植树问题教案

时间:2025-09-30 11:39:37 教案 我要投稿

植树问题教案

  作为一名无私奉献的老师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。来参考自己需要的教案吧!以下是小编收集整理的植树问题教案,欢迎大家借鉴与参考,希望对大家有所帮助。

植树问题教案

植树问题教案1

  教学内容:教科书106页例1及相关内容。

  教学目标:

  1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:多媒体课件、直尺、学习纸。

  教学过程:

  一、 谜语引入做铺垫:

  1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。

  师说谜语,学生回答(手)

  师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。

  2.现在请第一小组的前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。

  手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。

  板书课题:植树问题

  二、探索新知

  1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?

  2.理解题意:

  师:在这道题中,你们发现了什么数学信息?

  生回答(总长度100m,5m一棵)。课件演示。

  师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。

  师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。

  课件演示。

  3.学生猜想:

  师:你们猜一猜,一共要栽多少棵树?谁来说说。

  生回答。怎样得到的。师板书:100÷5=20(棵)等等。

  师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?

  像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?

  4.学生操作:

  师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。

  学生操作。师巡视。画好的'互相检查。

  5.学生汇报:

  师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。

  师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。

  第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。

  大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。

  6.尝试列式:

  师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。

  学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)

  学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。

  师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。

  7.理解规律:

  如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。

  要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。

  (棵树比间隔数多1,反过来,间隔数比棵树少1)

  8.巩固强化,得出结论:

  师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!

  如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?

  间隔数+1=棵树(棵树—1=间隔数)

  大家把这个关系齐说一次。

  要求棵数必须要知道?(间隔数)

  已知总长度和间隔长度怎样求间隔数?

  总长度÷间隔长度=间隔数齐读一次。

  9.运用方法,验证例题:

  师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?

  看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。

  三、巩固练习:

  1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?

  学生完成,板演,讲评。、

  把一边改为两旁,生独立完成,集体讲评。

  2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?

  师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。

  生回答,师引导找到联系,在课件上标示。

  学生独立完成,板演,集体讲评。

  3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  学生独立完成,师提醒:先求间隔数。

  四、课堂小结。

  (略)

植树问题教案2

  【教学内容】:

  《植树问题》是新课程标准实验教材四年级下册的内容。

  【设计理念】:

  《新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。

  【学期与教材分析】:

  教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。

  【教学目标】

  1、通过动手操作、合作交流,理解一条线段上植树问题的规律。

  2、学会应用植树问题的模型去解决实际问题的方法。

  3、经历和体验“复杂问题简单化”的'解题方法和策略。

  【教学重难点】

  引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。

  为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。

  一、练习引入,构建新知。

  课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。

  俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。

  二、注重实践,体验探究。

  教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。

  三、联系生活,拓展思维。

  体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。

  总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。

植树问题教案3

  (1) 生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2) 和刚才这题比较,你想说什么?

  (3) 学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个) 35×6=210(米)

  (6) 擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

  (7) 有谁听懂了这个算式的意思,说给大家听一听?

  四、深化提高

  1、基本练习

  师:看来大家真的是越战越勇了,这次的任务是让你来当一个小法官,不知道大家有没有被困在这个数学法庭里。

  (1)判断:

  ①操场上插8跟标杆,间距10米,从第1根到第8根间距离是70米。( )

  ②在一条长40米的河畔一侧两头都种树,每两棵树间隔5米。一共需要种9棵树。 ( )

  生用手势表示,并说说这两题的不同,什么时候该加1,什么时候该减1呢?

  2、变式练习:

  师:虽然你们这些小法官年纪还很小,可是断起案来还真有模有样。那就勇往直前,去迎接最后的胜利吧!

  广场上的大钟4时敲响4下,12秒钟敲完。9时敲响9下,需要多长时间?

  ① 生读题,说说这题中有哪些数学信息?

  ② 敲钟大家见过吗?我们可以请4位同学来模仿一下。现在许老师也参与进来,当一回秒针,来给他们计时。当第一声钟声响起时,秒针就开始走了。当第四声钟声敲完,秒针也停止走动了。从刚才的.模仿中,你又看到了哪些题目里没有的数学信息?

  ③ 四人小组讨论解答题目。

  ④ 汇报。

  五、回顾小结

  1、师:这么难的题目让你们解答出来了,看来今天收获一定不少?

  2、师:通过今天的学习,我们发现了植树问题中两端要种的规律,植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

植树问题教案4

  学习目标:

  1.学生会探究发现一条线段上两端植树和一端植两种情况植树问题的规律。

  2.使学生经历和体验复杂问题简单化的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,激发数学兴趣,体会数学价值。

  学习过程:

  一、知识铺垫

  马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

  1. 你都知道了些什么?

