内角?(课件出示)

  2、算一算。求出三角形三个角的度数。(课件出示)

  猜一猜。三角形中有一个角是60°,猜一猜它是什么三角形。

  【设计意图:练习设计力求形式多样,循序渐进,既巩固新知,又促进学生发散思维能力。】

  五、回顾实践、全课总结

  同学们通过这堂课的活动学习,说说你感受最深的是什么?让老师和同学们分享你的收获!

  六、课后思考、拓展延伸。

  一个三角形,剪掉一个角,剩下图形的内角和是多少?

  (图略,等腰三角形,剪掉一个底角)

三角形内角和教案11

  教学内容:

  新课程实验教科书小学数学四年级下册85页例5。

  设计思路:

  遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。先让学生思考直角三角形的另外两个角是什么角,再设疑让学生判断一个三角形中有两个角是直角,引出课题。接着让学生猜想是不是所有的三角形的内角和是180°。学生通过用量的方法得出三角形的内角和大约是180°(存在误差),再引导学生通过剪拼、折拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。接着引导学生理解将一个长方形按对角线剪成两个直角三角形,让学生发现可以用360度除以2推算所有直角三角形的内角和是180度。这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力。让学生体验数学学习的快乐。

  教材分析:

  依据是《新课程标准》(实验稿)。新课标中,分两个阶段分层写进了“三角形内角和”:1、在第二学段“几何与图形”第七条中说:“通过观察、操作了解三角形内角和是180°”;2、在第三学段“空间与图形”第4条第3点中说:“利用同位角、对角相等的基本事实证明三角形的内角和定理。

  三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  学生分析

  1、四年级的学生已经有了探索三角形内角和的知识(或技能)基础。如掌握了锐角、直角、钝角、平角的概念;知道直角或平角的度数、会用量角器度量角的度数。认识长方形、正方形,知道他们的四个角都是直角,认识了三角形,知道了三角形根据角分,有锐角三角形、直角三角形和钝角三角形。已经知道了等腰三角形和正三角形。

  2、学生的起点。已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

  教学目标:

  1、通过量、剪、拼等方法,探索和发现三角形内角和是180°。

  2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

  3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

  教学重点:引导学生发现三角形内角和是180°

  教学难点:用不同方法验证三角形的内角和是180°

  教具学具准备:课件、学生准备不同类型的三角形各一个,长方形。剪刀、量角器。

  教学过程:

  一、创设情景,引出问题

  导语

  师:第几次来这里上课?在这里上课和在教室有什么不一样吗?

  (交代话筒的分布)

  今天有很多听课的老师都想了解你,能向老师介绍你自己吗?

  你介绍了自己的姓名

  你介绍的内容更丰富了,有姓名、岁数。

  你的声音很响亮,有更响亮的吗?

  看来我们虹桥镇一小四一班的同学真的很棒。

  可以上课了吗?上课。同学们好

  我们先来猜个谜语,请大家齐读一遍。

  猜谜语:(课件)

  形状似座山,稳定性能坚

  三竿首尾连,学问不简单(打一几何图形)三角形(板书)

  1、小游戏

  猜三角形(课件)

  师:这个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?

  师:被遮住的两个角是什么角?

  生:两个角都是锐角。

  师:如果有人说被遮住的两个角中还有一个角是直角,你们觉得对吗?为什么?

  (这个环节容易忘记)

  生:在一个三角形里面不可能有两个直角

  生:这样就不是三角形了

  生:三角形的内角和是180度,如果有两个角是直角,另一个角不是没有度数了。

  (让学生拿出直角三角板上来说明三角形的内角和是180°)

  2、引出课题

  这就是三角形里角的奥秘,这节课我们就来研究有关三角形角的知识”三角形内角和“。(板书课题)

  二、探究

  1、三角形的内角、内角和

  (1)三角形内角(课件)

  三角形里面的三个角都是三角形的内角。为了方便研究我们把每个三角形都标上内角∠1、内角∠2、内角∠3。

  (2)三角形内角和

  师:内角和指的是什么?

  生:三角形的三个角的度数的和,就是三角形的内角和。

  (多让几个学生说一说)

  2、猜一猜

  师:这个三角形的内角和是多少度?

  生:180°

  师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

  生:是。

  生:不是

  预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

  预设2师:可以用什么方法验证三角形的内角和是180度。

  生:量一量。(量角器)

  师:用量角器度量,你能说的更明白一些吗?