  2. 一共要栽多少棵树?你是怎样想的'。

  二、自主探究

  大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

  1. 你都知道了 。

  2. 你认为一共要栽多少棵树?你会计算吗?试一试吧!

  总结

  植树问题

  总长( )=( )

  两 端 栽: 棵 数=( ) +1

  一 端 栽: 棵 数=( )

  两端不栽: 棵 数=( ) -1

  三、课堂达标

  1.小明家门前有一条35m的小路,绿化队要在路旁栽一排树。每隔5m栽一棵树(一端栽,一端不栽)。一共要栽多少棵?

  2.一条走廊长32m,每隔4m摆放一盆植物(两端不放)。一共要放多少盆植物?

  3. 一根木头长10m,要把它平均分成5段。每锯下一段需要8分钟。锯完一共要花多少分钟?

植树问题教案5

  个人简介:陈智敏,男,30岁,本科学历,小学高级教师,现任乐清市雁荡镇一小副校长。先后被评为乐清市教坛新秀、温州市首届学科骨干教师,两次荣获乐清市先进教育工作者称号。20xx年获得乐清市优质课一等奖,并多次承担温州市、乐清市教研室组织的送教下乡活动、乐清市级公开课教学和新课程专题讲座,所撰写的论文、案例多次在乐清市、省级获奖及发表。

  教学内容:人教版实验教材四下P117-P118页《植树问题》例1、例2

  教学目标

  1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。

  2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

  教学难点

  应用植树问题的模型灵活解决一些相关的实际问题。

  设计理念

  新课标实施,数学教材进行了相应的改革,数学思想方法的重要性更为彰显。每册教材通过“数学广角”来进一步渗透数学学习的思想、方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。在植树问题的教学中,解题不是主要的教学目的,主要的任务是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想--化归思想。

  本课的设计,主要根据教学内容的特点,及学生的实际情况,引导学生积极参与,通过开放性的设计,让学生在设计植树方案的过程中通过画图亲身体验在三种种植情况下,选择的间隔不同,但棵数与间隔数之间都存在一定的关系。通过学生的体验,建构植树问题的模型,再运用模型解决生活中的类似问题。教学中重在让学生体验知识获得的过程,更注重于培养学生运用所学知识,举一反三,解决实际问题的能力。

  教学过程

  一、新课导入

  1、师:大家知道3月12日是什么节日吗?(植树节)那么今天我们就一起来研究植树中的数学问题。

  板书课题:植树问题

  二、引导探究

  1、创设情境,理解概念

  (1)出示:“为了美化环境,学校准备在操场边上的.一条100米长的小路一边植树,总务主任需要准备多少棵树苗呢?

  (2)理解题意。

  a.读题,从题中你了解到了哪些数学信息?有什么问题?

  b.理解”间隔“的意思?

  C、理解三种种植情况

  (两端都种、一端种、两端不种)

  2、主动探索,发现规律

  (1)计算你的设计需要多少棵树苗?利用画线段图把它表示出来吗?并将植树方案补充完整

  植树方案

  总长(米)

  间隔(米)

  间隔数 (个)

  棵数(棵)

  种植情况示意图

  (2)学生反馈

  (3)组织讨论:你发现什么规律?

  两端都种时,棵数=间隔数+1

  一端种是时,棵数=间隔数

  两端不种时,棵数=间隔数-1

  3、应用规律,解决问题

  (1)出示例2:

  (2)读题后思考,有什么地方需要提醒同学值得注意的。

  (3)学生独立解题、反馈

  三、回归生活,变式练习

  1、封闭图形相当于一端种

  (1)出示P122练习二十第4题

  圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (2)讨论:封闭图形相当于植树问题中的哪个类型?

  (3)学生独立解题,反馈。

  2、同时出示两道习题:

  (1)锯木头问题(两端都不种)

  一根木头,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花多少分钟。

  (2)排列问题(两端都种)

  四、欣赏生活中类似于植树问题的事件

  生活中的类似于植树问题的――――欣赏

植树问题教案6

  教学内容:

  人教版小学数学四年级下册第八单元《数学广角--植树问题》

  教材分析:

  植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  学情分析:

  从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  教学目标:

  1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的'关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助图形,利用规律来解决简单植树的问题。

  2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。 渗透数形结合的思想,培养学生借助图形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

  3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重点:

  引导探究、发现两端都栽时棵数与间隔数之间关系。

  教学难点:

  运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

  教学方法:

  植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

  教学过程:

  一、创设情境,引入课题

  1.我以学生的小手为载体引入本课

  【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

  2.3月12日植树节对学生进行环境教育。

  通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

  二、探索规律建立模型

  先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  指导学生读题

  1.从题目你们知道了什么?(说一说)

  2.题目中每隔5米栽一棵是什么意思?

  3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

  4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

  5.交流。

  6.反馈。

  (1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

  (2)学生分别说想法。使学生明确:间隔数+1=棵数。

  三、巩固练习实际应用

  在这一环节我还原例1,让学生解决

  四、回顾整理反思提升

  1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下! 每隔5米种一棵(两端都种) 路长(米) 画一画 间隔数 棵数

  每隔5米种一棵(两端都种)

  路长(米) 画一画 间隔数 棵数

  (1)反馈交流:可以种几棵?你是怎么种的?

  (2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

  (3)全班交流汇报,引导学生概括规律(板书规律)。

  两端都种时: 棵数=间隔数+1

  间隔数=总长间隔

  2、我会算,设计两旁都要栽的练习。出示119页做一做

  3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

  (1)感知植树问题的三种模型。

  看课件三种情况。(两端种、两端都不种、一端不种)

  (2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

  课件出示例2(两端不种)

  【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

  4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

  (1)垃圾箱问题. 为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

  (2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  (3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

  (4)在全长20xx米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后独立解题。教师追问思考过程。

  (5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

  (6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 【练习紧扣中心,拓展情境,让学生运用规律独立解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

  五、回顾整理反思提升

  1、谈谈这节课的收获。

  【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

  2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

植树问题教案7

  教材分析

  本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的'情况。

  这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。

  教学目标

  1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

  2、能利用数学模型解决简单的实际问题。

  3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

  4、体会数学模型的生活意义与作用,体验到学习的喜悦。

  学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。

  学习难点:发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

  预设过程

  一、尝试解题发现问题

  1、揭题:今天我们来研究植树方面的问题。(板)

  2、课件呈现学习材料,请学生尝试。

  3、反馈,形成争议:

  1)100÷5=20

  2)100÷5+1=21

  4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。

  二、研究规律

  1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?

  2、生述师画,发现棵数比间隔数多1。

  3、自己尝试画图,完成表格。

  4、议:你发现什么?

  5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)

  6、分析尝试题的正确解法

  三、练习

  1、变式练习

  2、扩展练习

  1、完成1-1。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)尝试完成,并反馈。

  2、完成1-2。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)议:怎么求总长?(板)

  3)尝试完成,并反馈。

  3、完成2。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?

  3)尝试完成,并反馈。

  四、

植树问题教案8

  教学目标

  1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

  3.让学生感受数学在日常生活中的广泛应用。

  教学重难点

  教学重点:

  从封闭曲线(方阵)中探讨植树问题。

  教学难点:

  用数学的方法解决实际生活中的简单问题。

  教学过程

  一、复习旧知,情境导入(课件出示)

  (1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

  (2) 校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵?

  师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1)

  师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。

  你能说说棵数与间隔数之间的关系

  二、探索新知。

  1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

  板书课题:封闭图形的植树问题

  2、运用规律。

  圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

  (1)引导学生读题,理解题意。独立完成。

  (2)理解圆形的株数与间隔数相等,

  列出算式:12÷2=6(盆)

  3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

  4、发现规律:在圆形的花坛上种树,棵数=间隔数 。

  圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

  5、学习例题:

  (1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子? (2)生读题,独立列出算式

  学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

  方法1:直接点数出最外层一共可以摆放72个棋子。

  方法2:列式:19 ×2+(19-2)× 2=72(个)

  方法3:列式:(19-1)×4=72(个)

  方法4:列式:4+(19-2)×4=72(个)

  方法5:列式:19×4 - 4=72(个)

  以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

  6、探究规律。

  (1)首先理解封闭图形

  围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)

  (2)提问:

  我们学过的封闭图形有哪些?根据学生的回答课件出示部分学过的封闭图形。学生任选一个,用小圆点代替棋子在封闭图形中画一画,数一数,想一想,会有怎样的发现?

  (3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

  提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的'链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究?

  学生研究发现 :如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

  (4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。

  列式:(19-1)×4=72(个)

  (5)请一学生板演,并说出每个算式所表示的意义 19-1=18(段) ----表示19个旗子有18段间隔 18×4=72(个)----表示最外层的总数

  答:最外层一共可以放72个旗子。

  (6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数

  7、运用规律解决问题。

  (1)摆棋子:一个四边形,每个顶点都摆一个。

  (2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

  设问:100-1求的是什么?乘4呢?(为什么要乘4?)

  (3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

  (4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

  小结:看来,在封闭图形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?

  8、摆花盆:完成做一做第2题 问题:

  沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

  三、巩固延伸

  解决问题:

  1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

  2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?

  课后延伸题

  1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下图),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?

  2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?