  3、量一量

  (1)出示要求(课件)

  师:(我在信封里为大家准备了三个不同的三角形和一张表格)三个三角形和一张表格,四人小组合作,你们觉得怎样分工度量的速度会最快?

  生:每一个同学量一个三角形的内角度数另一个人记录。

  师:量的同学:量出的每个角的度数,把每个角的度数写在三角形里面。三个角的度数都量好后,再汇报给记录的同学登记。(还要在实物投影上例举)

  师:记录的同学:要监督小组其他同学量的是不是很准确、真实,不能改掉小组成员度量出来的数据。(开始)

  量一量、算一算不同类型三角形内角和各是多少度?

  (2)小组合作探究

  (大部分的同学已经量好了。没有量好的小组,先停下来。让我们一起来分享其他同学的测量成果。我这里收集到了两个小组的测量记录表,这张是那个小组的?请这个小组的组长带上三个三角形上来给大家介绍他们组的测量情况。请你给大家介绍你们组测量的三角形的形状,每个角的.度数和内角和是多少?)学生汇报的时候教师板书。

  (3)汇报交流

  测量记录表

  三角形的形状

  每个内角的度数

  三个内角和

  (实物投影)选择有代表性的作品展示

  学生的汇报中可能会出现答案不是惟一的情况。如180°179°181°等

  (板书)

  (分别对这几个数进行统计)

  我们来统计测量出来是多少度的同学最多。例如、179°的有2人,180°的有13人,181的有1人等等。(度量结果是181度的同学请举手,179度的请举手,还有不一样的吗?)

  师:观察这些测量结果你能发现什么?

  生:都在180°左右。

  生:从大到小的顺序。

  4、剪拼、折拼

  (1)剪拼、撕拼

  (学生的注意力要集中)

  预设1师:用度量的方法验证,得到的结果不统一,有没有比度量更精确的验证方法?(让学生多思考),也就是不用度量你能用别的方法验证吗?

  预设2师:不着急,看黑板(板书),内角和就是(~~)

  生:就是把内角合并在一起。

  度量的验证方法是分别量出每个角的度数,分成单个研究。

  如果把三个角合在一起考虑呢?你还有什么验证方法?

  求三角形内角和就是把三角形的三个角和起来考虑问题,三个角和起来是什么角?三个角和起来是多少度的角,你有办法吗?

  预设3师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角

  把三角形的三个角拼起来是不是一个平角?

  有什么方法能把三角形的三个内角合并在一起?

  预设4师:我在电脑里收索一个验证方法。(课件演示)

  生:把三角形的三个角剪下来,再拼成一个角。

  师:你能说的更明白一些吗?

  让学生在实物投影上演示(可以把剪下来的三个角,用固体胶固定在白色的长方形卡纸上。)

  师:你们觉得他得方法可行吗?

  要求

  请大家四人小组合作,用他的方法验证。

  全班小组操作

  大部分的小组已经拼好了,还没拼好的小组先停一停。我们一起来分享其他小组的验证结果

  汇报交流

  预设1师:(把学生的作品展示)把三个角拼在一起你们有什么发现?

  (你能看出这是用什么三角形拼成的?为什么?三个角拼在一起你有什么发现?)

  预设2让学生上来介绍

  师:你怎么做?发现了什么?(课堂纪律)

  让学生展示不同类型的三角形拼成一个平角。说明三角形的内角和是180°

  (板书:剪拼一个平角)

  课件演示

  师:这种验证方法是谁第一个发现的,我们用掌声来祝贺他。

  (2)折拼

  师:用剪拼的方法是比较精确,美中不足就是把三角形给剪了或是撕了,有没有更好验证方法?

  预设1生:用折的方法

  小组合作把剩下的一个三角形的折成一个平角。

  展示

  师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。看电脑是怎样折的。

  课件演示

  师:先要找到两条边的中点,用线连接起来,再按这条线折起来。再把另外的两个角折起来就可以了。

  预设2学生不会想到用折的方法。

  师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)

  5、计算,推理(看学生基础选用)

  A、将一个长方形按对角线剪成两个完全一样的直角三角形。因为长方形的四个角都是直角,长方形的内角和是360°,所以剪成后的直角三角形的内角和是180°

  (回家以后,同学们可以剪一个三角形折一折,我在信封里还为大家准备一个长方形彩色卡纸,如果将一个长方形剪成两个直角个三角形)

  师:你发现了什么?

  生:直角三角形的内角和是180°

  师:你能说得更明白一些吗?