  四、全课小结 师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧? 封闭图形的植树问题,株数=间隔数

  最外层总数=间隔数×边数

  五、作业布置

  教材122页的第4、6、7、8题

植树问题教案9

  教学内容:教材第108页例3

  学习目标:

  知识与技能:通过动手操作等实践活动,让学生探究封闭图形中间隔数与棵数之间的关系。

  过程与方法:通过小组合作、交流来探讨封闭曲线的植树问题。

  情感、态度与价值观:感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  学习重点:探讨封闭图形中植树问题的解决方法。

  学习难点:运用规律解决封闭图形中的植树问题。

  学法指导:自主学习任务,讨论交流总结规律方法。

  一、自主学习

  1、动手画一画。

  在一个假设周长是40m的圆上插小旗,每隔10m插一面。

  2、一共插了多少面小旗?小旗的面数和间隔数有什么关系?

  3、如果把圆拉成直线段,小旗的面数和间隔数有同样的关系吗?画图试一试!

  小结:插小旗也是‘植树问题’,在封闭图形上植树相当于一端栽,一端不栽。植树的棵树和间隔数( )。

  二、合作探究

  1、自学课本108页的.例3,它是什么形状?有什么规律?

  (1)分析:这个问题和前面学的有什么不一样?

  (2)思考: 你想用什么方法来研究这个问题?

  (3)出示表格

  (4) 我可以把(圆拉成直线),我的发现是:(间隔数与棵树相同)

  可以独立完成,也可以小组合作完成。

  小结:在封闭图形上植树,棵数=间隔数。

  2、 学生根据规律,独立完成例3

  3、拓展思维:如果一个五边形,怎么算?一个三角形呢?

  三、自我总结这节课你有哪些收获?

  四、课堂检测。

  1.填一填

  (1)学校运动场的跑道一圈长400米,在内侧每隔10米插一面彩旗,一共可以插( )面彩旗。

  (2)正六边形的花圃每边有3盆花,顶点都有花,共有( )盆花。

  (3)同学们进行体操表演,48人围成正方形,4个顶点都有人,每边各有( )名同学。

  2.判一判。

  (1)一个方阵,最外层每边8人,最外层一共8×8=64(人) ( )

  (2)在五边形水池边摆花盆,每边放4盆,最少需要15盆。 ( )

  (3)时钟3时敲3下用2秒,4时敲4下用4秒。 ( )

  3.教材第108的“做一做”,先让学生分析一下这个问题是不是“植树问题”,再在小组内讨论交流,再独立完成。

  4、第9题,这是一道综合运用所学知识解决实际问题的习题,胜读题理解题意独立完成之后独立列式解答。此题现要求出跑道的的总长,再想要插26面小旗,有多傻拍个间隔,再用总长除以间隔数。

  5、第10题,独立解答。

  布置作业:

  板书设计:

  植树问题(三)

  一个封闭图形的植树问题

  棵树=全长÷间隔数

  全长=间隔数×棵树

  例3 120÷10=12(棵)

植树问题教案10

  教学内容:教材P106例1。

  学习目标:

  知识与技能:

  1、我要知道植树问题里间隔、棵数、间隔长度和总长度之间的关系。

  过程与方法:学生能够初步建立植树问题的数学模型,能根据这个模型将生活中类似的问题进行分类,并试着应用模型中间隔与棵数的关系来解决问题。

  情感、态度与价值观:培养学生认真审题的良好学习习惯。

  学习重、难点:

  1、在探究活动中发现规律,并能够用发现的规律来解决生活中的一些简单实际问题。

  2、理解“两端都种”情况下棵数和间隔数之间的规律。

  学法指导:自主探索、合作交流。

  教学过程:

  课前预习案

  1、了解“间隔:“的含义。

  (1)感知”间隔“请伸出你的一只手,张开手指两个指头之间的缝隙就是”间隔“。

  (2)一只手有( )个手指头,有( )个间隔。

  (3)找一找生活中哪些地方有间隔?在小组内说一说

  2、自主探究,想一想间隔数与彩旗面数之间有什么关系。

  同学们在全长10厘米的小路一边插彩旗,每隔5厘米插一面(两端都插),一共需要插多少面彩旗?

  (1)你认为本题中哪些词是关键词?( )

  (2)请画出线段图( )

  (3)根据线段图可知:全长( )厘米,间隔长度是( )厘米,间隔数是( )个,需要插( )面彩旗。

  一、自主学习,了解”间隔“的含义。

  1.检查预习情况,让学生说说手指数与间隔数之间存在着什么样的关系?

  2.想一想:教室中第一横排一共有几个同学?每2个同学之间看成1个间隔,这些同学之间一共有几个间隔?

  生活中还有类似的现象吗?

  二、合作探究,学习例1。

  1、你认为例1中哪些词语要引起我们的注意?

  2、用什么办法可以知道一共需要多少棵树苗?

  3、全长、间隔与棵数之间有什么关系?把公路看做一条线段画图看一看,并完成下面的表格。(两端都栽)

  4、运用你发现的规律解决例1的问题。

  (1)读一读课本117页的例1,你从题目中了解了哪些信息,要解决什么问题?

  (2)教材117页左上图一个同学通过计算说:

  一共需要( 20)棵树苗?你认为是否正确,举一个简单的例子来验证一下:(温馨提示:假如路长是20米,每隔5米栽一棵(两端都要 栽),要栽几棵呢?(画线段后解决)

  (3)在这条20米长的.路上,每隔 5米栽一棵树,相当于把路平均分成了( )段,一段 看成一个间隔,那么4段就是( )个间隔,每一个间隔点处种一棵树,那要种( )棵树,种的棵树比间隔数( )。

  (4)请用发现的规律去解决117页的例1,并说说你是怎么想的?

  三、自我总结

  这节课你有哪些收获?

  四、过关测评

  1、课本107页做一做第1题,先让学生分组讨论,然后再说一说。

  2、第3题,提示:电线杆的个数等于间隔数加1,生独立理解题意独立完成。

  第4题,生独立理解题意独立完成。提示:认真理解“种的棵数=间隔个数+1”)(36—1)×6

  比一比:两题有什么相同点?有什么不同点?

  3、第2题,提醒学生首位都要设站,车中间按个数等于间隔数加1 。(12+1)×1

  4、第5题,生读题理解题意(温馨提示:从敲响第1下到第5下结束,共有几个间隔)

  8÷(5—1)×(12—1)

  5、 从王村到李村一共设有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?200×16—1

  五、总结与评价

  这节课你经历了探究,在探究中你发现了什么?在学习中你收获了什么?在应用中你懂得了什么?

  布置作业:

  板书设计:

  植树问题

  两端都栽 间隔数+1=棵数

植树问题教案11

  学习目标:

  1.探讨封闭曲线中的植树问题。

  2.初步培养学生从实际问题中探索规律,找出解决问题的'有效方法。

  3.在小组合作交流过程中,学会从不同角度思考问题。

  学习过程:

  一、自主探究

  例3:张伯伯准备在圆形池塘周围

  栽树。池塘的周长是120m,

  如果每隔10m栽一棵,一共

  要栽多少棵树?

  1.分析:这个问题和前面学的有什么不一样?

  2.思考: 你想用什么方法来研究这个问题?

  3.出示表格

  4. 我可以把 ,我的发现是

  可以独立完成,也可以小组合作完成。

  二、课堂达标

  1.填一填

  (1)学校运动场的跑道一圈长400米,在内侧每隔10米插一面彩旗,一共可以插( )面彩旗。

  (2)正六边形的花圃每边有3盆花,顶点都有花,共有( )盆花。

  (3)同学们进行体操表演,48人围成正方形,4个顶点都有人,每边各有( )名同学。

  2. 判一判。

  (1)一个方阵,最外层每边8人,最外层一共88=64(人) ( )

  (2)在五边形水池边摆花盆,每边放4盆,最少需要15盆。 ( )

  (3)时钟3时敲3下用2秒,4时敲4下用4秒。 ( )

  3.圆形滑冰场的一周全长是150m。如果沿着这一圈每隔15m安装一灯, 一共需要装几盏灯?

  三、知识拓展

  一条项链长60cm,每隔5cm有一颗水晶。这条项链上共有多少颗水晶?

植树问题教案12

  学情分析

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于整体学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中应对教材进行适当的整合,并充分利用原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标

  1.认识不封闭曲线路上间隔排列中的简单规律。

  2.会解决问题中“两端都栽”情形的植树的实际问题。

  教学重难点

  重点:间隔排列中的简单规律

  难点:两端栽树棵数与间隔数之间的关系。

  教学过程

  一、口算:(白板出示)

  48÷6=? 13×3+1=? 83+42+17=? 32÷8+1=? (13-1)÷2=

  100÷5+1=? (73-1)÷8=? 12×4=? 1000÷10=? 35÷7+1=

  二、谈话导入

  师:同学们你们知道每年的植树节是几月几日吗?

  生:3月12日

  师:那你们植过树吗?

  生:没有 有

  师:那今天老师就来带领大家一起来研究数学上的. “植树问题”吧!

  出示课题(ppt):植树问题

  准备:

  伸出左手 五指张开 每相邻两个手指之间有一个缝隙,这个缝隙也称做间隔。

  5—4 也称做间隔数是4 ; 4-3 3 ;? 3—2 2 ;?? 2—1? 1 ;

  ?? 那大家植树时是不是这样植的?每相邻两棵树之间有一定的距离,也称做间距。

  三、探究新知

  下面让我们一起来研究,出示课件例题1

  (1)理解题意

  师:认真读题,你认为哪些词语最关键?