  师:你能算出这个直角三角形的内角和吗?

  生:90°乘4等于360°,在把360°除以2就等于180°(板书)

  师:我们给这种验证方法娶个名字?(推算)

  师:这个直角三角形可以用推算的方法验证,是不是所有的直角三角形都可以用这种方法推算呢?

  (课件演示)

  师:推算的验证方法是谁先发现的,我们也对他表示祝贺。

  小结

  师:这节课通过我们班同学共同合作,我们用了几种验证方法。

  师:撕拼和折拼方法有什么相同点?(注意说话有说服力)

  生:都是把三角形的三个角拼成一个平角。

  师:为什么度量的方法会得到不同的结果?

  师:可能是度量的时候有误差,如果准确测量结果就是180°(把不是180°的数据擦掉)

  数学文化

  师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662),法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。

  6、解疑

  为什么在一个三角形中不可有两个角是直角或两个角是钝角?

  生:因为三角形的内角和是180°

  反思:在活动中,我没有像过去那样告诉学生怎样去做,让学生做机械的操作员,也不是随意放开,让学生盲目地做,而是把放与引有机结合,鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。

  三、应用三角形的内角和解决问题

  我们就用这个结论来解决问题

  1.看图求出未知角的度数。

  180°-55°-65°180°-(55°+65°)

  =125°-65°=180°-120°

  =60°=60°

  刚才是已知两个内角的度数,求另一个内角的度数。如果只告诉你一个内角的度数,你会求出另外两个内角的度数吗?如果一个内角的度数也不告诉你,你能知道三个内角的度数吗?

  2、请说出下列每个三角形每个角的度数。

  180°÷3=60°180°-96°=84°180°-90°-40=50°

  84°÷2=42°90°-40°=50°

  3、判断(请大家用手语来判断)

  (1)一个三角形的三个内角度数是:80°、75°、24°。()

  (2)大三角形比小三角形的内角和大。()

  教师准备两个大小不一样角度一样的三角形

  (3)两个小三角形拼成一个大三角形,大三角形的内角和是360°()

  师:你能改正吗?

  生:两个小的三角形拼成一个大四边形,四边形的内角和是360。

  (准备两个三角形刚好可以拼成四边形)

  师:小三角形的两个直角角已经不是大三角形的内角,要减去180°所以大三角形的内角和是180°

  4、求四边形、五边形、六边形的内角和

  下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?

  图形

  名称

  三角形

  四边形

  五边形

  六边形

  有几个三角形

  1

  内角和

  180°

  如果要求10边形的内角和,你会求吗?你有什么发现?

  四、回顾

  这节课你有什么收获?我们是怎样研究三角形的内角和是180°?

  师:这节课我们分别用度量、撕拼、折拼推算个的方法对猜想进行验证,最后运用三角形内角和是180°的知识解决问题。如果给你重新选择,你会选择什么方法验证?

  我们用360度除以2推算出所有直角三角形的内角和是180度,你会应用直角三角形的内角和是180度,推算这个大锐角三角形的内角和吗?(课件)

  (4)、一个锐角三角形、钝角三角形分成两个直角三角形。也可以推出锐角三角形的内角和是180°

  板书

  三角形内角和180°

  猜想实验验证

  度量180°179°181°182°183°

  剪拼一个平角

  折拼

三角形内角和教案12

  【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

  【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

  【学情分析】:

  学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

  【学习目标

  1、结合具体图形能描述出三角形的内角、内角和的含义。

  2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

  3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

  【评价任务设计

  1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

  2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

  3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

  4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

  【重难点

  教学重点:探索和发现三角形的内角和是180°。

  教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

  【教学过程】

  一、复习准备。

  1、三角形按角的不同可以分成哪几类?

  2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

  二、探究新知

  (一)创设情境,生成问题,认识三角形的内角及内角和

  (播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”

  师:动画片看完了,请大家想一想,什么是三角形的内角和?

  师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

  多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

  (达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫

  (二)、引导猜测三角形的内角和是180度

  师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

  预设:学生回答直角三角形。

  师:你为什么这么认为呢?

  生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

  (达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)

  (三)、验证三角形的内角和是180度

  1.确定研究范围

  师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

  师:分类验证是科学验证的一种好方法,下面我们就用分类验证的`方法来验证一下,看看三角形的内角和是不是180°?

  2.操作验证

  教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

  智慧锦囊:

  (1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

  (2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

  3.汇报交流

  师:谁来汇报你的验证结果?