  生:全长100米 ?? ? 一边

  每隔五米 间隔 ?两端都要栽

  问题:一共需要几棵树苗?棵数

  (这些同学审题真仔细)

  师:那什么叫做每隔五米?两端都要栽?

  生:每相邻两棵树之间的间隔距离是5米?

  小路的最开始和末尾各栽一棵。

  师:同学们说的可真好,那请大家观看课件,跟着老师一起通过ppt再次深刻理解题意,认真看,小声跟着说……好!那你认为一共应该栽多少棵小树呢?

  师:100米太长了,我们可以用简单的数来试试。20米(师把100改成20),师在黑板上画出线段图,让学生清楚看出需要5棵小树苗。师:怎样写算式呢?20÷5=4() 4+1=5()

  (老师重点强调单位名称和答)

  师:把20米换成30米、35米呢?(学生在练习本上计算,后同桌对答案)

  师:那么大家来看黑板上,间隔数和棵树之间有什么联系?

  生:棵数=间隔数+1? 多找几个同学回答

  师:出示课件 一起读。

  师生共同回头看例1,学生在练习本上计算。

  师出示课件ppt例1的计算过程

  100÷5=20(个)

  20+1=21(棵)

  答:一共需要21棵小树苗。

  (表扬—你真了不起,写的跟答案一模一样,点赞!)

  四、巩固练习(ppt呈现)

  1、5路公交车线路全长12千米,相邻两站之间的路程都是1千米,一共设有多少个车站?

  2、把“1千米”改成“2千米”

  3、在一条长20米的小路一侧,每隔4米放一盆植物(两端都放),一共需要多少盆植物?

  4、两侧都放呢?

  5、大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端都不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树

  五、思考题

  学校的大钟8时敲响8下,14秒敲完。11时敲响11下,敲完需要多长时间?

  六、谈收获

  通过今天的学习,老师很佩服你们的专注力,你们真了不起!那么你的收获是什么呢?

  (师生共同本课内容,下课。)

植树问题教案13

  1、教学内容:P120例3P121做一做

  2、教材分析及重难点

  例3是植树问题的另一种情况--关于一个封闭图形的植树问题。教材借助围棋盘的最外层每边都能放19个棋子,求围棋盘最外层一共可以摆多少棋子的问题,介绍如何解决类似的植树问题。

  教学时,学生很容易会出现教材上的女孩子一样,认为每边放19个棋子,最外层一共就是19×6=76个棋子,而忽略了角上的棋子算重复了。

  在总结出规律后,会发现他其实与一端种另一端不种的植树问题是一样的:棵数=间隔数。

  做一做第1题是例3的逆思考,给出总数求每边各个几名学生。第2题有两种情况:5个角上都摆,则是最少需要15盆花;5个角上都不摆,则需要20盆花。第3题与例3相同。

  教学重点:

  理解植树问题的特征,应用规律解决问题。

  教学难点:

  植树问题基本规律的提炼和方法的应用。

  3、教学目标

  (1)、通过观察、操作及交流活动,探索并认识封闭线路上间隔排列中的简单规律,并能将这种认识应用到解决类似的实际问题之中。

  (2)、培养学生观察能力、操作能力以及与人合作的能力。

  (3)、让学生经历探索规律的过程,激发学生探索的欲望。

  4、教学建议

  本课内容的探索性也比较强,教学时可以先让学生自己来探索,借助方格纸来画一画图,或者是围棋盘学具来寻找解决问题的方法。在教学过程中,教师应注意对于学生出现的不同方法,只要合理正确,都应给予表扬和鼓励,保护学生独立思考解决问题的积极性,同时也要适时引导学生通过比较各种算法,学习、吸收更好的解决问题的方法、思路和策略,逐步提高学生的思维水平。即“自由发挥、解法多种、做好优化。”

  第四课时

  1、教学内容:P122、123练习二十

  2、教材分析及重难点

  第1题是敲钟的用时问题,与例1相似。大钟敲5下时,中间共有4个间隔,所以每个间隔是8÷4=2秒。敲12下时,中间有11个间隔,所用时间是11×2=22秒。

  第2题、第3题、第5题也与例1相似。

  第4题、第6题是探讨关于封闭曲线的植树问题,与例3相似。

  第7题需要学生先找出几张桌子坐几个人的规律。一张桌子是6人,两张桌子时少坐了2人,三张桌子时少坐了4人,......可以总结出规律:少的人数=(桌子张数-1)×2,所以10张桌子能坐:10×6-(10-1)×2=42人。第二个问题是逆向思考。

  教学重点:

  理解植树问题的`特征,应用规律解决问题。

  教学难点:

  植树问题基本规律的提炼和方法的应用。

  3、教学目标

  (1)、通过练习,进一步认识间隔排列中的简单规律,并能将这种认识应用到解决简单实际问题中去。

  (2)、能用不同的方法解决问题,提高学生的发散思维能力。

  (3)、体验数学问题的探索性,感受成功的乐趣,增强学习的信心。

  4、教学建议

  第4题可以先从例1中发现的规律推广得到,把例1中的线段两个端点连到一起,便成了一条封闭曲线,而此时这两个植树点也合在了一起,所以植树的棵树就是分出的间隔数。如果学生已经比较熟悉了,也可以直接应用例3中得到的规律。

  第7题建议让学生尝试找出桌子张数和能坐人数之间的关系,通过活动总结出规律。

  教学实践与反思

  1、理清教材脉络,灵活使用教材。

  例1一条线段的植树问题并且两端都要栽树的情况

  例2两端都不栽的情形

  例3封闭曲线(方阵)中的植树问题

  可以结合例1、例2一起教学,例3单独教学,可能教学效果会更好。

  2、引导学生发现隐含于不同的植树问题中的规律,经历抽取出数学模型的过程。

  两端都种:棵数=间隔数+1

  一端种一端不种:棵树=间隔数

  两端都不种:棵数=间隔数-1

  3、数形结合

  4、充分挖掘并整合教学资源,充实教学内容。

植树问题教案14

  教学目标:

  1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

  2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

  3.感悟构建数学模型是解决实际问题的重要方法之一。

  教学重、难点:

  理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

  教学过程:

  一、创设原型

  1、师:同学们,在我们的身边到处有数学。现在,请你也像老师一样伸出一只手并张开手指,你看到有关数学的信息了吗?(5--5个手指,4?--4个空)4个空在学习上我们可以叫做4个间隔。(板书:间隔)

  五指张开,手心朝下置于桌面,我们一起来数一数这几个间隔?

  (根据学生回答灵动评价,随机提示“希望能用数学的眼光看问题”;如果学生说“五个手指”,老师肯定他能用数字描述所看到的信息。)

  谁来说说间隔是什么意思?身边再找找,发现间隔了吗?

  2、借助展示,强化对“间隔”意义的理解

  下面来玩个小游戏:

  ①2生上台,拉紧一根绳子。(各拿一棵小树)绳子看成一条路。用一句话说,路上有几棵小树几个间隔?大家都认可他的说法吗?

  教师手拿小树捏住绳子中间,现在路上有......,谁来继续往下说?(2个间隔,3棵小树)

  小树把路平均分成了几份?(2份)路被小树平均分成了2份正好是几个间隔?(2个间隔)

  随机板书:份数间隔数棵数

  2份2个间隔3棵树

  ②现在我们用小树把这条路长平均分成4份,应该怎样改动?

  请你用数学语言描述路上所看到的现象。

  板书:445

  ③下面请你把看到的现象,在纸上画下来。

  汇报后倡导用线段图表示比较简洁:

  揭题:植树问题。(刚才,我们通过一个小游戏感受了有关种树的数学问题。)

  今天这堂课,我们就一起来研究和学习植树问题。大家有信心学好吗?

  二、构建模型

  1.画图探索、加强体验

  出示:12米长的小路上植树,要求每两棵数之间的距离相等(整米数),两端都种。有哪几种不同的种植方案?借助线段图进行研究。(每两棵树之间的距离相等是什么意思?)

  学生独立画图研究、填写表格:

  路长:米

  间隔长(每份长):米

  间隔数(份数):个

  棵数:棵

  通过观察表格中的数据,我发现了:

  2、汇报交流、小结发现

  通过观察表格中的数据,你发现了什么?

  根据学生的回答,适时板书:

  间隔长×间隔数=路长棵数=间隔数+1=路长÷间隔长+1

  3、质疑问难、突破难点

  师:把一条路平均分成几份就正好是几个间隔,那棵数怎么总比间隔数多1呢?

  同桌交换意见后汇报。(一份算一棵,几份就是几棵,因为两端都要种植,所以再加首端上的1棵。)

  在实际生活中,两端都种、只种一段和两端都不种三种情况都存在,我们必须仔细审题,弄清是哪一种情况。今天,我们主要研究的是两端都种的植树问题。

  三、巩固应用

  下面不画线段图,你能很快解答类似的植树问题了吗?

  我们一起来看这样一道植树问题:

  小黑板出示:有一条全长100米的小路,同学们在路的其中一边植树,每隔5米种一课树(两端都要种)。一共需要多少棵树苗?