  (1)测算法

  师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

  (2)剪拼法

  (3)折拼法

  师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

  (4)推算法

  ①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

  师直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

  课件演示

  ②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

  4.总结提炼

  师:孩子们,刚才我们通过“量——————推”的方法分类验证了三角形的内角和是( )度?

  现在可以下结论了吗?

  (板书:三角形三个内角和等于180°。)

  师:那在“三角形的争吵中”谁是对的?

  (达成目标3。此环节让学生通过“量——拼——折——推”的方法分类验证了三角形的内角和是180度。此环节充分体现了学生学习的主动性。)

  (四)利用三角形内角和是180解决问题

  1、看图,求出未知角的度数。

  2、书本85页“做一做”

  在一个三角形中,∠1=140。,∠3=25。,求∠2的度数。

  (达成目标3和目标4:能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”达成目标3和目标4.)

  三、目标达成检测方案:

  1、求出三角形各个角的度数。

  2、埃及金字塔建于4500年前的埃及古王朝时期,它是用巨大石块修砌成的方锥形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各异,外表有四个侧面,每个侧面都是等腰三角形。人们量得这个三角形的一个底角是64度。

  四、课堂小结,提升认识

  同学们,这节课你有哪些收获?我们是怎样得到“三角形内角和等于180度”这个结论的?

  师:是啊,今天咱们不但知道了三角形的内角和是180°,更重要的是我们经历了探究三角形内角和的验证方法。咱们从猜想出发,经过验证(用量、拼、折、推等)得到了结论并利用结论解决了一些问题。孩子们,其实我们在不知不觉中已经走了数学家的探究历程……希望同学们在今后的学习中大胆应用,勇于创新,做最棒的自己

三角形内角和教案13

  设计说明

  三角形的内角和等于180°是三角形的一个重要特征,明确三角形的内角和等于180°是以后学习和解决实际问题的基础。

  1.让学生在生动具体的情境中学习数学。

  《数学课程标准》指出:在教学中,教师应充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,如讲故事、直观演示、模拟表演等,激发学生的学习兴趣,让学生在生动具体的情境中理解和掌握数学知识。在本节课的教学设计中,为了增强学生的学习兴趣,使其快速、积极、主动地投入到学习中,上课伊始的故事导入以及新知识的情境创设都能把学生带入快乐的学习氛围中。

  2.通过操作、观察、猜测、交流,使学生体验数学知识的形成过程。

  在本节课的设计中,对于三角形的内角和等于180°这一结论没有直接给出,而是通过量、算、剪、拼、折等活动证实了三角形的内角和等于180°,使学生在自主获取知识的过程中,培养了创新意识、探索精神和实践能力。

  课前准备

  教师准备 PPT课件 量角器 直尺

  学生准备 量角器 直尺 各种三角形

  教学过程

  第1课时 三角形内角和(1)

  ⊙故事引入

  三角形的'家庭是一个团结的大家庭。但今天,三角形的家庭内部却发生了争论,一个钝角三角形说:“我的钝角比你们的角都大,所以我的内角和最大。”一个锐角三角形说:“我的个子比你高,我是大三角形,你是小三角形,所以我的内角和肯定比你大。”一个直角三角形说:“不能只看一个钝角大就说内角和大,也不能只看个子,这样不公平。”其他的三角形也跟着争执不休,都说自己的内角和最大。这时,家庭里的王者来了,听了它们的诉说,也糊涂了。什么是三角形的内角?什么是三角形的内角和呢?

  (课件演示三条线段围成三角形的过程)

  师生共同小结:三条线段围成三角形后,在三角形内形成了三个角,这三个角就是三角形的三个内角(课件闪烁三个内角)。这三个内角的度数之和就是这个三角形的内角和。

  导入:到底谁说得对呢?这节课我们一起来探究三角形的内角和。[板书课题:三角形内角和(1)]

  设计意图:由故事引入,激发学生的学习兴趣,并通过故事提出问题,带着对问题的思考,唤起学生的求知欲望,从而使他们主动投入到学习中去。

  ⊙自主探究,合作交流

  1.提出问题。

  师:你有什么办法来比较两个三角形的内角和?

  2.量一量,算一算。

  (1)出示活动要求。

  ①在练习本上画一个锐角三角形、一个直角三角形和一个钝角三角形。

  ②用量角器测量所画三角形的各个内角的度数,把测量结果记录在表格中,并计算出每个三角形的内角和。

  (2)小组合作,量一量,算一算。

  (3)交流汇报。

  师:观察计算结果,你发现了什么?