  ①安静地把题目读一读。

  ②对题目的意思,有不明白的地方吗?

  ③认真解答在练习纸上。

  ④反馈。(谁来介绍下,你是怎么解答的?)

  ⑤同学们只在路的其中一边植树,如果在路的两边都种上树的话,你能快速地告诉老师一共需要多少棵树苗了呢?(21×2=42棵)

  四、点击生活

  师:在我们生活周围存在许多类似的植树问题,比如街道边安装路灯:

  在街道的一边安装路灯(两端都安装),每隔50米安装一盏,共安装了12盏。根据提供的信息,能知道这条街有多长吗?

  师:同学们,我们研究问题、解决问题,就要学会寻找不同现象、问题间的相似点,抓住关键,解决问题。

  类似植树问题的生活现象,又如:

  A、老师从一楼底层去某教室,每走一层楼有24个台阶,共走了48个台阶。你知道老师去了几楼教室?

  B、一根10米长的'木头,要把它平均分成5段。每锯下一段需要8分钟,锯完一共需要多少分钟?

  五、课外拓展

  二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  数学史上有个20棵树植树问题,几个世纪以来一直享誉全球,不断给人类智慧的滋养,聪明的启迪。20棵树植树问题,简单地说,就是:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  20棵树植树问题,早在十六世纪,古希腊、古罗马、古埃及等都先后完成了十六行的排列并将美丽的图谱广泛应用于高雅装饰建筑、华丽工艺美术(图1)。

  进入十八世纪,德国数学家高斯猜想20棵树植树问题应能达到十八行,但一直未能见其发表绘制出的十八行图谱。直到十九世纪,此猜想才被美国的娱乐数学大师山姆.劳埃德完成并绘制出了精美的十八行图谱,而后还制成娱乐棋盛行于欧美,颇受人们喜爱(图2)。

  进入20世纪,电子计算机的高速发展方兴未艾。数学上的20棵树植树问题也随之有了更新的进展。在二十世纪七十年代,两位数学爱好者巧妙地运用电子计算机超越数学大师山姆.劳埃德保持的十八行纪录,成功地绘制出了精湛美丽的二十行图谱,创造了20棵树植树问题新世纪的新纪录并保持至今(图3)。

  今天,人类已经从20世纪跨入了21世纪的第一个年代。20棵树植树问题又被数学家们从新提出:跨入21世纪,20棵树,每行四棵,还能有更新的进展吗?数学界正翘首以待。希望同学们能从小学好数学,掌握本领,勇攀科学高峰!

  同学们,听了刚才的数学趣闻,你有什么感想?

植树问题教案15

  教学过程:

  教学内容:

  教学目标:

  1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。

  2、引导学生构建数学模型,解决实际生活中的有关问题。

  3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。

  教学难点:运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:课件、白纸

  教学过程:

  一、情境出示,设疑激趣

  教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?

  【设计意图】

  直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。

  二、经历过程,感受方法

  教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?

  预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)

  学生:可以先用简单的数试一试。(课件出示)

  【设计意图】

  使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。

  三、探索实践,建立模型

  教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:教师:说说你是怎么想的?预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。

  教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?

  预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)

  (根据学生回答,教师在课件上输入数据)你发现了什么规律?

  预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)

  教师:回顾这个问题的解答过程,说说你的想法。

  归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

  【设计意图】

  “画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。

  四、利用新知,解决问题

  教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)

  1、在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?

  教师:读完这个题目,你觉得有哪些地方需要特别引起注意?

  预设1:单位不统一,要先进行转化再计算。

  预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)

  学生练习,指名回答。

  2 km=20xx m(20xx÷50+1)×2=82(盏)

  答:一共要安装82盏路灯。

  教师:20xx÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)

  2、马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?教师:仔细读题,认真思考,说说你对这个题目的理解。

  引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数—1”。

  25—1=24(棵)

  答:一共要栽24棵银杏树。

  教师:可以用怎样的'方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?

  【设计意图】

  练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。

  五、逆向思考,拓展新知

  园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?

  预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。教师追问:该怎样解答呢?试一试,并说说你的思路。

  (36—1)×6=210(m)

  答:从第1棵到最后一棵的距离是210 m。

  教师:“36—1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。

  【设计意图】

  通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数—1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。

  六、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?跟大家交流一下。

  根据学生回答,强调:

  1、解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。

  2、当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。

  【板书设计】

  植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)

【植树问题教案】相关文章:

冀教版植树问题教案08-11

植树问题说课稿08-13

《植树问题》的说课稿09-19

《植树问题》说课稿10-07

《植树问题》教学反思11-13

植树问题教学设计08-31

《植树问题》教学设计05-21

植树问题的教学设计10-20

植树问题教学设计01-24

植树问题教学设计12-07