  引导学生发现每个三角形的内角和都在180°左右。

三角形内角和教案14

  三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础。而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:

  (1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。

  (2)充分展示学生的个性,体现“学生是学习的主人”这一主题。

  (3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维

  过程,然后在老师的引导下达成共识。

  1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。

  2、三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。

  3、学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,而且也渗透了三角形的内角和是180°的证明,它的证明借助了平角定义,平行线的性质。用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。辅助线的作法是学生在几何证明过程中第一次接触,只要教师设置恰当的问题情境,学生再由实验操作、观察、抽象出几何图形,用自主探索的方式是可发完成的,并且这样的过程可以更好地发展他们的创造能力和实验能力。

  在小学已学过三角形的内角的有关知识,知道三角形的内角和为1800,但是为什么是1800并没有进行研究,因此本节是在学生前几学段学过三角形、线段、角等,初步了解了一些简单几何体和平面图形及特征会进行简单说理后,对“三角形的内角和定理”进行证明及简单应用。在证明过程中,通过一题多解,初步体会思维的多向性,引导学生的个性化发展,通过本节学习可以进一步丰富对图形的认识和感受。

  七年级学生年龄较小,思维正处在具体形象思维向抽象逻辑思维转变的阶段,也是由代数运算向几何推理过渡的较好时期,通过前面的学习,学生已具备一些分析问题、解决问题的能力,这样可以让学生和谐地融入到探究性学习的氛围中。刚开始上课,我让学生回顾了平角的概念,平行线的性质,为证明内角和垫定基础。然后通过几何画板演示一组在小学已经学过的'把三角形的三个角拼成一个平角的方法,通过设问:从刚才拼角的过程中,你能根据我们在前面所学的知识说出证明:“三角形内角和等于180°”这个结论的正确方法吗?通过让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。

  俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。例如,我设置的一层练习,基本上都是给出或者间接给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力。这些练习设计目的明确,针对性强,使学生对定理得到了巩固。

  通过二层练习,巩固三角形内角和知识,培养学生思维的广阔性,通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延。

  三层练习难度上与一、二层练习有了大幅度的提高,为实现分层教学,满足成绩较好的同学的需求,有事可作,为高效课堂提供了平台。

  最后,在堂小结方面,采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?⑵你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。

  总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。

三角形内角和教案15

  尊敬的各位评委老师:

  大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:

  一、教材分析

  “三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

  二、教学目标

  1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

  2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

  3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

  三、教学重难点

  教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

  教学难点:采用多种途径验证三角形的内角和是180°。

  四、学情分析

  通过前面的学习,学生已经掌握了三角形的`一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

  五、教学法分析

  本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

  六、课前准备

  1、教师准备:多媒体课件、三角形教具。

  2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

  七、教学过程

  (一)、创设情境,激趣导入

  导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

  课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

  (二)、自主探究、合作交流

  1、探索特殊三角形内角和

  拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

  三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

  90°+45°+45°=180°

  从刚才两个三角形内角和的计算中,你发现了什么?

  2、探索一般三角形的内角和

  一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

  3、汇报交流

  请小组代表汇报方法。

  1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

  没有统一的结果,有没有其他方法?

  2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

  3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

  4)教师课件验证结果。

  请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

  学生回答后教师板书:三角形的内角和是180°

  为什么有的小组用测量的方法不能得到180°?(误差)

  4、验证深化

  质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

  谁能说一说不能画出有两个直角的三角形的原因?

  (三)、应用规律,解决问题:

  揭示规律后,学生要掌握知识,就要通过解答实际问题。

  1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

  第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

  第二关,提高练习,

  ①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

  让学生灵活应用隐含条件来解决问题,进一步提高能力。

  2、小组合作练习,完成相应做一做。

  (四)、课堂总结,效果检测。

  一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

  (五)作业课下继续探究三角形,看你有什么新发现。

  八、板书设计

  通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

【三角形内角和教案】相关文章:

《三角形的内角和》教案11-17

三角形内角和教案01-17

《三角形内角和》数学教案11-21

有关三角形内角和教案四篇09-23

三角形的内角和说课稿09-17

《三角形内角和》说课稿07-16

三角形内角和说课稿03-08

三角形内角和说课稿11-15

《三角形的内角和》说课稿09-08

三角形内角和教学设计10-25